Skip to main content

Iron and Zinc Biofortification Strategies in Dicot Plants by Intercropping with Gramineous Species: A Review

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

The lack of micronutrients such as iron and zinc is a widespread nutrition and health problem in developing countries. Biofortification is the process of enriching the nutrient content of staple crops. Biofortification provides a sustainable solution to iron and zinc deficiency in food around the world. Reports have highlighted the current strategies for the biofortification of crops, including mineral fertilization, conventional breeding and transgenic approaches. Any approach which could increase root growth and result in a high transfer of Fe and Zn from the soil to the plant is crucial for biofortification. In addition to these approaches, we draw attention to another important aspect of Fe and Zn biofortification: intercropping between dicots and gramineous species. Intercropping, in which at least two crop species are grown on the same plot of land simultaneously, can improve utilization of resources while significantly enhancing crop productivity, whereas monocropping is a traditional cropping system of only one crop growth. Monocropping has maintained crop productivity through heavy chemical inputs including the application of fertilizers and pesticides. Monocropping has therefore resulted in substantial eutrophication, environmental pollution, a food security crisis and economic burdens on farmers. Monocropping has also reduced the plant and microorganism diversity in the ecosystem. Compared with monocropped plants, intercropped plants can use nutrients, water and light better due to the spatial and temporal differences in the growth factors and a variety of species-specific mechanisms of physiological response to environmental stress. Intercropping is common in developing countries such as China, India, Southeast Asia, Latin America and Africa. In particular, interspecific interaction facilitates the iron and zinc nutrition of intercropping systems such as peanut/maize, wheat/chickpea and guava/sorghum or maize. Intercropping also increases iron and zinc content in the seeds. In a peanut/maize case study, the Fe concentrations in peanut shoots and seed were 1.47–2.28 and 1.43 times higher than those of peanut in monocropping, respectively. In intercropping of chickpea and wheat, the Fe contents in wheat and chickpea seed were increased 1.26 and 1.21 times, respectively, and Zn concentration in chickpea seed was 2.82 times higher than that in monocropping. In this review, we focus on exemplary cases of dicot/gramineous species intercropping that result in improved iron and zinc nutrition of the plants. We present the current understanding of the mechanisms of improvement of iron and zinc in intercropping. The available literature shows that a reasonable intercropping system of nutrient-efficient species could prevent or mitigate iron and zinc deficiency of plants. Here, we propose that intercropping can potentially offer an effective and sustainable pathway to iron and zinc biofortification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Awad F., Römheld V., Marschner H. (1994) Effect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat plants. Plant Soil 165, 213–218.

    Article  CAS  Google Scholar 

  • Bienfait H.F. (1988) Mechanisms in Fe-efficiency reactions of higher plants. J. Plant Nutr. 11, 605–629.

    Article  CAS  Google Scholar 

  • Cakmak I. (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247, 3–24.

    Article  CAS  Google Scholar 

  • Cakmak I., Gulut K.Y., Marschner H., Graham R.D. (1994) Effects of zinc and iron deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. J. Plant Nutr. 17, 1–17.

    Article  CAS  Google Scholar 

  • Cakmak I., Torun B., Millet E., Feldmann M., Fahima T., Korol A., Nevo E., Braun H.J., Ozkan H. (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 50, 1047–1054.

    Article  CAS  Google Scholar 

  • Connolly E.L., Campbell N., Grotz N.H., Prichard C.L., Guerinot M.L. (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol. 133, 1102–1110.

    Article  PubMed  CAS  Google Scholar 

  • Curie C., Briat J.F. (2003) Iron transport and signaling in plants. Annu. Rev. Plant Biol. 54, 183–206.

    Article  PubMed  CAS  Google Scholar 

  • Curie C., Panaviene Z., Loulergue C., Dellaporta S.L., Briat J.F., Walker E.L. (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409, 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Durrett T.P., Gassmann W., Rogers E.E. (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 144, 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Graham R.D., Senadhira D., Beebe S.E., Iglesias C. (1998) A strategy for breeding staple-food crops with high micronutrient density. Soil Sci. Plant Nutr. 43, 1153–1157.

    Google Scholar 

  • Graham R.D., Senadhira D., Beebe S.E., Iglesias C., Monasterio I. (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res. 60, 57–80.

    Article  Google Scholar 

  • Graham R.D., Welch R.M. (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv. Agron. 70, 77–142.

    Article  Google Scholar 

  • Grotz N., Guerinot M.L. (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim. Biophys. Acta 1763, 595–608.

    Article  CAS  Google Scholar 

  • Guerinot M.L. (2007) It’s elementary: enhancing Fe3 + reduction improves rice yields. Proc. Natl Acad. Sci. USA 104, 7311–7312.

    Article  PubMed  CAS  Google Scholar 

  • Gunes A., Inal A., Adak M.S., Alpaslan M., Bagci E.G., Erol T., Pilbeam D.J. (2007) Mineral nutrition of wheat, chickpea and lentil as affected by intercropped cropping and soil moisture. Nutr. Cycl. Agroecosyst. 78, 83–96.

    Article  CAS  Google Scholar 

  • Haydon M.J., Cobbett C.S. (2007) Transporters of ligands for essential metal ions in plants. New Phytol. 174, 499–506.

    Article  PubMed  CAS  Google Scholar 

  • Hell R., Stephan U.W. (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216, 541–551.

    PubMed  CAS  Google Scholar 

  • Hopkins B.G., Jolley V.D., Brown J.C. (1992a) Plant utilization of iron solubilized by oat phytosiderophores. J. Plant Nutr. 15, 1599–1612.

    Article  CAS  Google Scholar 

  • Hopkins B.G., Jolley V.D., Brown J.C. (1992b) Differential response of Fe-inefficient muskmelon, tomato, and soybean to phytosiderophore released by Coker 227 oat. J. Plant Nutr. 15, 35–48.

    Article  CAS  Google Scholar 

  • Inal A., Gunes A. (2007) Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between intercropped grown peanut/maize and peanut/barley in original saline-sodic-boron toxic soil. J. Plant Physiol. 1–14.

    Google Scholar 

  • Inal A., Gunes A., Zhang F.S., Cakmak I. (2007) Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiol. Bioch. 45, 350–356.

    Article  CAS  Google Scholar 

  • Ishimaru Y., Kim S., Tsukamoto T., Oki H., Kobayashi T., Watanabe S., Matsuhashi S., Takahashi M., Nakanishi H., Mori S., Nishizawa N.K. (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc. Natl Acad. Sci. USA 104, 7373–7378.

    Article  PubMed  CAS  Google Scholar 

  • Jeong J., Guerinot M.L. (2008) Biofortified and bioavailable: the gold standard for plant-based diets. PNAS 6, 1777–1778.

    Article  Google Scholar 

  • Jolley V.D., Brown J.C. (1994) Genetically controlled uptake and use of iron by plants in biochemistry of micronutrients in the rhizosphere. In: Manthey J.A., Crowley D.E., Luster D.G. (Eds.), CRC Press, Boca Raton, LA, pp. 251–266.

    Google Scholar 

  • Kamal K., Hagagg L., Awad F. (2000) Improved Fe and Zn acquisitionby guava seedlings grown in calcareous soils intercropped with graminaceous species. J. Plant Nutr. 23, 2071–2080.

    Article  CAS  Google Scholar 

  • Kim S.A., Punshon T., Lanzirotti A., Li L., Alonso J.M., Ecker J.R., Kaplan J., Guerinot M.L. (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314, 1295–1298.

    Article  PubMed  CAS  Google Scholar 

  • Koike S., Inoue H., Mizuno D., Takahashi M., Nakanishi H., Mori S. Nishizawa N.K. (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J. 39, 415–424.

    Google Scholar 

  • Lanquar V., Lelièvre F., Bolte S., Hamès C., Alcon C., Neumann D., Vansuyt G., Curie C., Schröder A., Krämer U., Barbier-Brygoo H., Thomine S. (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J. 24, 4041–4051.

    Article  PubMed  CAS  Google Scholar 

  • Le Jean M., Schikora A., Mari S., Briat J.F., Curie C. (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J. 44, 769–782.

    Article  PubMed  Google Scholar 

  • Li L., Li S.M., Sun J.H., Zhou L.L., Bao X.G., Zhang H.G., Zhang F.S. (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl Acad. Sci. USA 104, 11192–11196.

    Article  PubMed  CAS  Google Scholar 

  • Li L., Tang C., Rengel Z., Zhang F.S. (2004) Calcium, magnesium and microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Plant Soil 261, 29–37.

    Article  CAS  Google Scholar 

  • Li L., Yang S.C., Li X.L., Zhang F.S., Christie P. (1999) Interspecific complementary and competitive interaction between intercropped maize and faba bean. Plant Soil 212, 105–114.

    Article  CAS  Google Scholar 

  • Liu X.H. (1994) The Farming Systems. China Agriculture University Press, Beijing.

    Google Scholar 

  • Marschner H., Römheld V. (1994) Strategies of plants for acquisition of iron. Plant Soil 165, 261–274.

    Article  CAS  Google Scholar 

  • Marschner H., Treeby M., Römheld V. (1989) Role of root-induced changes in the rhizosphere for iron acquisition in higher plants. Z. Pflanzenernaehr Bodenkd. 152, 197–204.

    Article  CAS  Google Scholar 

  • Mayer J.E., Pfeiffer W.H., Beyer P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 11, 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Mori S., Nishizawa N., Kawai S., Sata Y., Takahi S. (1987) Dynamic state of mugineic acid and analogous PS in Fe-deficiency barley. J. Plant Nutr. 10, 1003–1011.

    Article  CAS  Google Scholar 

  • Mukherjee I., Campbell N.H., Ash J.S., Connolly E.L. (2005) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223, 1178–1190.

    Article  PubMed  Google Scholar 

  • Nestel P., Bouis H.E., Meenakshi J.V., Pfeiffer W. (2006) Symposium: food fortification in developing countries. J. Nutr. 136, 1064–1067.

    PubMed  CAS  Google Scholar 

  • Prasad A.S. (2003) Zinc deficiency has been known for 40 years but ignored by global health organizations. Brit. Med. J. 356, 422–424.

    Google Scholar 

  • Ramesh S.A., Choimes S., Schachtman D.P. (2004) Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol. Biol. 54, 373–385.

    Article  PubMed  CAS  Google Scholar 

  • Ramesh S.A., Shin R., Eide D.J., Schachtman D.P. (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol. 133, 126–134.

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z. (2002) Genetic control of root exudation. Plant Soil 245, 59–70.

    Article  CAS  Google Scholar 

  • Römheld V. (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130, 127–134.

    Article  Google Scholar 

  • Römheld V., Marschner H. (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 80, 175–180.

    Article  PubMed  Google Scholar 

  • Schaaf G., Schikora A., Häberle J., Vert G., Ludewig U., Briat J.F., Curie C., von Wirén N. (2005) A putative function for the Arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol. 46, 762–774.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W. (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci. 8, 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Shen J., Zhang F., Chen Q., Rengel Z., Tang C., Song C. (2002) Genotypic difference in seed iron content and early responses to iron deficiency in wheat. J. Plant Nutr. 25, 1631–1643.

    Article  CAS  Google Scholar 

  • Suzuki M., Takahashi M., Tsukamoto T., Watanabe S., Matsuhashi S., Yazaki J., Kishimoto N., Kikuchi S., Nakanishi H., Mori S., Nishizawa N.K. (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J. 48, 85–97.

    Article  PubMed  CAS  Google Scholar 

  • Takagi S., Kamei S., Yu M.H. (1988) Efficiency of iron extraction from soil by mugineic acid family phytosiderophores. J. Plant Nutr. 11, 643–651.

    Article  CAS  Google Scholar 

  • Thomine S., Lelièvre F., Debarbieux E., Schroeder J.I., Barbier-Bygoo H. (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J. 34, 685–695.

    Article  PubMed  CAS  Google Scholar 

  • Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301.

    Article  PubMed  CAS  Google Scholar 

  • Vandermeer J. (1989) The Ecology of Intercropping. Cambridge University Press, Cambridge.

    Google Scholar 

  • Varotto C., Maiwald D., Pesaresi P., Jahns P., Salamini F., Leister D. (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana Plant J. 31, 589–599.

    Google Scholar 

  • Vert G., Grotz N., Dédaldéchamp F., Gaymard F., Guerinot M.L., Briat J.F., Curie C. (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14, 1223–1233.

    Article  PubMed  CAS  Google Scholar 

  • Wang T.L., Domoney C., Hedley C.L., Casey R., Grusak M.A. (2003) Can we improve nutritional quality of legume seeds? Plant Physiol. 131, 886–891.

    Article  PubMed  CAS  Google Scholar 

  • Welch R.M. (1995) Micronutrient nutrition of plants. Crit. Rev. Plant Sci. 14, 49–82.

    CAS  Google Scholar 

  • Welch R.M., Graham R.D. (1999) A new paradigm for world agriculture: meeting human needs - productive, sustainable, nutritious. Field Crops Res. 60, 1–10.

    Article  Google Scholar 

  • WHO (2007) Micronutrient deficiency: iron deficiency anaemia. Geneva: WHO, available from http://www.who.int/nutrition /topics/ida/ >

  • Williams P.C., Singh U. (1987) Nutritional quality and evaluation of quality in breeding programs. In: Saxena M.C., Singh K.B. (Eds.), The Chickpea. Cab Int, Wallingford, pp. 329–356.

    Google Scholar 

  • Wirén N.V., Marschner H., Römheld V. (1996) Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol. 111, 1119–1125.

    Google Scholar 

  • Yan X.L., Wu P., Ling H.Q., Xu G.H., Xu F.S., Zhang Q.F. (2006) Plant Nutriomics in China: an Overview. Ann Bot-London 98, 473–482.

    Article  CAS  Google Scholar 

  • Zhang F., Treeby M., Römheld V., Marschner H. (1990) Mobilization of iron by phytosiderophores as affected by other micronutrients. Plant Soil 130, 173–178.

    Article  Google Scholar 

  • Zhang F.S., Li L. (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248, 305–312.

    Article  CAS  Google Scholar 

  • Zhu C.F., Naqvi S., Gomez-Galera S., Pelacho A.M., Teresa Capell T., Christou P. (2007). Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci. 12, 1360–1385.

    Google Scholar 

  • Zuo Y.M., Zhang F.S., Li X.L., Cao Y.P. (2000) Studies on the improvement in iron nutrition of peanut by intercropping maize on a calcareous soil. Plant Soil 220, 13–25.

    Article  CAS  Google Scholar 

  • Zuo Y.M., Li X.L., Zhang F.S., Christie P. (2003) Iron nutrition of peanut enhanced by intercropped cropping with maize: role of root morphology and rhizosphere microflora. J. Plant Nutr. 10; 11, 2093–2110. Website: http://www.harvestPlus.org/iron.html

Download references

Acknowledgements

We thank The Ministry of Science and Technology of China (Grant No. 2008AA10Z117), the National Natural Science Foundation of China (Grant No. 30570334) for financial support, and Dr Rui Proenca for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Zuo, Y., Zhang, F. (2009). Iron and Zinc Biofortification Strategies in Dicot Plants by Intercropping with Gramineous Species: A Review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_35

Download citation

Publish with us

Policies and ethics