Skip to main content

The Frontiers of Computational Phenomics in Cancer Research

  • Chapter
  • First Online:
An Omics Perspective on Cancer Research

Abstract

Understanding the molecular mechanisms underpinning prognosis and response to therapy of individuals suffering from cancer increasingly requires integrated and systematic approaches. Molecular-based strategies to more effectively prevent, diagnose, and treat cancer are seen as the future goal of oncology research. Although altered phenotypes can reliably be associated with altered gene functions, the systematic analysis of phenotypes relationships to study cancer biology remains nascent. The completion of the Human Genome Project has made possible high-throughput approaches such as the Cancer Genome Atlas to accelerate phenomics research. However, these approaches still face important challenges. In this chapter, we review these challenges, introduce current research efforts in the field, and highlight the importance of computational approaches to conduct large-scale phenomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  • Ball CA, Sherlock G, Brazma A (2004) Funding high-throughput data sharing. Nat Biotechnol 22:1179–1183

    Article  CAS  PubMed  Google Scholar 

  • Biesecker LG (2005) Mapping phenotypes to language: a proposal to organize and standardize the clinical descriptions of malformations. Clin Genet 68:320–326

    Article  CAS  PubMed  Google Scholar 

  • Brown EG, Wood L, Wood S (1999) The medical dictionary for regulatory activities (MedDRA). Drug Saf 20:109–117

    Article  CAS  PubMed  Google Scholar 

  • Bult CJ, Eppig JT, Kadin JA et al (2008) The Mouse Genome Database (MGD): mouse biology and model systems. Nucleic Acids Res 36(Database issue):D724–D728

    Google Scholar 

  • Butte AJ (2008) Medicine. The ultimate model organism. Science 320:325–327

    Article  CAS  PubMed  Google Scholar 

  • Butte AJ, Chen R (2006) Finding disease-related genomic experiments within an international repository: first steps in translational bioinformatics. AMIA Annu Symp Proc 2006:106–110

    Google Scholar 

  • Butte AJ, Kohane IS (2006) Creation and implications of a phenome-genome network. Nat Biotechnol 24:55–62

    Article  CAS  PubMed  Google Scholar 

  • Cantor MN, Sarkar IN, Bodenreider O et al (2005) Genestrace: phenomic knowledge discovery via structured terminology. Pac Symp Biocomput 2005:103–114

    Article  Google Scholar 

  • Chen DP, Weber SC, Constantinou PS et al (2008a) Novel integration of hospital electronic medical records and gene expression measurements to identify genetic markers of maturation. Pac Symp Biocomput 13:243–254

    Google Scholar 

  • Chen ES, Hripcsak G, Xu H et al (2008b) Automated acquisition of disease drug knowledge from biomedical and clinical documents: an initial study. J Am Med Inform Assoc 15:87–98

    Article  PubMed  Google Scholar 

  • Dudley J, Butte AJ (2008) Enabling integrative genomic analysis of high-impact human diseases through text mining. Pac Symp Biocomput 13:580–591

    Google Scholar 

  • Eppig JT, Blake JA, Bult CJ et al (2007) The mouse genome database (MGD): new features facilitating a model system. Nucleic Acids Res 35(Database issue):D630–D637

    Google Scholar 

  • Fan JW, Friedman C (2008) Word sense disambiguation via semantic type classification. AMIA Annu Symp Proc 2008:177–181

    Google Scholar 

  • Freimer N, Sabatti C (2003) The human phenome project. Nat Genet 34:15–21

    Article  CAS  PubMed  Google Scholar 

  • Hamosh A, Scott AF, Amberger J et al (2000) Online Mendelian Inheritance in man (OMIM). Hum Mutat 15:57–61

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Boussard T, Woon M, Klein TE et al (2006) Integrating large-scale genotype and phenotype data. OMICS Winter 10:545–554

    Article  CAS  Google Scholar 

  • Hristovski D, Peterlin B, Mitchell JA et al (2005) Using literature-based discovery to identify disease candidate genes. Int J Med Inform 74:289–298

    Article  PubMed  Google Scholar 

  • Hunter PJ, Borg TK (2003) Integration from proteins to organs: the Physiome Project. Nat Rev Mol Cell Biol 4:237–243

    Article  CAS  PubMed  Google Scholar 

  • Juristica I (2007) Integrative computatinal biology. In: Juristica I, Wigle DA, Wong B (eds) Cancer informatics in the post genomic era: towards information-based medicine. Springer, New York, pp 129–145

    Chapter  Google Scholar 

  • Kahraman A, Avramov A, Nashev LG et al (2005) PhenomicDB: a multi-species genotype/phenotype database for comparative phenomics. Bioinformatics 21:418–420

    Article  CAS  PubMed  Google Scholar 

  • Korbel JO, Doerks T, Jensen LJ et al (2005) Systematic association of genes to phenotypes by genome and literature mining. PLoS Biol 3:e134

    Article  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lenffer J, Nicholas FW, Castle K et al (2006) OMIA (Online Mendelian Inheritance in Animals): an enhanced platform and integration into the Entrez search interface at NCBI. Nucleic Acids Res 34(Database issue):D599–D601

    Google Scholar 

  • Lindberg DA, Humphreys BL, McCray AT (1993) The Unified Medical Language System. Methods Inf Med 32:281–291

    CAS  PubMed  Google Scholar 

  • Lussier YA, Liu Y (2007) Computational approaches to phenotyping: high-throughput phenomics. Proc Am Thorac Soc 4:18–25

    Article  PubMed  Google Scholar 

  • Lussier YA, Sarkar IN, Cantor M (2002) An integrative model for in-silico clinical-genomics discovery science. Proc AMIA Symp 2002:469–473

    Google Scholar 

  • Mendonca EA, Cimino JJ, Johnson SB (2001) Using narrative reports to support a digital library. Proc AMIA Symp 2001:458–462

    Google Scholar 

  • Miller R, Masarie FE, Myers JD (1986) Quick medical reference (QMR) for diagnostic assistance. MD Comput 3:34–48

    CAS  PubMed  Google Scholar 

  • Organization WH. International Classification of Diseases for Oncology, 3rd ed (ICD-O-3). Available from: http://www.who.int/classifications/icd/adaptations/oncology/en/

  • Pare G, Trudel MC (2007) Knowledge barriers to PACS adoption and implementation in hospitals. Int J Med Inform 76:22–33

    Article  PubMed  Google Scholar 

  • Perez-Iratxeta C, Wjst M, Bork P et al (2005) G2D: a tool for mining genes associated with disease. BMC Genet 6:45

    Article  PubMed  Google Scholar 

  • Physionet. http://www.physionet.org/.

  • Rebhan M, Chalifa-Caspi V, Prilusky J et al (1997) GeneCards: integrating information about genes, proteins and diseases. Trends Genet 13:163

    Article  CAS  PubMed  Google Scholar 

  • Rebhan M, Chalifa-Caspi V, Prilusky J et al (1998) GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 14:656–664

    Article  CAS  PubMed  Google Scholar 

  • Rindflesch TC, Fiszman M (2003) The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J Biomed Inform 36:462–477

    Article  PubMed  Google Scholar 

  • Rindflesch TC, Tanabe L, Weinstein JN et al (2000) EDGAR: extraction of drugs, genes and relations from the biomedical literature. Pac Symp Biocomput 5:517–528

    Google Scholar 

  • Safran M, Solomon I, Shmueli O et al (2002) GeneCards 2002: towards a complete, object-oriented, human gene compendium. Bioinformatics 18:1542–1543

    Article  CAS  PubMed  Google Scholar 

  • Sam L, Liu Y, Li J et al (2007) Discovery of protein interaction networks shared by diseases. Pac Symp Biocomput 12:76–87

    Article  Google Scholar 

  • Sam LT, Mendonca EA, Li J et al (2009) PhenoGO: an integrated resource for the multiscale mining of clinical and biological data. Bmc Bioinformatics 10:S8

    Google Scholar 

  • Shortliffe EH, Sondik EJ (2006) The public health informatics infrastructure: anticipating its role in cancer. Cancer Causes Control 17:861–869

    Article  PubMed  Google Scholar 

  • Smith B, Ashburner M, Rosse C et al (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25:1251–1255

    Article  CAS  PubMed  Google Scholar 

  • Spackman KA, Campbell KE, Cote RA (1997) SNOMED RT: a reference terminology for health care. Proc AMIA Annu Fall Symp 1997:640–644

    Google Scholar 

  • Spasic I, Ananiadou S, McNaught J et al (2005) Text mining and ontologies in biomedicine: making sense of raw text. Brief Bioinform 6:239–251

    Article  CAS  PubMed  Google Scholar 

  • Stevens R, Goble CA, Bechhofer S (2000) Ontology-based knowledge representation for bioinformatics. Brief Bioinform 1:398–414

    Article  CAS  PubMed  Google Scholar 

  • The Medical Subject Headings (MeSH) National Library of Medicine. http://www.nlm.nih.gov/mesh/.

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Friedman C, Chused A et al (2008) Automated knowledge acquisition from clinical narrative reports. AMIA Annu Symp Proc 6:783–787

    Google Scholar 

  • Watson JD (1968) The double helix; a personal account of the discovery of the structure of DNA, 1st edn. Atheneum, New York

    Google Scholar 

  • Wheeler DL, Church DM, Edgar R et al (2004) Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res 32(Database issue):D35–D40

    Google Scholar 

  • Wong B (2007) Informatics. In: Juristica I, Wigle DA, Wong B (eds) Cancer informatics in the post genomic era: towards information-based medicine. Springer, New York, pp 87–145

    Chapter  Google Scholar 

  • Xu H, Fan JW, Hripcsak G et al (2007) Gene symbol disambiguation using knowledge-based profiles. Bioinformatics 23:1015–1022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the 1U54CA121852 (National Center for Multiscale Analyses of Genomic and Cellular Networks - MAGNET), the Cancer Research Foundation, the University of Chicago Cancer Research Center and the Ludwig Center for Metastasis Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eneida A. Mendonça .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mendonça, E.A., Lussier, Y.A. (2010). The Frontiers of Computational Phenomics in Cancer Research. In: Cho, W. (eds) An Omics Perspective on Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2675-0_11

Download citation

Publish with us

Policies and ethics