Skip to main content

Bionanotechnology, Nanomedicine and the Future

  • Chapter
  • First Online:
  • 1937 Accesses

Abstract

Bionanotechnology is described as the crossover of nanotechnology into the biological arena. Here the design principles of supramolecular chemistry can be used to determine how DNA can be used to build three dimensional structures through self-assembly and how protein mimicking molecular muscles can be constructed. Aspects of supramolecular nanomedicine are introduced that show how nanoparticles can be used to label biomolecules for detection, how DNA sequencing could be undertaken in real time by threading strands through a responsive nanopore, and how multimodal nanoparticles could home in on their targets before delivering therapeutic drugs. Cell mimics are considered as drug delivery vehicles with examples coming from polymer encapsulated siRNA delivery methods, drug delivery by particle disintegration, and minicells as drug delivery systems. The role of supramolecular chemistry in protein engineering is discussed. An example at the cutting edge of nanomedicine, an antimicrobial multifunctional zeolite, is described to indicate the likely direction of nanomedicine. The future of supramolecular chemistry in the field of nanomedicine is discussed by considering the requirements of medicinal nanodevices: how they would be powered, how they would function, how they could be controlled and how it

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Seeman N (2004) Nanotechnology and the double helix. Sci Am 290(6):34–43

    Article  Google Scholar 

  2. Zheng J et al (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77 PDBID:3GBI

    Article  CAS  Google Scholar 

  3. Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621

    Article  CAS  Google Scholar 

  4. Goodman RP et al (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665

    Google Scholar 

  5. He Y et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201

    Article  CAS  Google Scholar 

  6. Seeman NC (2005) From genes to machines: DNA nanomechanical devices. Trends Biochem Sci 30:119–125

    Article  CAS  Google Scholar 

  7. Mullis K (1999) Dancing naked in the mind field. Bloomsbury, London, pp 3–14

    Google Scholar 

  8. Ramachandran GN, Kartha G (1955) Structure of collagen. Nature 176:593–595

    Article  CAS  Google Scholar 

  9. Kwahara K et al (2005) Effect of hydration on the stability of the collagen-like triple-helical structure of [4(R)-hydroxyprolyl-4(R)-hydroxyprolylglycine.10. Biochem 44:15812–15822 PDBID:1WZB

    Article  Google Scholar 

  10. Ybe JA et al (2007) Crystal structure at 2.8 Å of the DLLRKN-containing coiled-coil domain of huntingtin-interacting protein 1 (HIP1) reveals a surface suitable for clathrin light chain binding. J Mol Biol 367:8–15 PDBID:2NO2

    Article  CAS  Google Scholar 

  11. Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. An Rev Biochem 66:511–548

    Article  CAS  Google Scholar 

  12. Jiménez MC, Dietrich-Buchecker C, Sauvage JP (2000) Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew Chem Int Ed 39:3284–3287

    Article  Google Scholar 

  13. Kryatova OP et al (2002) Stable supramolecular dimer of self-complementary benzo-18-crown-6 with a pendent protonated amine arm. Chem Commun 3014–3015

    Google Scholar 

  14. Kushner AM et al (2009) A biomimetic modular polymer with tough and adaptive properties. J Am Chem Soc 131:8766–8768

    Article  CAS  Google Scholar 

  15. von Castelmur E et al (2008) A regular pattern of Ig super-motifs defines segmental flexibility as the elastic mechanism of the titin chain. Proc Natl Acad Sci USA 105:1186–1191 PDBID:3B43

    Article  Google Scholar 

  16. Alivisatos PA (2001) Less is more in medicine. Sci Am 285(3):58–65

    Article  Google Scholar 

  17. Ito A et al (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  18. Storhoff et al (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  19. Jeffreys AJ, Wilson V, Thein SL (1985) Individual-specific ‘fingerprints’ of human DNA Nature 1985 316:76–9

    Google Scholar 

  20. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  Google Scholar 

  21. Borsenberger V, Mitchell N, Howorka S (2009) Chemically labeled nucleotides and oligonucleotides encode DNA for sensing with nanopores. J An Chem Soc 131:7530–7531

    Article  CAS  Google Scholar 

  22. Chang H et al (2004) DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Lett 4:1551–1556

    Article  CAS  Google Scholar 

  23. Lee JH et al (2009) All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed 48:4174–4179

    Article  CAS  Google Scholar 

  24. Schluep T et al (2009) Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc Natl Acad Sci USA 106:11394–11399

    Article  CAS  Google Scholar 

  25. Osaki M et al (2009) Nanospheres with polymerization ability coated by polyrotaxane. J Org Chem 74:1858–1863

    Article  CAS  Google Scholar 

  26. MacDiarmid JA et al (2009) Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nature Biotech 27:643–651

    Article  CAS  Google Scholar 

  27. Katsura I (1987) Determination of bacteriophage-lambda tail length by a protein ruler. Nature 327:73–75

    Article  CAS  Google Scholar 

  28. Strassert CA et al (2009) Photoactive hybrid nanomaterial for targeting, labeling, and killing antibiotic-resistant bacteria. Angew Chem Int Ed 48:7928–7931

    Article  CAS  Google Scholar 

  29. Dreyfus R et al (2005) Microscopic artificial swimmers. Nature 437:862–865

    Article  CAS  Google Scholar 

  30. Golestanian R, Liverpool TB, Ajdari A (2005) Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys Rev Lett 94:Article 220801

    Google Scholar 

  31. Paxton WF et al (2006) Chemical locomotion. Angew Chem Int Ed 45:5420–5429

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Cragg .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cragg, P.J. (2010). Bionanotechnology, Nanomedicine and the Future. In: Supramolecular Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2582-1_8

Download citation

Publish with us

Policies and ethics