Geo-ICT for Risk and Disaster Management

  • Sisi Zlatanova
  • Andrea G. Fabbri
Part of the GeoJournal Library book series (GEJL, volume 96)


There is no doubt about the importance of Geo-ICT in risk and disaster management. Systems that make use of geo-information are used in all activities before, during and after the occurrence of a disaster. In this chapter we address the use of Geo-ICT before and during disasters. Special attention will be given to the use of geo-information, such as risk maps, topographical maps, etc. A brief analysis of current risk maps and of their limitations sets the stage for research that could overcome some of the present unsatisfactory aspects of risk maps. Access to and provision of spatial information is examined with respect to the needs of emergency response systems and the challenges in the use of geo-information for disaster management are discussed.


Emergency response management 


  1. Ale, B.J.M., 2002, Risk assessment practices in the Netherlands. Safety Science 40: 105–126CrossRefGoogle Scholar
  2. Amdahl, G, 2001, Disaster Response; GIS for Public Safety. ESRI press,California, ISBN 1-879102-88-9, 108pGoogle Scholar
  3. Bonachea, J., 2006, Desarrollo, aplicacion y validacion de procedimientos y modelos para la evaluacion de amenazas, vulnerabilidad y riesgo debida a procesos geomorphologicos. Ph. D. Thesis, Universisad de Cantabria, Spain, 358p. (ISBN SA. 1046-2006/978-84-690-3575-7),
  4. Borkulo, E van, H.J. Scholten, S. Zlatanova and A. van den Brink, 2005, Decision making in response and relief phases, in: Van Oosterom, Zlatanova and Fendel (eds.), Geo-information for disaster management – late papers, TU Delft, Delft, The Netherlands, pp. 47–54Google Scholar
  5. Bottelberghs, P.H., 2000, Risk analysis and safety policy development in the Netherlands. Journal of Hazardous and Materials 71: 59–84CrossRefGoogle Scholar
  6. Brecht, H., 2006, The Application of Geo-Technologies after Hurricane Katrina, Proceedings of The Second Symposium on Geo-information for Disaster Management, Goa, India, September, pp. 21–23Google Scholar
  7. Chung C.F. and Fabbri A.G., 2001, Prediction models for landslide hazard using a fuzzy set approach. In, M. Marchetti and V. Rivas (eds.), Geomorphology and Environmental Impact Assessment. Rotterdam, Balkema, pp. 31–47Google Scholar
  8. Chung C.F. and Fabbri A.G., 2004, Systematic procedures of landslide hazard mapping for risk assessment using spatial prediction models. In, T. Glade, M.G. Anderson, and M.J. Crozier, (eds.), Landslide Hazard and Risk. John Wiley & Sons, New York, pp. 139–174Google Scholar
  9. Chung, C.F., Fabbri, A. G., Jang, D. H., and Scholten, H. J., 2005: Risk assessment using spatial prediction model for natural disaster preparedness, in: Van Oosterom, Zlatanova and Fendel (eds.), Geo-Informastion for Disaster Management. Springer, Berlin, pp. 619–640. Procs. of Gi4DM, The First Symposium on Geo-information for Disaster Management, Delft, Netherlands, March 21–23, 2005Google Scholar
  10. Coe J.A., Michael J.A., Crovelli R.A., Savage W.Z., Laprade W.T. and Nashem W.D., 2004, Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environmental Engineering Geoscience, 10(2): 103–122CrossRefGoogle Scholar
  11. Cutter, S.L., Richardson D. B. and Wilbanks T.J. (eds.) 2003, The Geographical Dimensions of Terrorism. Taylor and Francis, New York, ISBN 0-415-94641-7Google Scholar
  12. Diario Oficial de la UE., 1989. Resolución del Consejo, de 16 de octubre de 1989, relativa a las orientaciones en materia de prevención de riesgos técnicos y naturales Diario Oficial n° C 273 de 26/10/1989, P.0001-0002Google Scholar
  13. Diehl, S., and J. van der Heide, 2005, Geo information breaks through sector think, in: P.J.M. van Oosterom, S. Zlatanova, and E.M. Fendel (eds.), Geo-Information for Disaster Management. Springer Verlag, Heidelberg, pp. 85–108CrossRefGoogle Scholar
  14. Döllner, J., and B. Hagedorn, 2008, Integrating GIS, CAD and BIM data by service-based virtual 3D city models, in V. Coors, M. Rumor, E.M. Fendel, and S. Zlatanova (eds.): Urban and Regional Data Management; UDMS Annual 2007. Taylor and Francis, London, pp. 157–170Google Scholar
  15. Erlich, M., 2006, OSIRIS – an example of citizen-oriented technology development in the area of dissemination of information on flood risk management, International Journal of Natural Hazards, special issue: ‘Flooding in Europe: Risks and Challenges’, SpringerGoogle Scholar
  16. Erlich, M., and S. Zlatanova, 2008, ICT for integrated disaster risk and emergency management: scenario based and on-demand spatial DSS, in: Weets and Fabbri (eds.) Science for Disaster Reduction, Chapter 8. Springer-Verlag, Heidelberg, 8pGoogle Scholar
  17. Fabbri A.G., Chung C.F. and Jang D.H., 2004, A software approach to spatial predictions if natural hazards and consequent risks, in: C.A. Brebbia (ed.), Risk Analysis IV. WIT Press, Southampton, Boston, pp. 289–305Google Scholar
  18. Green, R.W., 2002, Confronting Catastrophe, A GIS Handbook. ESRI press, California, ISBN 1-58948-040—6, 140pGoogle Scholar
  19. Isikdag, U., 2006, Toward the implementation of building information models in geospatial context, The Research Institute for Built and Human Environment, University of Salford, Salford, UK, PhD thesis, 468pGoogle Scholar
  20. Kerle, N., S. Heuel and N. Pfeifer, 2008, Real-time data collection and information generation using airborne sensors, in: J. Li and S. Zlatanova (eds) Geospatial information technology for emergency response. Taylor & Francis, London, ISPRS book, pp. 43–75Google Scholar
  21. Kevany, M. 2005, Geo-information for disaster management: lessons from 9/11, in: P.J.M. van Oosterom, S. Zlatanova, and E.M. Fendel (eds.), Geo-information for disaster management. Springer Verlag, Heidelberg, pp. 443–464CrossRefGoogle Scholar
  22. Kirkby, S., Pollitt, S., and Eklund, P. 1997. Implementing a shortest path algorithm in a 3D GIS environment. In M.J. Kraak and M. Moleanaar (eds), Advances in GIS Research II; Proc. of the 7th International Symposium on Spatial Data Handling. Taylor & Francis Inc., London, pp. 437–448Google Scholar
  23. Kwam, M-P., and Lee, J. 2005. Emergency response after 9/11: the potential of real-time 3D GIS for quick emergency response in micro-spatial environments. Computers, Environment and Urban Systems, 29: 93–113CrossRefGoogle Scholar
  24. Lapierre, A. and P. Cote, 2008, Using Open Web Services for urban data management: a testbed resulting from an OGC initiative offering standard CAD/GIS/BIM services, in V. Coors, M. Rumor, E.M. Fendel, and S. Zlatanova (eds.), Urban and Regional Data Management; UDMS Annual 2007. Taylor and Francis, London, pp. 381–393Google Scholar
  25. Lee, J. and S. Zlatanova, 2008, A 3D data model and topological analyses for emergency response in urban areas, in: J. Li and S. Zlatanova (eds.), Geospatial Information Technology for Emergency Response. Taylor & Francis Group, London, UK, pp. 143–168Google Scholar
  26. Li, J. and M.A. Chapman, 2008, Terrestrial mobile mapping towards real-time geospatial data collection, in: J. Li and S. Zlatanova (eds) Geospatial information technology for emergency response. Taylor & Francis, London, ISPRS book, pp. 103–122Google Scholar
  27. Monmonnier M. S., 1997, Cartographies of Danger: Mapping Hazards in America. University of Chicago Press, Chicago, 363pGoogle Scholar
  28. Neuvel, J. and S. Zlatanova, 2006, The void between risk prevention and crisis response, in: Fendel and Rumor (eds.), Proceedings of UDMS'06 Aalborg, Denmark May 15–17, 2006, TU Delft, 2006, pp. 6.1–6.14Google Scholar
  29. OGC, 2007, OGC Web Services, Phase 4 (OWS-4) Interoperability Testbed, OGC Document 07-037r4, available at
  30. Plattner, T., 2004: An integrative model of natural hazard risk evaluation, in: C. Brebbia (ed.), Risk Analysis IV. WIT Press, Southampton, Boston, pp. 649–658Google Scholar
  31. Raper, J. 2000. Multidimensional Geographic Information Science. Taylor & Francis, New YorkCrossRefGoogle Scholar
  32. Schneiderbauer, S. 2007, Risk and Vulnerability to Natural Disasters – from Broad View to Focused Perspective, PhD thesis, University Berlin, 102pGoogle Scholar
  33. Schulz W.H., 2007, Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Engineering Geology, 89: 67–87CrossRefGoogle Scholar
  34. Scott, M.S. 1994. The development of an optimal path algorithm in three dimensional raster space’. Proc. of GIS/LIS 94: 687–696Google Scholar
  35. Scotta, A., H. Scholten and H. Hofstra, 2008, Multi-user tangible interface for decision making in emergency responses, in: V. Coors, M. Rumor, E. Fendel, and S. Zlatanova (eds.), Urban and Regional data Management, UDMS Annual 2007, Taylor and Francis, London, pp. 357–379Google Scholar
  36. Snoeren, G. 2007, User requirements for a Spatial Data Infrastructure for Emergency Management, GIMA MSc Thesis, 94pGoogle Scholar
  37. Tatomir, B, and L. Rothkranz, 2005, Crisis management using mobile ad-hoc wireless networks, in: Proceedings of the 2nd International ISCRAM Conference April 2005, Brussels, Belgium, pp. 147–149Google Scholar
  38. UNISDR (United Nations International Strategy for Disaster Reduction) 2007, Glossaries, Available at
  39. van Loenen, B., 2006, Developing Geographic Information Infrastructures: the role of information policies. PhD Thesis Delft: Delft University PressGoogle Scholar
  40. van Zuilekom, K. and Zuidgeest, M.H.P. 2008, A decision support system for the preventive evacuation of people in a dike-ring area, in: J. Li and S. Zlatanova (eds). Geospatial Information Technology for Emergency Response. Taylor & Francis, London, ISPRS book series, pp. 329–351Google Scholar
  41. Xu, W. and S. Zlatanova, 2007, Ontologies for Disaster Managmement, in: J. Li, S. Zlatanova and A. Fabbri (eds.), Geomatics Solutions for Disaster Management, Lecture Notes in Geoinformation and Cartography. Springer-Verlag Berlin, Heidelberg, pp. 185–200Google Scholar
  42. Zhang Y, and N. Kerle, 2008, Satellite remote sensing for near-real time data collection, in: J. Li and S. Zlatanova (eds) Geospatial Information Technology for Emergency Response. Taylor & Francis, London, ISPRS book, pp. 75–103Google Scholar
  43. Zhang, F., Xu, B., and Zhou, M., 2002, Data modelling of moving objects with GPS/GIS in web environment. Communications, Circuit and Systems and West Sino Expositions, IEEE International Conference, 2(9): 1581–1585CrossRefGoogle Scholar
  44. Zhu, Q., Y. Li and Y.K. Tor, 2008, Multidimensional and dynamic vehicle emergency routing algorithm based on 3D GIS, in: J. Li and S. Zlatanova (eds). Geospatial Information technology for Emergency response. Taylor & Francis, London, ISPRS book series, pp. 169–184Google Scholar
  45. Zlatanova, S., 2005, Crisis designs, Geospatial Today, 4(1): 30–36Google Scholar
  46. Zlatanova, S., D. Holweg and M. Stratakis, 2007, Framework for multi-risk emergency response, in: C.V. Tao and J. Li (eds.) Advances in Mobile Mapping Technology, Taylor & Francis, London, ISPRS Book Series, pp. 159–171Google Scholar

Copyright information

© Springer Science+Business Media B.V 2009

Authors and Affiliations

  • Sisi Zlatanova
    • 1
  • Andrea G. Fabbri
    • 2
    • 3
  1. 1.OTB, GIS TechnologyDelft University of TechnologyDelftThe Netherlands
  2. 2.Spatial Information Laboratory (SPINlab), Institute for Environmental StudiesVU UniversityAmsterdamThe Netherlands
  3. 3.DISATUniversità di Milano-BicoccaMilanItaly

Personalised recommendations