Skip to main content

Protein Graphs in Cancer Prediction

  • Chapter
  • First Online:
An Omics Perspective on Cancer Research

Abstract

The consequences of breast, colon and prostate cancer create the necessity of new, simpler and faster theoretical models that may allow earlier cancer detection. The present work has built several Quantitative Protein (or Proteome) – Disease Relationships (QPDRs). QPDRs, similar to Quantitative Structure Activity Relationship (QSAR) models, are based on topological indices (TIs) and/or connectivity indices (CIs) of graphs. In particular, we used Star graphs and Lattice networks of protein sequence or MS outcomes of blood proteome in order to predict the proteins related to breast and colon cancer and to improve the diagnostic potential of the PSA biomarker for prostate cancer. The advantages of this method are the simplicity, fast calculations and few resources needed (free software programmes, such as MARCH-INSIDE and S2SNet). Thus, this ideal theoretical scheme can be easily extended to other types of diseases or even other fields, such as Genomics or Systems Biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguero-Chapin G, González-Díaz H et al (2006) Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L. FEBS Lett 580:723–730

    Article  PubMed  Google Scholar 

  • Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K et al (2006) Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7:207

    Article  PubMed  Google Scholar 

  • Althaus IW, Chou KC, Franks KM et al (1996) The benzylthio-pyrididine U-31, 355 is a potent inhibitor of HIV-1 reverse transcriptase. Biochem Pharmacol 51:743–750

    Article  CAS  PubMed  Google Scholar 

  • Andraos J (2008) Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs. Can J Chem 86:342–357

    Article  CAS  Google Scholar 

  • Arteca GA, Mezey PG (1990) A method for the characterization of foldings in protein ribbon models. J Mol Graph 8:66–80

    Article  CAS  PubMed  Google Scholar 

  • Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed  Google Scholar 

  • Balaban AT, Basak SC, Beteringhe A et al (2004) QSAR study using topological indices for inhibition of carbonic anhydrase II by sulfanilamides and Schiff bases. Mol Divers 8:401–412

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL (2005) Sociology. Network theory – the emergence of the creative enterprise. Science 308:639–641

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL, Bonabeau E (2003) Scale-free networks. Sci Am 288:60–69

    Article  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  CAS  PubMed  Google Scholar 

  • Bielinska-Waz D, Nowak W, Waz P et al (2007) Distribution moments of 2D-graphs as descriptors of DNA sequences. Chem Phys Lett 443:408–413

    Article  CAS  Google Scholar 

  • Bisquerra Alzina R (1989) Introducción conceptual al análisis multivariante: Un enfoque informático con los paquetes SPSS-X, BMDP. LISREL y SPAD, PPU, Barcelona

    Google Scholar 

  • Borges JC, Cagliari TC, Ramos CH (2007) Expression and variability of molecular chaperones in the sugarcane expressome. J Plant Physiol 164:505–13

    Article  CAS  PubMed  Google Scholar 

  • Bougnoux P, Giraudeau B, Couet C (2006) Diet, cancer, and the lipidome. Cancer Epidemiol Biomarkers Prev 15:416–421

    Article  CAS  PubMed  Google Scholar 

  • Bougnoux P, Hajjaji N, Couet C (2008) The lipidome as a composite biomarker of the modifiable part of the risk of breast cancer. Prostaglandins Leukot Essent Fatty Acids 79:93–96

    PubMed  Google Scholar 

  • Brzezinska E (2003) The QSAR analysis of tricyclic non-nucleoside inhibitors of HIV-1 reverse transcriptase. Acta Pol Pharm 60:3–13

    CAS  PubMed  Google Scholar 

  • Chen J, Chua HN, Hsu W et al (2006) Increasing confidence of protein-protein interactomes. Genome Inform 17:284–297

    CAS  PubMed  Google Scholar 

  • Chou KC (1989) Graphical rules in steady and non-steady enzyme kinetics. J Biol Chem 264:12074–12079

    CAS  PubMed  Google Scholar 

  • Chou KC (1990) Review: applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems. Biophys Chem 35:1–24

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Kezdy FJ, Reusser F (1994) Review: steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem 221:217–230

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Zhang CT, Elrod DW (1996) Do antisense proteins exist? J Protein Chem 15:59–61

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Zhang CT (1992) Diagrammatization of codon usage in 339 HIV proteins and its biological implication. AIDS Res Hum Retroviruses 8:1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Cho WC, Cheng CH (2007) Oncoproteomics: current trends and future perspectives. Expert Rev Proteomics 4:401–410

    Article  CAS  PubMed  Google Scholar 

  • Coghlan A, Eichler EE, Oliver SG et al (2005) Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet 21:673–682

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Monteagudo M, Gonzalez-Diaz H, Borges F et al (2008) 3D-MEDNEs: An alternative “in silico” technique for chemical research in toxicology. 2. Quantitative proteome-toxicity relationships (QPTR) based on mass spectrum spiral entropy. Chem Res Toxicol 21:619–632

    Article  CAS  PubMed  Google Scholar 

  • Del Chiaro M, Zerbi A, Falconi M et al (2007) Cancer risk among the relatives of patients with pancreatic ductal adenocarcinoma. Pancreatology 7:459–469

    Article  PubMed  Google Scholar 

  • Devillers J, Balaban AT (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon & Breach, The Netherlands

    Google Scholar 

  • Ding J, Sorensen CM, Jaitly N et al (2008) Application of the accurate mass and time tag approach in studies of the human blood lipidome. J Chromatogr B Analyt Technol Biomed Life Sci 871:243–252

    Article  CAS  PubMed  Google Scholar 

  • Dobson PD, Doig AJ (2003) Distinguishing enzyme structures from non-enzymes without alignments. J Mol Biol 330:771–783

    Article  CAS  PubMed  Google Scholar 

  • Dobson PD, Doig AJ (2005) Predicting enzyme class from protein structure without alignments. J Mol Biol 345:187–199

    Article  CAS  PubMed  Google Scholar 

  • Estrada E (2002) Characterization of the folding degree of proteins. Bioinformatics 18:697–704

    Article  CAS  PubMed  Google Scholar 

  • Estrada E, Uriarte E (2001) Recent advances on the role of topological indices in drug discovery research. Curr Med Chem 8:1573–1588

    CAS  PubMed  Google Scholar 

  • Ferino G, Gonzalez-Diaz H, Delogu G et al (2008) Using spectral moments of spiral networks based on PSA/mass spectra outcomes to derive quantitative proteome-disease relationships (QPDRs) and predicting prostate cancer. Biochem Biophys Res Commun 372:320–325

    Article  CAS  PubMed  Google Scholar 

  • Freeze HH (2006) Genetic defects in the human glycome. Nat Rev Genet 7:537–551

    Article  CAS  PubMed  Google Scholar 

  • González-Díaz H, González-Díaz Y, Santana L et al (2008) Proteomics, networks and connectivity indices. Proteomics 8:750–778

    Article  PubMed  Google Scholar 

  • González-Díaz H, Vilar S, Santana L et al (2007) Medicinal chemistry and bioinformatics – current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7:1025–1039

    Article  Google Scholar 

  • Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5:76

    Article  PubMed  Google Scholar 

  • Jain KK (2007) Recent advances in clinical oncoproteomics. J Buon 12:S31–38

    PubMed  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    CAS  PubMed  Google Scholar 

  • Klose J (1989) Systematic analysis of the total proteins of a mammalian organism: principles, problems and implications for sequencing the human genome. Electrophoresis 10:140–152

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard T, McGlynn LM, Campbell FM et al (2007) Amplified in breast cancer 1 in human epidermal growth factor receptor – positive tumors of tamoxifen-treated breast cancer patients. Clin Cancer Res 13:1405–1411

    Article  CAS  PubMed  Google Scholar 

  • Latha B, Venkatesh B (2004) Granulometric analysis of spots in DNA microarray images. Genomics Proteomics Bioinformtics 2:222–236

    CAS  Google Scholar 

  • Lee S, Lee B, Jang I et al (2006) Localizome: a server for identifying transmembrane topologies and TM helices of eukaryotic proteins utilizing domain information. Nucleic Acids Res 34:W99–103

    Article  CAS  PubMed  Google Scholar 

  • Liao B, Wang TM (2004) Analysis of similarity/dissimilarity of DNA sequences based on nonoverlapping triplets of nucleotide bases. J Chem Inf Comput Sci 44:1666–1670

    CAS  PubMed  Google Scholar 

  • Liao B, Xiang X, Zhu W (2006) Coronavirus phylogeny based on 2D graphical representation of DNA sequence. J Comput Chem 27:1196–1202

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Mellor J, Wu J et al (2004) VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics 5:17

    Article  PubMed  Google Scholar 

  • Mayer A, Takimoto M, Fritz E et al (1993) The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal ­cancer. Cancer 71:2454–2460

    Article  CAS  PubMed  Google Scholar 

  • Morelle W, Flahaut C, Michalski JC et al (2006) Mass spectrometric approach for screening modifications of total serum N-glycome in human diseases: application to cirrhosis. Glycobiology 16:281–293

    Article  CAS  PubMed  Google Scholar 

  • Munteanu CR, Gonzalez-Diaz H, Magalhães AL (2008) Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices. J Theor Biol 254:476–482

    Article  CAS  PubMed  Google Scholar 

  • Nandy A, Basak SC (2000) Simple numerical descriptor for quantifying effect of toxic substances on DNA sequences. J Chem Inf Comput Sci 40:915–919

    CAS  PubMed  Google Scholar 

  • Notebaart RA, Teusink B, Siezen RJ et al (2008) Co-regulation of metabolic genes is better explained by flux coupling than by network distance. PLoS Comput Biol 4:e26

    Article  PubMed  Google Scholar 

  • Perez MA, Sanz MB, Torres LR et al (2004) A topological sub-structural approach for predicting human intestinal absorption of drugs. Eur J Med Chem 39:905–916

    Article  CAS  PubMed  Google Scholar 

  • Petricoin EF, Ornstein DK, Paweletz CP et al (2002) Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 95:489–490

    Google Scholar 

  • Qi XQ, Wen J, Qi ZH (2007) New 3D graphical representation of DNA sequence based on dual nucleotides. J Theor Biol 249:681–690

    Article  CAS  PubMed  Google Scholar 

  • Randic M (2000) Condensed representation of DNA primary sequences. J Chem Inf Comput Sci 40:50–56

    CAS  PubMed  Google Scholar 

  • Randic M, Balaban AT (2003) On a four-dimensional representation of DNA primary sequences. J Chem Inf Comput Sci 43:532–539

    CAS  PubMed  Google Scholar 

  • Randic M, Vracko M (2000) On the similarity of DNA primary sequences. J Chem Inf Comput Sci 40:599–606

    CAS  PubMed  Google Scholar 

  • Randic M, Vracko M, Nandy A et al (2000) On 3-D graphical representation of DNA primary sequences and their numerical characterization. J Chem Inf Comput Sci 40:1235–1244

    CAS  PubMed  Google Scholar 

  • Randic M, Zupan J, Vikic-Topic D (2007) On representation of proteins by star-like graphs. J Mol Graph Model 26:290–305

    Article  CAS  PubMed  Google Scholar 

  • Rivera MP, Stover DE (2004) Gender and lung cancer. Clin Chest Med 25:391–400

    Article  PubMed  Google Scholar 

  • Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  Google Scholar 

  • Stewart J, Gill L (1998) Econometrics. Prentice-Hall, London

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Van Waterbeemd H (1995a) Chemometric methods in molecular design. Wiley-VCH, New York

    Book  Google Scholar 

  • Van Waterbeemd H (1995b) Discriminant analysis for activity prediction. In: Van Waterbeemd H (ed) Chemometric methods in molecular design, 2nd edn. Wiley-VCH, New York

    Google Scholar 

  • Wang J, Zhang X, Ge X et al (2008) Proteomic studies of early-stage and advanced ovarian cancer patients. Gynecol Oncol 111:111–119

    Article  CAS  PubMed  Google Scholar 

  • Ward DG, Suggett N, Cheng Y et al (2006) Identification of serum biomarkers for colon cancer by proteomic analysis. Br J Cancer 94:1898–905

    Article  CAS  PubMed  Google Scholar 

  • Welsh JB, Sapinoso LM, Su AI et al (2001) Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61:5974–5978

    CAS  PubMed  Google Scholar 

  • Wishart DS, Knox C, Guo AC et al (2008) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–610

    Google Scholar 

  • Zhu D, Qin ZS (2005) Structural comparison of metabolic networks in selected single cell organisms. BMC Bioinformatics 6:8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank for the grant (2007/127 and 2007/144) from the General Directorate of Scientific and Technologic Promotion of the Galician University System of the Xunta de Galicia, for the grant (PIO52048 and RD07/0067/0005) funded by the Carlos III Health Institute, and for the grant (File 2006/60, 2007/127 and 2007/144) from the General Directorate of Scientific and Technologic Promotion of the Galician University System of the Xunta de Galicia (Spain). González-Díaz and Munteanu acknowledge for the contract/grant sponsorships of Isidro Parga Pondal Programme, Xunta de Galicia (Spain). Ferino gratefully acknowledges a PhD scholarship from the University of Cagliari, actually developing a Bioinformatics research under Supervision of Professor Uriarte and Dr. González-Díaz at the University of Santiago de Compostela (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto González-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

González-Díaz, H. et al. (2010). Protein Graphs in Cancer Prediction. In: Cho, W. (eds) An Omics Perspective on Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2675-0_7

Download citation

Publish with us

Policies and ethics