Skip to main content

Sumoylation in Development and Differentiation

  • Chapter
  • First Online:
SUMO Regulation of Cellular Processes

Abstract

Tissue morphogenesis is a fascinating aspect of developmental biology and regeneration of certain adult organs, and timely control of cellular differentiation is a key to these processes. During development, events interrupting cellular differentiation and leading to organ failure are embryonic lethal; likewise, perturbation of differentiation in regenerating tissues leads to dysfunction and disease. At the molecular level, cellular differentiation is orchestrated by a well-coordinated cascade of transcription factors (TFs) driving gene expression. Altering TF localization, stability, or activity can affect the sequential organization of the gene expression program and result in abnormal tissue morphogenesis. An accumulating body of evidence shows that SUMO modifies a large pool of TFs and alters their transcriptional activities, and that preventing SUMO conjugation to target proteins causes abnormal cellular differentiation. In addition, overall inhibition of the sumoylation system during embryogenesis causes lethality, inferring a critical role for SUMO in regulating normal development. Understanding the profound regulatory role of SUMO in different tissues may lead not only to a better understanding of development biology, stem cell linage control, and cellular differentiation, but also lead to the identification of new targets for drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Angel, P., Szabowski, A. and Schorpp-Kistner, M., 2001, Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20, 2413–2423.

    Article  PubMed  CAS  Google Scholar 

  • Azuma, Y., Arnaoutov, A., Anan, T. and Dasso, M., 2005, PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. EMBO J. 24, 2172–2182.

    Article  PubMed  CAS  Google Scholar 

  • Azuma, Y., Arnaoutov, A. and Dasso, M., 2003, SUMO-2/3 regulates topoisomerase II in mitosis. J. Cell Biol. 163, 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Bachant, J., Alcasabas, A., Blat, Y., Kleckner, N. and Elledge, S. J., 2002, The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA Topoisomerase II. Mol. Cell 9, 1169–1182.

    Article  PubMed  CAS  Google Scholar 

  • Benbrook, D. M., Rogers, R. S., Medlin, M. A. and Dunn, S. T., 1995, Immunohistochemical analysis of proliferation and differentiation in organotypic cultures of cervical tumor cell lines. Tissue and Cell 27, 269–274.

    Article  PubMed  CAS  Google Scholar 

  • Beug, H., Blundell, P. A. and Graf, T., 1987, Reversibility of differentiation and proliferative capacity in avian myelomonocytic cells transformed by tsE26 leukemia virus. Genes Dev. 1, 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Broday, L., Kolotuev, I., Didier, C., Bhoumik, A., Gupta, B. P., Sternberg, P. W., Podbilewicz, B. and Ronai, Z., 2004, The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis Caenorhabditis elegans. Genes Dev. 18, 2380–2391.

    Article  PubMed  CAS  Google Scholar 

  • Brown, P. W., Hwang, K., Schlegel, P. N. and Morris, P. L., 2008, Small ubiquitin-related modifier (SUMO)-1, SUMO-2/3 and SUMOylation are involved with centromeric heterochromatin of chromosomes 9 and 1 and proteins of the synaptonemal complex during meiosis in men. Hum. Reprod. 23, 2850–2857.

    Article  PubMed  CAS  Google Scholar 

  • Chao, H. W., Hong, C. J., Huang, T. N., Lin, Y. L. and Hsueh, Y. P., 2008, SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. J. Cell Biol. 182, 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, C. H., Lo, Y. H., Liang, S. S., Ti, S. C., Lin, F. M., Yeh, C. H., Huang, H. Y. and Wang, T. F., 2006, SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20, 2067–2081.

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho, C. E. and Colaiacovo, M. P., 2006, SUMO-mediated regulation of synaptonemal complex formation during meiosis. Genes Dev. 20, 1986–1992.

    Article  PubMed  Google Scholar 

  • Deyrieux, A. F., Rosas-Acosta, G., Ozbun, M. A. and Wilson, V. G., 2007, Sumoylation dynamics during keratinocyte differentiation. J. Cell Sci. 120, 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Emambokus, N., Vegiopoulos, A., Harman, B., Jenkinson, E., Anderson, G. and Frampton, J., 2003, Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 22, 4478–4488.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. and Ahringer, J., 2000, Functional genomics analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330.

    Article  PubMed  CAS  Google Scholar 

  • Gandarillas, A., 2000, Epidermal differentiation, apoptosis, and senescence: common pathways? Exp. Gerontol. 35, 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Ghoreishi, M., 2000, Heat shock proteins in the pathogenesis of inflammatory skin diseases. J. Med. Dent. Sci. 47, 143–150.

    PubMed  CAS  Google Scholar 

  • Gill, G., 2005, Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15, 536–541.

    Article  PubMed  CAS  Google Scholar 

  • Gocke, C. B., Yu, H. T. and Kang, J. S., 2005, Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem. 280, 5004–5012.

    Article  PubMed  CAS  Google Scholar 

  • Gregoire, S., Tremblay, A. M., Xiao, L., Yang, Q., Ma, K. W., Nie, J. Y., Mao, Z. X., Wu, Z. G., Giguere, V. and Yang, X. J., 2006, Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. J. Biol. Chem. 281, 4423–4433.

    Article  PubMed  CAS  Google Scholar 

  • Gregoire, S., Xiao, L., Nie, J., Zhang, X., Xu, M., Li, J., Wong, J., Seto, E. and Yang, X. J., 2007, Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell. Biol. 27, 1280–1295.

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich, K. A. and Linseman, D. A., 2004, Myocyte enhancer factor-2 transcription factors in neuronal differentiation and survival. Mol. Neurobiol. 29, 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Hooker, G. W. and Roeder, G. S., 2006, A role for SUMO in meiotic chromosome synapsis. Curr. Biol. 16, 1238–1243.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D., Crowe, E., Stevens, T. A. and Candido, E. P. M., 2002, Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol. 3, 2.1–2.15.

    Google Scholar 

  • Kang, J., Gocke, C. B. and Yu, H., 2006, Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. BMC Biochem 7, 5.

    Article  PubMed  Google Scholar 

  • Kelly, L. M., Englmeier, U., Lafon, I., Sieweke, M. H. and Graf, T., 2000, MafB is an inducer of monocytic differentiation. EMBO J. 19, 1987–1997.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. I., Baek, S. H., Jeon, Y. J., Nishimori, S., Suzuki, T., Uchida, S., Shimbara, N., Saitoh, H., Tanaka, K. and Chung, C. H., 2000, A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J. Biol. Chem. 275, 14102–14106.

    Article  PubMed  CAS  Google Scholar 

  • Koster, M. I., Huntzinger, K. A. and Roop, D. R., 2002, Epidermal differentiation: transgenic/knockout mouse models reveal genes involved in stem cell fate decisions and commitment to differentiation. J. Invest. Dermatol. 7, 41–45.

    Article  CAS  Google Scholar 

  • Kuijk, E. W., Du Puy, L., Van Tol, H. T., Oei, C. H., Haagsman, H. P., Colenbrander, B. and Roelen, B. A., 2008, Differences in early lineage segregation between mammals. Dev. Dyn. 237, 918–927.

    Article  PubMed  CAS  Google Scholar 

  • La Salle, S., Sun, F., Zhang, X. D., Matunis, M. J. and Handel, M. A., 2008, Developmental control of sumoylation pathway proteins in mouse male germ cells. Dev. Biol. 321, 227–237.

    Article  PubMed  Google Scholar 

  • Li, S. S., Liu, Y. H., Tseng, C. N. and Singh, S., 2006, Analysis of gene expression in single human oocytes and preimplantation embryos. Biochem. Biophys. Res. Commun. 340, 48–53.

    Article  PubMed  CAS  Google Scholar 

  • Lin, T. C. and Lee, O. K., 2008, Stem cells: a primer. Chin. J. Physiol. 51, 197–207.

    PubMed  Google Scholar 

  • Looijenga, L. H., Stoop, H., de Leeuw, H. P., de Gouveia Brazao, C. A., Gillis, A. J., van Roozendaal, K. E., van Zoelen, E. J., Weber, R. F., Wolffenbuttel, K. P., van Dekken, H., Honecker, F., Bokemeyer, C., Perlman, E. J., Schneider, D. T., Kononen, J., Sauter, G. and Oosterhuis, J. W., 2003, POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 63, 2244–2250.

    PubMed  CAS  Google Scholar 

  • Lu, J., McKinsey, T. A., Nicol, R. L. and Olson, E. N., 2000, Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl. Acad. Sci. U.S.A. 97, 4070–4075.

    Article  PubMed  CAS  Google Scholar 

  • McKinsey, T. A., Zhang, C. L. and Olson, E. N., 2002, MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27, 40–47.

    Article  PubMed  CAS  Google Scholar 

  • Metzler-Guillemain, C., Depetris, D., Luciani, J. J., Mignon-Ravix, C., Mitchell, M. J. and Mattei, M. G., 2008, In human pachytene spermatocytes, SUMO protein is restricted to the constitutive heterochromatin. Chromosome Res. 16, 761–782.

    Article  PubMed  CAS  Google Scholar 

  • Morita, Y., Kanei-Ishii, C., Nomura, T. and Ishii, S., 2005, TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol. Biol. Cell. 16, 5433–5444.

    Article  PubMed  CAS  Google Scholar 

  • Nacerddine, K., Lehembre, F., Bhaumik, M., Artus, J., Cohen-Tannoudji, M., Babinet, C., Pandolfi, P. P. and Dejean, A., 2005, The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9, 769–779.

    Article  PubMed  CAS  Google Scholar 

  • Newman, A. P., Acton, G. Z., Hartwieg, E., Horvitz, H. R. and Sternberg, P. W., 1999, The lin-11 LIM domain transcription factor is necessary for morphogenesis of C. elegans uterine cells. Development 126, 5319–5326.

    PubMed  CAS  Google Scholar 

  • Niwa, H., Miyazaki, J. and Smith, A. G., 2000, Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, M. and Hammerschmidt, M., 2006, Ubc9 regulates mitosis and cell survival during zebrafish development. Mol. Biol. Cell. 17, 5324–5336.

    Article  PubMed  CAS  Google Scholar 

  • Poumay, Y. and Leclercq-Smekens, M., 1998, In vitro models of epidermal differentiation. Folia Med. 40, 5–12.

    CAS  Google Scholar 

  • Pownall, M. E., Gustafsson, M. K. and Emerson, C. P., Jr., 2002, Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu. Rev. Cell Dev. Biol. 18, 747–783.

    Article  PubMed  CAS  Google Scholar 

  • Riquelme, C., Barthel, K. K., Qin, X. F. and Liu, X., 2006a, Ubc9 expression is essential for myotube formation in C2C12. Exp. Cell Res. 312, 2132–2141.

    Article  PubMed  CAS  Google Scholar 

  • Riquelme, C., Barthel, K. K. B. and Liu, X. D., 2006b, SUMO-1 modification of MEF2A regulates its transcriptional activity. J. Cell. Mol. Med. 10, 132–144.

    Article  PubMed  CAS  Google Scholar 

  • Rodda, D. J., Chew, J. L., Lim, L. H., Loh, Y. H., Wang, B., Ng, H. H. and Robson, P., 2005, Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem. 280, 24731–24737.

    Article  PubMed  CAS  Google Scholar 

  • Santti, H., Mikkonen, L., Hirvonen-Santti, S., Toppari, J., Janne, O. A. and Palvimo, J. J., 2003, Identification of a short PIASx gene promoter that directs male germ cell-specific transcription in vivo. Biochem. Biophys. Res. Commun. 308, 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Shalizi, A., Bilimoria, P. M., Stegmuller, J., Gaudilliere, B., Yang, Y., Shuai, K. and Bonni, A., 2007, PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. J. Neurosci. 27, 10037–10046.

    Article  PubMed  CAS  Google Scholar 

  • Shalizi, A., Gaudilliere, B., Yuan, Z. Q., Stegmuller, J., Shirogane, T., Ge, Q. Y., Tan, Y., Schulman, B., Harper, J. W. and Bonni, A., 2006, A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012–1017.

    Article  PubMed  CAS  Google Scholar 

  • Tapscott, S. J., 2005, The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132, 2685–2695.

    Article  PubMed  CAS  Google Scholar 

  • Tillmanns, S., Otto, C., Jaffray, E., Du Roure, C., Bakri, Y., Vanhille, L., Sarrazin, S., Hay, R. T. and Sieweke, M. H., 2007, SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression. Mol. Cell. Biol. 27, 5554–5564.

    Article  PubMed  CAS  Google Scholar 

  • Vigodner, M., Ishikawa, T., Schlegel, P. N. and Morris, P. L., 2006, SUMO-1, human male germ cell development, and the androgen receptor in the testis of men with normal and abnormal spermatogenesis. Am. J. Physiol. Endocrinol. Metab. 290, E1022–E1033.

    Article  PubMed  CAS  Google Scholar 

  • Vigodner, M. and Morris, P. L., 2005, Testicular expression of small ubiquitin-related modifier-1 (SUMO-1) supports multiple roles in spermatogenesis: Silencing of sex chromosomes in spermatocytes, spermatid microtubule nucleation, and nuclear reshaping. Dev. Biol. 282, 480–492.

    Article  PubMed  CAS  Google Scholar 

  • Wei, F., Scholer, H. R. and Atchison, M. L., 2007, Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J. Biol. Chem. 282, 21551–21560.

    Article  PubMed  CAS  Google Scholar 

  • Werner, S. and Smola, H., 2001, Paracrine regulation of keratinocyte proliferation and differentiation. Trends Cell Biol. 4, 143–146.

    Article  Google Scholar 

  • Wrighton, K. H., Liang, M., Bryan, B., Luo, K., Liu, M., Feng, X. H. and Lin, X., 2007, Transforming growth factor-beta-independent regulation of myogenesis by SnoN sumoylation. J. Biol. Chem. 282, 6517–6524.

    Article  PubMed  CAS  Google Scholar 

  • Yan, W., Santti, H., Janne, O. A., Palvimo, J. J. and Toppari, J., 2003, Expression of the E3 SUMO-1 ligases PIASx and PIAS1 during spermatogenesis in the rat. Gene Expr. Patterns 3, 301–308.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van G. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Deyrieux, A.F., Wilson, V.G. (2009). Sumoylation in Development and Differentiation. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2649-1_11

Download citation

Publish with us

Policies and ethics