Skip to main content

Relativistically Covariant Many-Body Perturbation Procedure

  • Chapter
  • 1174 Accesses

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 19))

Abstract

A covariant evolution operator (CEO) can be constructed, representing the time evolution of the relativistic wave unction or state vector. Like the nonrelativistic version, it contains (quasi-)singularities. The regular part is referred to as the Green’s operator (GO), which is the operator analogue of the Green’s function (GF). This operator, which is a field-theoretical concept, is closely related to the many-body wave operator and effective Hamiltonian, and it is the basic tool for our unified theory. The GO leads, when the perturbation is carried to all orders, to the Bethe–Salpeter equation (BSE) in the equal-time or effective-potential approximation. When relaxing the equal-time restriction, the procedure is fully compatible with the exact BSE. The calculations are performed in the photonic Fock space, where the number of photons is no longer constant. The procedure has been applied to helium-like ions, and the results agree well with S-matrix results in cases when comparison can be performed. In addition, evaluation of higher-order quantum-electrodynamical (QED) correlational effects has been performed, and the effects are found to be quite significant for light and medium-heavy ions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. G. Myers, H. S. Margolis, J. K. Thompson, M. A. Farmer, J. D. Silver, M. R. Tarbutt, Phys. Rev. Lett. 82, 4200 (1999)

    Article  CAS  Google Scholar 

  2. T. R. DeVore, D. N. Crosby, E. G. Myers, Phys. Rev. Lett. 100, 243001 (2008)

    Article  Google Scholar 

  3. T. Zelevinsky, D. Farkas, G. Gabrielse, Phys. Rev. Lett. 95, 203001 (2005)

    Article  CAS  Google Scholar 

  4. G. Giusfredi, P. C. Pastor, P. DeNatale, D. Mazzotti, C. deMauro, L. Fallani, G. Hagel, V. Krachmalnicoff, M. Ingusio, Can. J. Phys. 83, 301 (2005)

    Article  CAS  Google Scholar 

  5. G. W. F. Drake, Can. J. Phys. 80, 1195 (2002)

    Article  CAS  Google Scholar 

  6. K. Pachucki, J. Sapirstein, J. Phys. B 33, 5297 (2000)

    Article  CAS  Google Scholar 

  7. I. Lindgren, J. Morrison, Atomic Many-Body Theory (Second edition, Springer-Verlag, Berlin, 1986, reprinted 2009)

    Book  Google Scholar 

  8. P. J. Mohr, G. Plunien, G. Soff, Phys. Rep. 293, 227 (1998)

    Article  CAS  Google Scholar 

  9. V. M. Shabaev, Phys. Rep. 356, 119 (2002)

    Article  CAS  Google Scholar 

  10. I. Lindgren, S. Salomonson, B. Åsén, Phys. Rep. 389, 161 (2004)

    Article  Google Scholar 

  11. G. W. F. Drake, Can. J. Phys. 66, 586 (1988)

    Article  CAS  Google Scholar 

  12. I. Lindgren, S. Salomonson, D. Hedendahl, Can. J. Phys. 83, 183 (2005)

    Article  CAS  Google Scholar 

  13. I. Lindgren, S. Salomonson, D. Hedendahl, Phys. Rev. A 73, 062502 (2006)

    Article  Google Scholar 

  14. I. Lindgren, J. Phys. B 7, 2441 (1974).

    Article  CAS  Google Scholar 

  15. I. Lindgren, Int. J. Quantum Chem. S12, 33 (1978)

    Google Scholar 

  16. D. Jena, D. Datta, D. Mukherjee, Chem. Phys. 329, 290 (2006)

    Article  Google Scholar 

  17. C. Bloch, Nucl. Phys. 6, 329 (1958)

    Article  CAS  Google Scholar 

  18. C. Bloch, Nucl. Phys. 7, 451 (1958)

    Article  Google Scholar 

  19. J. Sucher, Phys. Rev. A 22, 348 (1980)

    Article  CAS  Google Scholar 

  20. A. L. Fetter, J. D. Walecka, The Quantum Mechanics of Many-Body Systems (McGraw-Hill, NY, 1971)

    Google Scholar 

  21. M. Gell-Mann, F. Low, Phys. Rev. 84, 350 (1951)

    Article  CAS  Google Scholar 

  22. C. Itzykson, J. B. Zuber, Quantum Field Theory (McGraw-Hill, NY, 1980)

    Google Scholar 

  23. I. Lindgren, B. Åsén, S. Salomonson, A.-M. Mårtensson-Pendrill, Phys. Rev. A 64, 062505 (2001)

    Article  Google Scholar 

  24. E. E. Salpeter, H. A. Bethe, Phys. Rev. 84, 1232 (1951)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingvar Lindgren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lindgren, I., Salomonson, S., Hedendahl, D. (2009). Relativistically Covariant Many-Body Perturbation Procedure. In: Piecuch, P., Maruani, J., Delgado-Barrio, G., Wilson, S. (eds) Advances in the Theory of Atomic and Molecular Systems. Progress in Theoretical Chemistry and Physics, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2596-8_6

Download citation

Publish with us

Policies and ethics