Agronomy for Sustainable Agriculture: A Review



Sustainability rests on the principle that we must meet the needs of the present without compromising the ability of future generations to meet their own needs. Starving people in poor nations, obesity in rich nations, increasing food prices, on-going climate changes, increasing fuel and transportation costs, flaws of the global market, worldwide pesticide pollution, pest adaptation and resistance, loss of soil fertility and organic carbon, soil erosion, decreasing biodiversity, desertification, and so on. Despite unprecedented advances in sciences allowing us to visit planets and disclose subatomic particles, serious terrestrial issues about food show clearly that conventional agriculture is no longer suited to feeding humans and preserving ecosystems. Sustainable agriculture is an alternative for solving fundamental and applied issues related to food production in an ecological way [Lal (2008) Agron. Sustain. Dev. 28, 57–64]. While conventional agriculture is driven almost solely by productivity and profit, sustainable agriculture integrates biological, chemical, physical, ecological, economic and social sciences in a comprehensive way to develop new farming practices that are safe and do not degrade our environment. To address current agronomical issues and to promote worldwide discussions and cooperation we implemented sharp changes at the journal Agronomy for Sustainable Development from 2003 to 2006. Here we report (1) the results of the renovation of the journal and (2) a short overview of current concepts of agronomical research for sustainable agriculture. Considered for a long time as a soft, side science, agronomy is rising fast as a central science because current issues are about food, and humans eat food. This report is the introductory article of the book Sustainable Agriculture, volume 1, published by EDP Sciences and Springer (Lichtfouse et al., 2009, this book).


Agronomy for sustainable development Biodiversity Climate change Farming system Food Organic farming Pest control Pesticide Soil Sustainable agriculture Water 


  1. Alberola C., Lichtfouse E., Navarrete M., Debaeke P., Souchère V. (2008) Agronomy for Sustainable Development. Ital. J. Agron. 3, 77–78.Google Scholar
  2. Altieri M., Rosset P. (1996) Agroecology and the conversion of large-scale conventional systems to sustainable management. Int. J. Environ. Stud. 50, 165–185.CrossRefGoogle Scholar
  3. Boiffin J., Hubert N., Durand N. (2004) (Eds.) Agriculture et développement durable, Enjeux et questions de recherche, INRA, mission communication. 92 p. ISSN1156-1653. Scholar
  4. Dupraz (2005) Entre agronomie et écologie : vers la gestion d’écosystèmes cultivés, Revue DEMETER. 16 p.,
  5. Francis C.A., Sander D., Martin A. (1987) Search for a sustainable agriculture: reduced inputs and increased profits. Crops Soils Mag. 39, 12–14.Google Scholar
  6. Gafsi M., Legagneux B., Nguyen G., Robin P. (2006) Toward sustainable farming systems: effectiveness and deficiency of the French procedure of sustainable agriculture. Agr. Sys. 90, 226–242.CrossRefGoogle Scholar
  7. Gliessman S. (1998) Agroecology: ecological processes in agriculture. CRC Press, Michigan, 357 p.Google Scholar
  8. Gliessman S. (2006) Agroecology: the ecology of sustainable food systems. CRC Press, Michigan, 2nd ed., 384 p.Google Scholar
  9. Gold M. (1999) Sustainable agriculture: definitions and terms. Special reference briefs 99-02, USDA National Agricultural Library (NAL), ISSN 1052-5368,
  10. Gurr G.M., Wratten S.D., Altieri M.A. (2004) Ecological engineering for pest management. CSIRO Publishing, 244 p.Google Scholar
  11. Hansen (1996) Is agricultural sustainability a useful concept? Agr. Syst. 50, 117–143.Google Scholar
  12. Hansen J.W., Jones J.W. (1996) A systems framework for characterizing farm sustainability. Agr. Syst. 51, 185–201.CrossRefGoogle Scholar
  13. Ikerd (1993) The need for a system approach to sustainable agriculture. Agr. Ecosyst. Environ. 46, 147–160.Google Scholar
  14. Lal R. (2008) Soils and sustainable agriculture. A review. Agron. Sustain. Dev. 28, 57–64.CrossRefGoogle Scholar
  15. Le Bail M., Verger P., Dore T., Fourbet J.F., Champeil A., Ioos R., Leblanc J.C. (2005) Simulation of consumer exposure to deoxynivalenol according to wheat crop management and grain segregation: Case studies and methodological considerations. Regul. Toxicol. Pharm. 42, 253–259.CrossRefGoogle Scholar
  16. Legrand P., Fraval A., Laurent C. (2002) INRA faced with Sustainable Development: Landmarks for the Johannesburg Conference (english version), Dossiers de l’Environnement de l’INRA n 22. Paris, 212 p., INRA Éditions, ISBN: 2-7380-1049-0,
  17. Lamine C., Bellon S. (2008) Conversion to organic farming: a multidimensional research object at the crossroads of agricultural and social sciences. A review. Agron. Sustain. Dev., DOI: 10.1051/agro:2008007.Google Scholar
  18. Lichtfouse E. (1997a) (Ed.) Soil Pollutants. Analusis Magazine 25, M16–M72.Google Scholar
  19. Lichtfouse E. (1997b) Heterogeneous turnover of molecular organic substances from crop soils as revealed by 13C labeling at natural abundance with Zea mays. Naturwissenschaften 84, 22–23.CrossRefGoogle Scholar
  20. Lichtfouse E., Budzinski H., Garrigues P., Eglinton T. I. (1997) Ancient polycyclic aromatic hydrocarbons in modern soils: 13C, 14C and biomarker evidence. Org. Geochem. 26, 353–359.CrossRefGoogle Scholar
  21. Lichtfouse E., Eglinton T.I. (1995) 13C and 14C evidence of pollution of a soil by fossil fuel and reconstruction of the composition of the polluant. Org. Geochem. 23, 969–973.CrossRefGoogle Scholar
  22. Lichtfouse E., Habib R., Meynard J.M., Papy F. (2004) Agronomy for sustainable development. Agronomie 24, 445.CrossRefGoogle Scholar
  23. Lichtfouse E., Sappin-Didier V., Denaix L., Caria G., Metzger L., Amellal-Nassr N., Schmidt J. (2005a) A 25-year record of polycyclic aromatic hydrocarbons in soils amended with sewage sludges. Environ. Chem. Lett. 3, 140–144.CrossRefGoogle Scholar
  24. Lichtfouse E., Schwarzbauer J., Robert D. (2005b) (Eds.) Environmental Chemistry, Green Chemistry and Pollutants in Ecosystems. 1. Analytical Chemistry. 2. Toxic Metals. 3. Organic Pollutants. 4. Polycyclic Aromatic Compounds. 5. Pesticides. 6. Green Chemistry. 7. Ecotoxicology. Springer, 780 p., ISBN 3540228608,
  25. Lichtfouse E., Navarrete M., Debaeke P., Souchère V., Alberola C. (2009) (Eds.) Sustainable Agriculture, Vol. 1. Springer, EDP Sciences.Google Scholar
  26. MacRae R.J., Hill S.B., Henning J., Mehuys G.R. (1989) Agricultural science and sustainable agriculture: a review of the existing scientific barriers to sustainable food production and potential solutions. Biol. Agric. Hortic. 6, 173–219.Google Scholar
  27. Meynard J.M., Aggerri F., Coulon J.B., Habib R., Tillon J.P. (2006) Recherches sur la conception de systèmes agricoles innovants. Rapport du groupe de travail, septembre 2006, 72 p.Google Scholar
  28. Tilman D., Cassman K.G., Matson P.A., Naylor R., Polasky S. (2002) Agricultural sustainability and intensive production practices. Nature 418, 671–677.PubMedCrossRefGoogle Scholar
  29. Vandermeer J., van Noordwijk M., Anderson J., Ong C., Perfecto I. (1998) Global change and multispecies agroecosystems: concepts and issues. Agr. Ecosyst. Environ. 67, 1–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2009

Authors and Affiliations

  1. 1.Journal Agronomy for Sustainable DevelopmentINRA-CMSE-PMEDijonFrance

Personalised recommendations