Skip to main content

Bionanocomposites Assembled by “From Bottom to Top” Method

  • Chapter
  • First Online:
Nanostructured Materials Preparation via Condensation Ways

Abstract

Nanobiotechnology is a rapidly increasing research field located at the crosslink of materials science, nanotechnology and molecular biotechnology. Interaction of nanoparticles with biopolymers (proteins, nucleic acids, polysaccharides) plays very important role in enzyme catalysis, biosorption, biohydrometallurgy, geobiotechnology, etc.). There is a great interest to nanomaterials, which can be used in biomedical and pharmaceutical applications due to their biocompatibility and biodegradation. Functional nanoparticles, covalently bound to biological molecules can be used as nano-carriers in drug delivery, cancer treatment, nano-structured films or scaffolds for medical implants, artificial bones and tissues, etc. In this chapter recent routes including sol-gel and intercalation processes for the bottom-up assembly of bionanocomposites are considered in detail.

Biologic production systems are of special interest due to their effectiveness and flexibility, as environmentally friendly pathways for nanoparticle synthesis. Biogenic nanoparticles often exhibit water-soluble and biocompatible properties, which are essential for many applications. The potential of biological organisms such as plant extracts, bacteria, actinomycetes, algae, yeasts and fungi for biosynthesis of nanoparticles is analysed as promising alternative to the known physical and chemical production methods when their disadvantages could be overcome. Special attention is paid to enzymatic strategy for the synthesis of nanomaterials of different chemical compositions, well-defined shapes and sizes. A number outlooks for applications of bionanocomposites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    GAE – equivalent of gallic acid used as a standard phenol compound in spectrophotometric analysis of total concentration of phenols.

  2. 2.

    Flagella – is a surface structure present in many prokaryotic and eukaryotic cells and serving for their motion in liquid medium or on the surface of solid media. Bacterial flagella thickness is 10–20 nm and length 3–5 μm. Basal body in a cellular wall drives exterior semi-rigid protein helix fiber via the body rotation, thus generating hydrodynamic force driving the cell directionally. Basal body of a flagella is a miniature electromotor, due to which bacterial cell is able to develop very high speed, 100 μm/s, i.e. more than 50 lengths of the cell body per second. The driving force takes energy from ionic gradient on the inner membrane of the bacterial cell – transmembrane potential of hydrogen or sodium ions.

  3. 3.

    The general structure of phytochelatin is (γ-Glu-Cys)n-Gly, n = 2–11. In Greek “phyto” means it presents in plants and “chelatin” is its ability to form chelate complexes with many metals including Cd2+, Pb2+, Zn2+, Sb3+, Ag+, Ni2+, Hg2+, HAsO4 2−, Cu2+, Sn2+, SeO3 2−, Au+, Bi3+, Te4+, W6+ ions.

  4. 4.

    Nicotinamide adenine dinucleotide phosphate is frequently naturally occurred co-ferment of some dehydrogenases, ferments, which catalyze oxidizing-reducing reactions in living cells. NADP accepts hydrogen and electrons of oxidized compound and serves a carrier of them.

    figure a

    In chloroplasts of vegetable cells NADP reduces in light reactions of photosynthesis and then supplies with hydrogen synthesis of carbohydrates in dark reactions.

  5. 5.

    SBF is artificial surrounding tissues liquid which contains ions (рН = 7.4, 142 mM Na+, 5 mM K+, 1.5 mM Mg2+, 2.5 mM Ca2+, 125 mM Cl, 27 mM HCO3 , 1 mM HPO4 2−, 0.5 mM SO4 2−) in concentrations close to human plasma (in a typical experiment 50 mg of microporous composite was placed in biological activity at 37 °С up to 7 without renewing) [163].

  6. 6.

    Advantage of magnetic liposomes as compared to USPIOs is in that various biomedical functions can be provided by conjugation with biological ligands [349].

  7. 7.

    In the last decade technique of preparation of magnetic microspheres has been developed and optimized, including in situ formation of core-shell structures, different types of emulsion polymerization, linking, etc. Most often low-dimensional magnetic particles are coated during suspension polymerization. However, these particles have a wide distribution by shape and sizes of magnetic fractions. Commercial magnetic microspheres are obtained by deposition of magnetic nanoparticles into porous polymeric latex and insulating them by a polymer layer. Though this method is laborious and time consuming, the obtained nanocomposites have high homogeneity and high saturation magnetization, and they meet biotechnological demands [351358].

References

  1. S. Mann, Angew. Chem. Int. Ed. 47, 5306 (2008)

    Google Scholar 

  2. S. Mann, Nat. Mater. 8, 781 (2009)

    Google Scholar 

  3. A.J. Patil, S. Mann, J. Mater. Chem. 18, 4605 (2008)

    Google Scholar 

  4. A.M. Collins, N.J.V. Skaer, T. Cheysens, D. Knight, C. Bertram, H.I. Roach, R.O.C. Oreffo, S. Von-Aulock, T. Baris, J. Skinner, S. Mann, Adv. Mater. 21, 75 (2009)

    Google Scholar 

  5. T.P.J. Knowles, T.W. Oppenheim, A.K. Buell, D.Y. Chirgadze, M.E. Welland, Nat. Nanotechnol. 5, 204 (2010)

    Google Scholar 

  6. A. Singh, S. Hede, M. Sastry, Small 3, 466 (2007)

    Google Scholar 

  7. A. Sugunan, P. Melin, J. Schnürer, J.G. Hilborn, J. Dutta, Adv. Mater. 19, 77 (2007)

    Google Scholar 

  8. M. Gensheimer, M. Becker, A. Brandis-Heep, J.H. Wendorff, R.K. Thauer, A. Greiner, Adv. Mater. 19, 2480 (2007)

    Google Scholar 

  9. S.K. Dixit, N.L. Goicochea, M.-C. Daniel, A. Murali, L. Bronstein, M. De, B. Stein, V.M. Rotello, C.C. Kao, B. Dragnea, Nano Lett. 6, 1993 (2006)

    Google Scholar 

  10. K.M. Bromley, A.J. Patil, A.W. Perriman, G. Stubbs, S. Mann, J. Mater. Chem. 18, 4796 (2008)

    Google Scholar 

  11. T. Li, B. Ye, Z. Niu, P. Thompson, S. Seifert, B. Lee, Q. Wang, Chem. Mater. 21, 1046 (2009)

    Google Scholar 

  12. E.R. Hitzky, K. Ariga, M.Y. Lvov, Bio-inorganic Hybrid Nanomaterials: Strategies, Syntheses, Characterization and Application (Wiley, Weinheim, 2007)

    Google Scholar 

  13. M. Vallet-Regi, D. Arcos, Biomimetic Nanoceramics in Clinical Use: From Materials to Applications (RSC Nanoscience & Nanotechnology, Cambridge, 2008)

    Google Scholar 

  14. H. Dong, D. Wang, G. Sun, J.P. Hinestroza, Chem. Mater. 20, 6627 (2008)

    Google Scholar 

  15. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Pasricha, P.V. Ajayakumar, M. Alam, M. Sastry, Angew. Chem. Int. Ed. 40, 3585 (2001)

    Google Scholar 

  16. A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, Langmuir 19(8), 3550 (2003)

    Google Scholar 

  17. A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, J. Am. Chem. Soc. 124, 12108 (2002)

    Google Scholar 

  18. P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, M. Sastry, Chem. Bio. Chem. 3, 461 (2002)

    Google Scholar 

  19. M. Labrenz, G.K. Druschel, T. Thomsen-Ebert, B. Gilbert, S.A. Welch, K.M. Kemner, G.A. Logan, R.E. Summons, G.D. Stasio, P.L. Bond, B. Lai, S.D. Kelly, J.F. Banfield, Science 290, 1744 (2000)

    Google Scholar 

  20. J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J.P. Videa, H.E. Troinai, P. Santiago, M.J. Yacaman, Nano Lett. 2, 397 (2002)

    Google Scholar 

  21. S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Biotechnol. Prog. 22, 577 (2006)

    Google Scholar 

  22. E. Katz, I. Willner, Angew. Chem. Int. Ed. 43, 6042 (2004)

    Google Scholar 

  23. V. Kumar, S.K. Yadav, J. Chem. Technol. Biotechnol. 84, 151 (2009)

    Google Scholar 

  24. J. Huang, Q. Li, D. Sun, Y. Lu, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Nanotechnology 18, 105104 (2007)

    Google Scholar 

  25. B. Ankamwar, C. Damle, A. Ahmad, M. Sastry, J. Nanosci. Nanotechnol. 5, 1665 (2005)

    Google Scholar 

  26. C. Singh, R.K. Baboota, P.K. Naik, H. Singh, Adv. Mater. Lett. 3, 279 (2012)

    Google Scholar 

  27. S.S. Shankar, A. Ahmad, R. Pasrichaa, M. Sastry, J. Mater. Chem. 13, 1822 (2003)

    Google Scholar 

  28. N.A. Begum, S. Mondal, S. Basu, R.A. Laskar, D. Mandal, Colloids Surf. B 71, 113 (2009)

    Google Scholar 

  29. E. Rodriguez, J.G. Parsons, J.R. Peralta-Videa, G. Cruz-Jimenez, J. Romero-Gonzalez, B.E. Sanchez-Salcido, Int. J. Phytoremed. 9, 133 (2007)

    Google Scholar 

  30. N.C. Sharma, S.V. Sahi, S. Nath, J.G. Parsons, J.L. Gardea-Torresdey, T. Pal, Environ. Sci. Technol. 41, 5137 (2007)

    Google Scholar 

  31. J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, Langmuir 19, 1357 (2003)

    Google Scholar 

  32. A.G. Medentsev, V.K. Alimenko, Phytochemistry 47, 935 (1998)

    Google Scholar 

  33. R.A. Baker, J.H. Tatum, J. Ferment. Bioeng. 85, 359 (1998)

    Google Scholar 

  34. E.M. Egorova, A.A. Revina, Colloids Surf. A Physicochem. Eng. Asp. 168, 87 (2000)

    Google Scholar 

  35. E.M. Egorova, A.A. Revina, T.N. Rostovshchikova, O.I. Kiseleva, Vestn. Mosk. Univ. Ser. Khim. 42, 332 (2001)

    Google Scholar 

  36. S.S. Shankar, A. Ahmad, M. Sastry, Biotechnol. Prog. 19, 1627 (2003)

    Google Scholar 

  37. X.L. Zhu, Q.L. Yang, J.Y. Huang, I. Suzuki, G.X. Li, J. Nanosci. Nanotechnol. 8, 353 (2008)

    Google Scholar 

  38. S.K. Bhargava, J.M. Booth, S. Agrawal, P. Coloe, G. Kar, Langmuir 21, 5949 (2005)

    Google Scholar 

  39. R. Shukla, S.K. Nune, N. Chanda, K. Katti, S. Mekapothula, R.R. Kulkarni, W.V. Welshons, R. Kannan, K.V. Katti, Small 4, 1425 (2008)

    Google Scholar 

  40. V. Kumar, S.C. Yadav, S.K. Yadav, J. Chem. Technol. Biotechnol. 85, 1301 (2010)

    Google Scholar 

  41. E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag, S.L. Suib, Langmuir 27(1), 264 (2011)

    Google Scholar 

  42. A. Singh, M. Chaudhary, M. Sastry, Nanotechnology 17, 2399 (2006)

    Google Scholar 

  43. B. Ankamwar, M. Chaudhary, M. Sastry, Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 35, 19 (2005)

    Google Scholar 

  44. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Chem. Mater. 17, 566 (2005)

    Google Scholar 

  45. M.L. Lópeza, J.G. Parsonsb, J.R. Peralta Videab, T.L. Gardea-Torresdey, Microchem. J. 81, 50 (2005)

    Google Scholar 

  46. S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, Green Chem. 9, 852 (2007)

    Google Scholar 

  47. F. Zeng, C. Hou, S. Wu, X. Liu, Z. Tong, S. Yu, Nanotechnology 18, 1 (2007)

    Google Scholar 

  48. K. Ghule, A.V. Ghule, J.Y. Liu, Y.C. Ling, J. Nanosci. Nanotechnol. 6, 3746 (2006)

    Google Scholar 

  49. M.N. Nadagouda, G. Hoag, J. Collins, R.S. Varma, Crystal Growth Des. 9, 4979 (2009)

    Google Scholar 

  50. P. Velmurugan, J. Shim, S. Kamala-Kannan, K.-J. Lee, B.-T. Oh, V. Balachandar, B.-T. Oh, Biotechnol. Prog. 27, 273 (2011)

    Google Scholar 

  51. N. Krumov, I. Perner-Nochta, S. Oder, V. Gotcheva, A. Angelov, C. Posten, Chem. Eng. Technol. 32, 1026 (2009)

    Google Scholar 

  52. D. Schüler, R.B. Frankel, Appl. Microbiol. Biotechnol. 52, 464 (1999)

    Google Scholar 

  53. C.M. Niemeyer, Angew. Chem. Int. Ed. 40, 4128 (2001)

    Google Scholar 

  54. C. Ven Den Hoek, D.G. Mann, H.M. Johns, in Algae: An Introduction to Phycology, ed. by W.H. van de Poll (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  55. D. Werner, Silicate metabolism, in The Biology of Diatoms. Botanical Monograph, ed. by D. Werner, vol. 13 (University of California, Berkeley, 1977), p. 110

    Google Scholar 

  56. R.E. Lee, in Heterokontophyta, Bacillariophyceae, ed. by R.E. Lee (Cambridge University Press, Cambridge, 1999), p. 415

    Google Scholar 

  57. N. Kröger, K.H. Sandhage, MRS Bull. 35, 122 (2010)

    Google Scholar 

  58. M.A. Grachev, V.V. Annenkov, Y.V. Likhoshway, Bio Essays 30, 328 (2008)

    Google Scholar 

  59. S.Y. He, Z.R. Guo, Y. Zhang, S. Zhang, J. Wang, N. Gu, Mater. Lett. 61, 3984 (2007)

    Google Scholar 

  60. S. He, Y. Zhang, Z. Guo, N. Gu, Biotechnol. Prog. 24, 476 (2008)

    Google Scholar 

  61. S.K. Das, A.R. Das, A.K. Guha, Small 6, 1012 (2010)

    Google Scholar 

  62. T. Klaus, R. Joerger, E. Olsson, S. Granqist, Proc. Natl. Acad. Sci. U. S. A. 96, 13611 (1999)

    Google Scholar 

  63. S. De Corte, T. Hennebel, S. Verschuere, C. Cuvelier, W. Verstraete, N. Boon, J. Chem. Technol. Biotechnol. 86, 547 (2011)

    Google Scholar 

  64. W. De Windt, P. Aelterman, W. Verstraete, Environ. Microbiol. 7, 314 (2005)

    Google Scholar 

  65. P. Yong, N.A. Rowson, J.P.G. Farr, I.R. Harris, L.R. Macaskie, Biotechnol. Bioeng. 80, 369 (2002)

    Google Scholar 

  66. K. Kashefi, J.M. Tor, K.P. Nevin, D.R. Lovley, Appl. Environ. Microbiol. 67, 3275 (2001)

    Google Scholar 

  67. D. Chidambaram, T. Hennebel, S. Taghavi, J. Mast, N. Boon, W. Verstraete, Environ. Sci. Technol. 44, 7635 (2010)

    Google Scholar 

  68. K. Deplanche, L.E. Macaskie, Biotechnol. Bioeng. 99, 1055 (2008)

    Google Scholar 

  69. M.F. Lengke, B. Ravel, M.E. Fleet, G. Wanger, R.A. Gordon, G. Southam, Environ. Sci. Technol. 40, 6304 (2006)

    Google Scholar 

  70. R. Brayner, H. Barberousse, M. Hernadi, C. Djedjat, C. Yepremian, T. Coradin et al., J. Nanosci. Nanotechnol. 7, 2696 (2007)

    Google Scholar 

  71. T.J. Beveridge, R.G.E. Murray, J. Bacteriol. 141, 876 (1980)

    Google Scholar 

  72. C. Tian, B. Mao, E. Wang, Z. Kang, Y. Song, C. Wang, S. Li, J. Phys. Chem. C 111, 3651 (2007)

    Google Scholar 

  73. X. Hu, T. Wang, X. Qu, S. Dong, J. Phys. Chem. B 110, 853 (2006)

    Google Scholar 

  74. R. Cui, C. Liu, J. Shen, D. Gao, J.-J. Zhu, H.-Y. Chen, Adv. Funct. Mater. 18, 2197 (2008)

    Google Scholar 

  75. F. Gallyas, Hystochemistry 64, 87 (1979)

    Google Scholar 

  76. J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, H.K. Schackert, Adv. Mater. 12, 507 (2000)

    Google Scholar 

  77. J. Richter, Phys. E. 16, 157 (2003)

    Google Scholar 

  78. W. Shenton, T. Douglas, M. Young, G. Stubbs, S. Mann, Adv. Mater. 11, 253 (1999)

    Google Scholar 

  79. R. Wahl, M. Mertig, J. Raff, S. Selenska-Pobell, W. Pompe, Adv. Mater. 13, 736 (2001)

    Google Scholar 

  80. A.L. Metlina, Uspekhi biolog. Khim. 41, 229 (2001)

    Google Scholar 

  81. K. Deplanche, R.D. Woods, I.P. Mikheenko, R.E. Sockett, L.E. Macaskie, Biotechnol. Bioeng. 101, 873 (2008)

    Google Scholar 

  82. S. Dieluweit, D. Pum, U.B. Sleytr, Supramol. Sci. 5, 15 (1998)

    Google Scholar 

  83. S.R. Hall, W. Shenton, H. Engelhardt, S. Mann, Chem. Phys. Chem. 2, 184 (2001)

    Google Scholar 

  84. R. Djalali, Y.F. Chen, H. Matsui, J. Am. Chem. Soc. 124, 13660 (2002)

    Google Scholar 

  85. M.T. Kumara, B.C. Tripp, S. Muralidharan, Chem. Mater. 19, 2056 (2007)

    Google Scholar 

  86. J.E. Bailie, H.A. Abdullah, J.A. Anderson, C.H. Rochester, N.V. Richardson, N. Hodge, J. Zhang, A. Burrows, C.J. Kiely, G.J. Hutchings, Phys. Chem. Chem. Phys. 3, 4113 (2001)

    Google Scholar 

  87. J.R. Lloyd, R.T. Anderson, L.E. Macaskie, Bioremediation of metals and radionuclides, in Bioremediation, ed. by R. Atlas, J. Philp (ASM Press, Washington, DC, 2005), pp. 293–317

    Google Scholar 

  88. J.R. Lloyd, P. Yong, L.E. Macaskie, Appl. Environ. Microbiol. 64, 4607 (1998)

    Google Scholar 

  89. P. Yong, N.A. Rowson, J.P.G. Farr, I.R. Harris, L.E. Macaskie, Environ. Sci. Tech. 24, 289 (2003)

    Google Scholar 

  90. N.J. Creamer, V.S. Baxter-Plant, J. Henderson, M. Potter, L.E. Macaskie, Biotechnol. Lett. 28, 1475 (2006)

    Google Scholar 

  91. A.N. Mabbett, D. Sanyahumbi, P. Yong, L.E. Macaskie, Environ. Sci. Technol. 40, 1015 (2006)

    Google Scholar 

  92. D. Gauthier, L.S. Sobjerg, K.M. Jensen, A.T. Lindhardt, M. Bunge, K. Finster, R.L. Meyer, T. Skrydstrup, Chem. Sus. Chem. 3, 1036 (2010)

    Google Scholar 

  93. J.R. Lloyd, C.I. Pearce, V.S. Coker, R.A.D. Pattrick, G. Van Der Laan, R. Cutting, D.J. Vaughan, M. Paterson-Beedle, I.P. Mikheenko, P. Yong, L.E. Macaskie, Geobiology 6, 285 (2008)

    Google Scholar 

  94. Y. Suzuki, S.D. Kelly, K.M. Kemner, J.F. Banfield, Nature 419, 134 (2002)

    Google Scholar 

  95. J.C. Renshaw, L.J.C. Butchins, F.R. Livens, I. May, J.M. Charnock, J.R. Lloyd, Environ. Sci. Tech. 39, 5657 (2005)

    Google Scholar 

  96. J.R. Lloyd, FEMS Microbiol. Rev. 27, 411 (2003)

    Google Scholar 

  97. S.A. Kumar, M.K. Abyaneh, S.W. Gosavi, S.K. Kulkarni, A. Ahmad, M.I. Khan, Appl. Biochem. 47, 191 (2007)

    Google Scholar 

  98. N. Durán, P.D. Marcato, O.L. Alves, G.I.H. De Souza, E. Esposito, J. Nanobiotechnol. 3, 8 (2005)

    Google Scholar 

  99. I. Mikheenko, Nanoscale palladium recovery, PhD thesis, University of Birmingham, UK, 2004

    Google Scholar 

  100. I.P. Mikheenko, M. Rousset, S. Dementin, L.E. Macaskie, Appl. Environ. Microbiol. 74, 6144 (2008)

    Google Scholar 

  101. J.M. Slocik, M.R. Knecht, D.W. Wright, Encycl. Nanosci. Nanotechnol. 1, 293 (2004)

    Google Scholar 

  102. B. Nair, T. Pradeep, Crystal Growth Des. 2(4), 293 (2002)

    Google Scholar 

  103. M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S.K. Kulkarni, K.M. Paknikar, Nanotechnology 14, 95 (2003)

    Google Scholar 

  104. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Nano Lett. 1, 515 (2001)

    Google Scholar 

  105. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry, Colloids Surf. B Biointerfaces 28, 313 (2003)

    Google Scholar 

  106. D. Fortin, T. Beveridge, in Biomineralization, ed. by E. Bäuerlein (Wiley-VCH, Weinheim, 2000)

    Google Scholar 

  107. Y. Konishi, T. Nomura, T. Tskukiyama, N. Saitoh, Trans. Mater. Res. Soc. Jpn. 29, 2341 (2004)

    Google Scholar 

  108. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, R. Kumar, Angew. Chem. Int. Ed. Engl. 40, 3585 (2001)

    Google Scholar 

  109. P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, M. Sastry, Chembiochem 3, 461 (2002)

    Google Scholar 

  110. A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, R. Ramani, V. Srinivas, M. Sastry, Nanotechnology 14(7), 824 (2003)

    Google Scholar 

  111. S. Senapati, A. Ahmad, M.I. Khan, M. Sastry, R. Kumar, Small 1(5), 517 (2005)

    Google Scholar 

  112. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, J. Biomed. Mater. Res. Symp. 2, 117 (1972)

    Google Scholar 

  113. S. Braun, S. Rappoport, R. Zusman et al., Mater. Lett. 10, 1 (1990)

    Google Scholar 

  114. M. Nogi, H. Yano, Adv. Mater. 20, 1849 (2008)

    Google Scholar 

  115. J. Xie, Y. Zheng, J.Y. Ying, J. Am. Chem. Soc. 131, 888 (2009)

    Google Scholar 

  116. V. Berry, A. Gole, S. Kundu, C.J. Murphy, R.F. Saraf, J. Am. Chem. Soc. 127, 17600 (2005)

    Google Scholar 

  117. V. Berry, S. Rangaswamy, R.F. Saraf, Nano Lett. 4, 939 (2004)

    Google Scholar 

  118. V. Berry, R.F. Saraf, Angew. Chem. Int. Ed. 44, 6668 (2005)

    Google Scholar 

  119. S.-K. Lee, D.S. Yun, A.M. Belcher, Biomacromolecules 7, 14 (2006)

    Google Scholar 

  120. B. Samanta, H. Yan, N.O. Fischer, J. Shi, D.J. Jerryc, V.M. Rotello, J. Mater. Chem. 18, 1204 (2008)

    Google Scholar 

  121. K.T. Nam, D.-W. Kim, P.J. Yoo, C.-Y. Chiang, N. Meethong, P.T. Hammond, Y.-M. Chiang, A.M. Belcher, Science 312, 885 (2006)

    Google Scholar 

  122. A. Vazquez, V.P. Cyras, V.A. Alvarez, Environmental silicate nano-biocomposites, in Green Energy and Technology, ed. by J.I. Moran, L. Avérous, E. Pollet (Springer, London, 2012), p. 287

    Google Scholar 

  123. C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Adv. Mater. 23, 599 (2011)

    Google Scholar 

  124. H.-W. Kim, H.-H. Lee, G.-S. Chun, J. Biomed. Mater. Res. 85A, 651 (2008)

    Google Scholar 

  125. X. Zheng, S. Zhou, Y. Xiao, X. Yu, B. Feng, J. Biomed, Mater. Res. B. Appl. Biomater. 91, 181 (2009)

    Google Scholar 

  126. E.C. Carnes, D.M. Lopez, N.P. Donegan, A. Cheung, H. Gresham, G.S. Timmins, C.J. Brinker, Nat. Chem. Biol. 6, 41 (2010)

    Google Scholar 

  127. E. Ruiz-Hernandez, A. Lopez-Noriega, D. Arcos, M. Vallet-Regi, Solid State Sci. 10, 421 (2008)

    Google Scholar 

  128. J.W. Liu, X.M. Jiang, C. Ashley, C.J. Brinker, J. Am. Chem. Soc. 131, 7567 (2009)

    Google Scholar 

  129. J.W. Liu, A. Stace-Naughton, X.M. Jiang, C.J. Brinker, J. Am. Chem. Soc. 131, 1354 (2009)

    Google Scholar 

  130. T. Buranda, J. Huang, G.V. Ramarao, L.K. Ista, R.S.R.S. Larson, T.L. Ward, L.A. Sklar, G.P. Lopez, Langmuir 19, 1654 (2003)

    Google Scholar 

  131. J.I. Zink, J.S. Valentine, B. Dunn, New J. Chem. 18, 1109 (1994)

    Google Scholar 

  132. A. Bronshtein, N. Aharonson, D. Avnir, A. Turiansky, M. Alstein, Chem. Mater. 9, 2632 (1997)

    Google Scholar 

  133. Y. Lvov, H. Möhwald (eds.), Protein Architecture: Interfacing Molecular Assemblies and Immobilization Biotechnology (Marcel Dekker, New York, 2000)

    Google Scholar 

  134. J. Woodward (ed.), Immobilized Cells and Enzymes − A Practical Approach (IRL Press, Washington, DC, 1985)

    Google Scholar 

  135. M.F. Desimone, C. Heґlary, G. Mosser, M.-M. Giraud-Guille, J. Livage, T. Coradin, J. Mater. Chem. 20, 666 (2010)

    Google Scholar 

  136. D. Eglin, S. Maalheem, J. Livage, T. Coradin, J. Mater. Sci. Mater. Med. 17, 161 (2006)

    Google Scholar 

  137. S. Smitha, P. Shajesh, P. Mukundan, K.G.K. Warrier, J. Sol-Gel Sci. Technol. 42, 157 (2007)

    Google Scholar 

  138. S. Smitha, P. Shajesh, P. Mukundan, T.D.R. Nair, K.G.K. Warrier, Colloids Surf. B. 55, 38 (2007)

    Google Scholar 

  139. J. Allouche, M. Boissiére, C. Heґlary, J. Livage, T. Coradin, J. Mater. Chem. 16, 3120 (2006)

    Google Scholar 

  140. S. Peng, Q. Gao, Q. Wang, J. Shi, Chem. Mater. 16, 2675 (2004)

    Google Scholar 

  141. Z.Y. Wang, Y. Zhao, L. Ren, L.H. Jin, L.P. Sun, P. Yin, Y.F. Zhang, Q.Q. Zhang, Nanotechnology 19, 445103 (2008)

    Google Scholar 

  142. T.K. Jain, I. Roy, T.K. De, A. Maitra, J. Am. Chem. Soc. 120, 11092 (1998)

    Google Scholar 

  143. Y.A. Shchipunov, J. Colloid Interface Sci. 268, 68 (2003)

    Google Scholar 

  144. Y.A. Shchipunov, T.Y. Karpenko, Langmuir 20, 3882 (2004)

    Google Scholar 

  145. Y.A. Shchipunov, A. Kojima, T. Imae, J. Colloid Interface Sci. 285, 574 (2005)

    Google Scholar 

  146. N.A. Brusentsov, T.N. Brusentsova, Khim. Farm. Zh. 35, 10 (2001)

    Google Scholar 

  147. S.A. Medvedeva, G.P. Aleksandrova, L.A. Grishchenko, N.A. Tyukavkina, Zh. Obshch. Khim. 72C, 1569 (2002)

    Google Scholar 

  148. M. Catauro, M.G. Raucci, D. De Marco, L. Ambrosio, J. Biomed. Mater. Res. 77A, 340 (2006)

    Google Scholar 

  149. R.I. Kalyuzhnaya, K.K. Khulchaev, V.A. Kasaikin, A.B. Zezin, V.A. Kabanov, Vysokomol. Soedin. A 36, 257 (1994)

    Google Scholar 

  150. L.N. Ermakova, T.A. Aleksandrova, P.V. Nuss, A.M. Vasserman, V.A. Kasaikin, A.B. Zezin, V.A. Kabanov, Vysokomol. Soedin. A 27, 1391 (1985)

    Google Scholar 

  151. V.V. Annenkov, S.V. Patwardhan, D. Belton, E.N. Danilovtseva, C.C. Perry, Chem. Commun. 1521 (2006)

    Google Scholar 

  152. L. Nicole, C. Boissière, D. Grosso, A. Quach, C. Sanchez, J. Mater. Chem. 15, 3598 (2005)

    Google Scholar 

  153. M. Colilla, M. Manzano, I. Izquierdo-Barba, M. Vallet-Regi, C. Boissiere, C. Sanchez, Chem. Mater. 22, 1821 (2010)

    Google Scholar 

  154. J.P. Zhong, D.C. Greenspan, J. Biomed. Mater. Res. 53, 694 (2000)

    Google Scholar 

  155. M.A. De Diego, N.J. Coleman, L.L. Hench, J. Mater. Sci. Mater. Med. 15, 803 (2004)

    Google Scholar 

  156. E.M. Santos, S. Radin, P. Ducheyne, Biomaterials 20, 1695 (1999)

    Google Scholar 

  157. A.J. Salinas, A.I. Martin, M. Vallet-Regıґ, J. Biomed. Mater. Res. 61, 524 (2002)

    Google Scholar 

  158. M. Hamadouche, A. Meunier, D.C. Greenspan, C. Blanchat, J.P. Zhong, G.P. La Torre, L. Sedel, J. Biomed. Mater. Res. 52, 422 (2000)

    Google Scholar 

  159. P. Sepulveda, J.R. Jones, L.L. Hench, J. Biomed. Mater. Res. 59, 340 (2002)

    Google Scholar 

  160. C.J. Brinker, G.W. Scherer, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing (Academic, San Diego, 1990)

    Google Scholar 

  161. H.W. Kim, H.E. Kim, J.C. Knowles, Adv. Funct. Mater. 16, 1529 (2006)

    Google Scholar 

  162. H.W. Kim, J.H. Song, H.E. Kim, J. Biomed. Mater. Res. 79A, 698 (2006)

    Google Scholar 

  163. S.A. Catledge, M.D. Fries, Y.K. Vohra, W.R. Lacefield, J.E. Lemons, S. Woodard, R. Venugopalan, J. Nanosci. Nanotechnol. 2, 293 (2002)

    Google Scholar 

  164. F.T. Cheng, P. Shi, H.C. Man, Scripta. Mater. 51, 1041 (2004)

    Google Scholar 

  165. J.-X. Liu, D.-Z. Yang, F. Shi, Y.-J. Cai, Thin Solid Films 429, 225 (2003)

    Google Scholar 

  166. H. Boettcher, J. Prakt. Chem. 342, 427 (2000)

    Google Scholar 

  167. J. Musil, Surf. Coat. Techn. 125, 322 (2000)

    Google Scholar 

  168. J.D. Mackenzie, E.P. Bescher, J. Sol-gel Sci. Techn. 19, 23 (2000)

    Google Scholar 

  169. I. Brasack, H. Boettcher, U. Hempel, J. Sol-gel Sci. Techn. 19, 479 (2000)

    Google Scholar 

  170. M.M. Pereira, J.R. Jones, R.L. Orefice, L.L. Hench, J. Mater. Sci. Mater. Med. 16, 1045 (2005)

    Google Scholar 

  171. H. Boéttcher, Mat.-wiss. u. Werkstofftech 32, 759 (2001)

    Google Scholar 

  172. C. Ohtsuki, T. Miyazaki, M. Tanihara, Mater. Sci. Eng. C: Biomim. Supramol. Syst. 22, 27 (2002)

    Google Scholar 

  173. P. Innocenzi, M. Esposto, A. Maddalena, J. Sol-gel Sci. Technol. 20, 293 (2001)

    Google Scholar 

  174. A. Costantini, G. Luciani, G. Annunziata, B. Silvestri, F. Branda, J. Mater. Sci. Mater. Med. 17, 319 (2006)

    Google Scholar 

  175. R.O.R. Costa, M.M. Pereira, F.S. Lameiras, W.L. Vasconcelos, J. Mater. Sci. Mater. Med. 16, 927 (2005)

    Google Scholar 

  176. C. Schiraldi, A. D’Agostino, A. Oliva, F. Flamma, A. De Rosa, A. Apicella, R. Aversa, M. De Rosa, Biomaterials 25, 3645 (2004)

    Google Scholar 

  177. S.L. Huang, W.K. Chin, W.P. Yang, Polymer 46, 1865 (2005)

    Google Scholar 

  178. A. Costantini, G. Luciani, B. Silvestri, F. Tescione, F. Branda, J. Biomed, Mater. Res. B Appl. Biomater. 86, 98 (2008)

    Google Scholar 

  179. M.T. Reetz, Adv. Mater. 9, 943 (1997)

    Google Scholar 

  180. B. Silvestri, G. Luciani, A. Costantini, F. Tescione, F. Branda, A. Pezzella, J. Biomed, Mater. Res. B. Appl. Biomater. 89B, 369 (2009)

    Google Scholar 

  181. M. Catauro, M.G. Raucci, F. de Gaetano, A. Marotta, J. Mater. Sci. 38, 3097 (2003)

    Google Scholar 

  182. M. Catauro, M.G. Raucci, F. de Gaetano, A. Buri, A. Marotta, L. Ambrosio, J. Mater. Sci. Med. 15, 991 (2004)

    Google Scholar 

  183. T.E. Rams, J. Slots, Periodontol 10, 139 (1996)

    Google Scholar 

  184. J.D. Bass, D. Grosso, C. Boissière, E. Belamie, T. Coradin, C. Sanchez, Chem. Mater. 19, 4349 (2007)

    Google Scholar 

  185. C. Charnay, S. Begu, C. Tourne-Peteilh, L. Nicole, D.A. Lerner, J.M. Devoisselle, Eur. J. Pharm. Biopharm. 57, 533 (2004)

    Google Scholar 

  186. E. Ruiz-Hitzky, M. Darder, P. Aranda, in Annual Review of Nanoresearch, ed. by G. Cao, Q. Zhang, C.J. Brinker, vol. 3 (World Scientific Publishing, Singapore, 2010), p. 149

    Google Scholar 

  187. S. Ha, J.A. Gardella Jr., Chem. Rev. 105, 4205 (2005)

    Google Scholar 

  188. P. Colombo, R. Bettini, P. Santi, N.A. Peppas, J. Control Release. 39, 231 (1996)

    Google Scholar 

  189. E. Dujardin, S. Mann, Adv. Mater. 14, 775 (2002)

    Google Scholar 

  190. E. Ruiz-Hitzky, M. Darder, P. Aranda, in Bio-Inorganic Hybrid Materials: Strategies, Syntheses, Characterization and Applications, ed. by E. Ruiz-Hitzky, K. Ariga, Y. Lvov (Wiley-VCH, Weinheim, 2008), p. 1

    Google Scholar 

  191. E. Ruiz-Hitzky, P. Aranda, M. Darder, The Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, New York, 2008), p. 8

    Google Scholar 

  192. E. Ruiz-Hitzky, M. Darder, P. Aranda, J. Mater. Chem. 15, 3650 (2005)

    Google Scholar 

  193. M. Darder, P. Aranda, A.I. Ruiz, F.M. Fernandes, E. Ruiz-Hitzky, Mater. Sci. Technol. 24, 1100 (2008)

    Google Scholar 

  194. C. Tourné-Péteilh, D.A. Lerner, C. Charnay, L. Nicole, S. Bégu, J.-M. Devoisselle, Chem. Phys. Chem. 4, 281 (2003)

    Google Scholar 

  195. M. Darder, P. Aranda, E. Ruiz-Hitzky, Adv. Mater. 19, 1309 (2007)

    Google Scholar 

  196. E. Ruiz-Hitzky, M. Darder, P. Aranda, K. Ariga, Adv. Mater. 22, 323 (2010)

    Google Scholar 

  197. P. Gomez-Romero, C. Sanchez, Functional Hybrid Materials (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  198. E. Ruiz-Hitzky, P. Aranda, M. Darder, in Bottom-Up Nanofabrication: Supramolecules, Self-Assemblies, and Organized Films, ed. by K. Ariga, H.S. Nalwa, vol. 3 (American Scientific Publishers, Stevenson Ranch, 2009), pp. 39–76

    Google Scholar 

  199. A.C.S. Alcantara, P. Aranda, M. Darder, E. Ruiz-Hitzky, J. Mater. Chem. 20, 9495 (2010)

    Google Scholar 

  200. D.G. Shchukin, T. Shutava, E. Shchukina, G.B. Sukhorukov, Y.M. Lvov, Chem. Mater. 16, 3446 (2004)

    Google Scholar 

  201. P. Horcajada, A. Rámila, J. Pérez-Pariente, M. Vallet-Regí, Microporous Mesoporous Mater. 68, 105 (2004)

    Google Scholar 

  202. A. Rámila, B. Muñoz, J. Pérez-Pariente, M. Vallet-Regí, J. Sol-Gel Sci. Technol. 26, 1199 (2003)

    Google Scholar 

  203. A.L. Doadrio, E.M.B. Sousa, J.C. Doadrio, J. Pérez Pariente, I. Izquierdo-Barba, M. Vallet-Regí, J. Control. Release 97, 125 (2004)

    Google Scholar 

  204. K. Katagiri, F. Caruso, Macromolecules 37, 9947 (2004)

    Google Scholar 

  205. B. Muñoz, A. Rámila, J. Pérez-Pariente, I. Díaz, M. Vallet-Regí, Chem. Mater. 15, 500 (2003)

    Google Scholar 

  206. M. Vallet-Regí, A. Rámila, R.P. Del Real, J. Pérez-Pariente, Chem. Mater. 13, 308 (2001)

    Google Scholar 

  207. K.A. Fisher, K.D. Huddersman, M.J. Taylor, Chem. A Eur. J. 9, 5873 (2003)

    Google Scholar 

  208. C.-Y. Lai, B.G. Trewyn, D.M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V.S.-Y. Lin, J. Am. Chem. Soc. 125, 4451 (2003)

    Google Scholar 

  209. H. Hata, S. Saeki, T. Kimura, Y. Sugahara, K. Kuroda, Chem. Mater. 11, 1110 (1999)

    Google Scholar 

  210. A.D. Pomogailo, Colloid J. 67, 658 (2005)

    Google Scholar 

  211. M. Sarikaya, C. Tamerler, A.K.-Y. Jen, K. Schulten, F. Baneyx, Nat. Mater. 2, 577 (2003)

    Google Scholar 

  212. P. Calvert, P. Rieke, Chem. Mater. 8, 1715 (1996)

    Google Scholar 

  213. E. Bauerlein (ed.), The Biomineralisation of Nano- and Micro-Structures (Wiley-VCH, Weinheim, 2000)

    Google Scholar 

  214. C.A. Mirkin, T.A. Taton, Nature 405, 626 (2000)

    Google Scholar 

  215. A.E. Ingalls, К. Whitehead, M.C. Bridoux, Geochim. Cosmochim. Acta 74, 104 (2010)

    Google Scholar 

  216. L.L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998)

    Google Scholar 

  217. T.P. Hoepfner, T.D. Case, Ceram. Int. 29, 699 (2003)

    Google Scholar 

  218. G. Goller, H. Demirkian, F.N. Oktar, E. Demirkesen, Ceram. Int. 29, 721 (2003)

    Google Scholar 

  219. D.J. Belton, O. Deschaume, S.V. Patwardh, C.C. Perry, J. Phys. Chem. B 114, 9947 (2010)

    Google Scholar 

  220. C.F. Conrad, G.A. Icopini, H. Yasuhara, J.Z. Bandstra, S.L. Brantley, P.J. Heaney, Geochim. Cosmochim. Acta 71, 531 (2007)

    Google Scholar 

  221. C. Gröger, K. Lutz, E. Brunner, Cell Biochem. Biophys. 50, 23 (2008)

    Google Scholar 

  222. S.V. Patwardhan, Chem. Commun. 47, 7567 (2011)

    Google Scholar 

  223. J.M. O’Reilly, B.K. Coltrain, Organic/inorganic composite materials, in Polymeric Materials Encyclopedia, ed. by J.C. Salamone (CRC Press, London, 1996), pp. 4772–4781

    Google Scholar 

  224. M. Sumper, Angew. Chem. Int. Ed. 43, 2251 (2004)

    Google Scholar 

  225. V.V. Annenkov, E.N. Danilovtseva, Y.V. Likhoshway, S.V. Patwardhan, C.C. Perry, J. Mater. Chem. 18, 553 (2008)

    Google Scholar 

  226. V.A. Palshin, Synthesis and properties of organosilicone nanoparticles, PhD thesis, IPCP RAS, Chernogolovka, 2012

    Google Scholar 

  227. N. Kröger, R. Deutzmann, M. Sumper, Science 286, 1129 (1999)

    Google Scholar 

  228. N. Kröger, S. Lorenz, E. Brunner, M. Sumper, Science 298, 584 (2002)

    Google Scholar 

  229. E. Brunner, L. Lutz, M. Sumper, Phys. Chem. Chem. Phys. 6, 854 (2004)

    Google Scholar 

  230. S.V. Patwardhan, N. Mukherjee, S.J. Clarson, J. Inorg. Organomet. Polym. 11, 193 (2001)

    Google Scholar 

  231. D. Belton, G. Paine, S.V. Patwardhan, C.C. Perry, J. Mater. Chem. 14, 2231 (2004)

    Google Scholar 

  232. S.V. Patwardhan, S.J. Clarson, C.C. Perry, Chem. Commun. 1113 (2005)

    Google Scholar 

  233. Y.A. Shchipunov, Y.V. Burtseva, T.Y. Karpenko, N.M. Shevchenko, T.N. Zvyagintseva, J. Mol. Catal. B: Enzym. 40, 16 (2006)

    Google Scholar 

  234. M. Starikaya, I.A. Aksay (eds.), Biomimetics (AIP Press, Woodburg, 1995)

    Google Scholar 

  235. R. Gordon, Fed. Proc. 40, 827 (1981)

    Google Scholar 

  236. J. Parkinson, R. Gordon, Trends Biotechnol. 17, 190 (1999)

    Google Scholar 

  237. R. Gordon, D. Losic, M.A. Tiffany, S.S. Nagy, F.A.S. Sterrenburg, Trends Biotechnol. 27, 116 (2009)

    Google Scholar 

  238. R. Gordon, R.W. Drum, Int. Rev. Cyt. 150, 243 (1994)

    Google Scholar 

  239. S. Hazelaar, H.J. van der Strate, W.W.C. Gieskes, E.G. Vrieling, J. Phycol. 41, 354 (2005)

    Google Scholar 

  240. L. Lenoci, P.J. Camp, Langmuir 24, 217 (2008)

    Google Scholar 

  241. S. Wenzl, R. Hett, P. Richthammer, M. Sumper, Angew. Chem. Int. Ed. 47, 1729 (2008)

    Google Scholar 

  242. M. Sumper, S. Lorenz, E. Brunner, Angew. Chem. Int. Ed. 42, 5192 (2003)

    Google Scholar 

  243. K. Tsuru, C. Ohtsuki, A. Osaka, T. Iwamoto, J.D. Mackenzie, J. Mater. Sci.: Mater. Med. 8, 157 (1997)

    Google Scholar 

  244. H.A. Pohl, in Coherent Excitation in Biological Systems, ed. by H. Frolich, F. Kremer (Springer, Heidelberg, 1983)

    Google Scholar 

  245. S. Mann, J. Chеm. Soc. Dalton Trans. 1, 3953 (1993)

    Google Scholar 

  246. S. Mann, S.L. Burkett, S.A. Davis, C.E. Fowler, N.H. Mendelson, S.D. Sims, D. Walsh, N.T. Whilton, Chem. Mater. 9, 2300 (1997)

    Google Scholar 

  247. K. Saha, A. Bajaj, B. Duncan, V.M. Rotello, Small 7, 1903 (2011)

    Google Scholar 

  248. O. Keskin, A. Gursoy, B. Ma, R. Nussinov, Chem. Rev. 108, 1225 (2008)

    Google Scholar 

  249. F. Spyrakis, A. BidonChanal, X. Barril, F.J. Luque, Curr. Top. Med. Chem. 11, 192 (2011)

    Google Scholar 

  250. G. Gorrasi, M. Tortora, V. Vittoria, G. Galli, E. Chiellini, J. Polym. Sci. Polym. Phys. 40, 1118 (2002)

    Google Scholar 

  251. M. Jaber, M. Bouchoucha, L. Delmotte, C. Methivier, J.-F. Lambert, J. Phys. Chem. C 115, 19216 (2011)

    Google Scholar 

  252. J.W. Rhim, S.I. Hong, H.M. Park, P.K.W. Ng, J. Agr. Food. Chem. 54, 5814 (2006)

    Google Scholar 

  253. R. Hema, A.A. Amirul, P.N. Ng, Polym. Bull. 70, 755 (2013)

    Google Scholar 

  254. N.K. Mal, M. Fujiwara, Y. Tanaka, Nature 421, 350 (2003)

    Google Scholar 

  255. N. Jungmann, M. Schmidt, M. Maskos, J. Weis, J. Ebenhoch, Macromolecules 35, 6851 (2002)

    Google Scholar 

  256. Y. Lu, J. McLellan, Y. Xia, Langmuir 20, 3464 (2004)

    Google Scholar 

  257. N. Jungmann, M. Schmidt, J. Ebenhoch, J. Weis, M. Maskos, Ang. Chem. Int. Ed. 42, 1713 (2003)

    Google Scholar 

  258. O. Emmerich, N. Hugenberg, M. Schmidt, S.S. Sheiko, F. Baumann, B. Deubzer, J. Weis, J. Ebenhoch, Adv. Mater. 11, 1299 (1999)

    Google Scholar 

  259. E. Ruiz-Hitzky, P. Aranda, M. Darder, M. Ogawa, Chem. Soc. Rev. 40, 801 (2011)

    Google Scholar 

  260. A.J. Patil, M. Li, E. Dujardin, S. Mann, Nano Lett. 7, 2660 (2007)

    Google Scholar 

  261. A.M. Collins, N.H.M. Kaus, F. Speranza, W.H. Briscoe, D. Rhinow, N. Hampp, S. Mann, J. Mater. Chem. 20, 9037 (2010)

    Google Scholar 

  262. S.S. Ray, Acc. Chem. Res. 45, 1710 (2012)

    Google Scholar 

  263. S. Singh, S. Sinha Ray, J. Nanosci. Nanotechnol. 7, 2596 (2007)

    Google Scholar 

  264. S. Inkinen, M. Hakkarainen, A.-C. Albertsson, A. Sodergad, Biomacromolecules 12, 523 (2011)

    Google Scholar 

  265. J. Ahmed, S.K. Varshney, Int. J. Food Prop. 14, 37 (2010)

    Google Scholar 

  266. R.M. Rasal, A.V. Janorkar, D.E. Hirt, Prog. Polym. Sci. 35, 338 (2010)

    Google Scholar 

  267. S. Joshi, J. Ind. Ecol. 12, 474 (2008)

    Google Scholar 

  268. S. Sinha Ray, K. Yamada, M. Okamoto, A. Fujimoto, A. Ogami, K. Ueda, Polymer 44, 6633 (2003)

    Google Scholar 

  269. S. Sinha Ray, M. Bousmina, Prog. Mater. Sci. 50, 962 (2005)

    Google Scholar 

  270. R.E. Drumright, P.R. Gruber, D.E. Henton, Adv. Mater. 12, 1841 (2000)

    Google Scholar 

  271. L. Avérous, E. Pollet (eds.), Environmental Silicate Nano-Biocomposites, Green Energy and Technology (Springer, London, 2012)

    Google Scholar 

  272. R.A. Hule, D.J. Pochan, MRS Bull. 32, 354 (2007)

    Google Scholar 

  273. N.V. Pogodina, C. Cerclé, L. Avérous, R. Thomann, M. Bouquey, R. Muller, Rheol. Acta. 47, 543 (2008)

    Google Scholar 

  274. Y.J. Fan, H. Nishida, S. Hoshihara, Y. Shirai, Y. Tokiwa, T. Endo, Polym. Degrad. Stab. 79, 547 (2003)

    Google Scholar 

  275. G. Chen, J. Yoon, J. Polym. Sci. Polym. Phys. 43, 478 (2005)

    Google Scholar 

  276. Q. Zhou, M. Xanthos, Polym. Degrad. Stab. 94, 327 (2009)

    Google Scholar 

  277. K. Okamoto, K. Toshima, S. Matsumura, Macromol. Biosci. 5, 813 (2005)

    Google Scholar 

  278. M.A. Paul, M. Alexandre, P. Degee, C. Henrist, A. Rulmont, P. Dubois, Polymer 44, 443 (2003)

    Google Scholar 

  279. S. Marras, I. Zuburtikudis, C. Panayiotou, Eur. Polym. J. 43, 2191 (2007)

    Google Scholar 

  280. K. Fukushima, M. Murariu, G. Camino, P. Dubois, Polym. Degrad. Stab. 95(6), 1063 (2010)

    Google Scholar 

  281. S. Bourbigot, G. Fontaine, Polym. Chem. 1(9), 1413 (2010)

    Google Scholar 

  282. K. Sudesh, H. Abe, Y. Doi, Prog. Polym. Sci. 25, 1503 (2000)

    Google Scholar 

  283. S.Y. Lee, Biotechnol. Bioeng. 49, 1 (1996)

    Google Scholar 

  284. K. Sudesh, T. Iwata, Clean 36, 433 (2008)

    Google Scholar 

  285. X. Wang, Y. Du, J. Yang, X. Wang, X. Shi, Y. Hu, Polymer 47, 6738 (2006)

    Google Scholar 

  286. W. Kim, Q. Zhang, F. Saito, J. Mater. Sci. 35, 5401 (2000)

    Google Scholar 

  287. K.C.B. Yeong, J. Wang, S.C. Ng, Biomaterials 22, 2705 (2001)

    Google Scholar 

  288. S.C. Liou, S.Y. Chen, H.Y. Lee, J.S. Bow, Biomaterials 25, 189 (2004)

    Google Scholar 

  289. I. Yamaguchi, K. Tokuchi, H. Fukuzaki, Y. Koyama, K. Takakuda, H. Monma, J. Tanaka, J. Biomed. Mater. Res. 50, 20 (2001)

    Google Scholar 

  290. S.C. Liou, S.Y. Chen, D.M. Liu, Biomaterials 24, 3981 (2003)

    Google Scholar 

  291. H.-W. Kim, J.C. Knowles, H.-E. Kim, J. Biomed. Mater. Res. B Appl. Biomater. 74, 686 (2005)

    Google Scholar 

  292. X. Zheng, S. Zhou, Y. Xiao, X. Yu, B. Feng, J. Biomed. Mater. Res. B Appl. Biomater. 91, 181 (2009)

    Google Scholar 

  293. S. Nayar, A. Sinha, Colloids Surf. B. 35, 29 (2004)

    Google Scholar 

  294. A. Bigi, B. Bracci, S. Panzavolta, Biomaterials 25, 2893 (2004)

    Google Scholar 

  295. S.-M. Lee, E. Pippel, U. Gösele, C. Dresbach, Y. Qin, C.V. Chandran, T. Bräuniger, M.K.G. Hause, Science 324, 488 (2009)

    Google Scholar 

  296. N.C. Bigall, M. Reitzig, W. Naumann, P. Simon, K.-H. van Pée, A. Eychmüller, Angew. Chem. Int. Ed. 47, 7876 (2008)

    Google Scholar 

  297. S.-C. Liou, S.-Y. Chen, D.-M. Liu, J. Biomed. Mater. Res. B Appl. Biomater. 73, 117 (2005)

    Google Scholar 

  298. M. Jollands, K. Gupta, J. Appl. Polym. Sci. 118, 1489 (2010)

    Google Scholar 

  299. G. Crini, Prog. Polym. Sci. 30, 38 (2005)

    Google Scholar 

  300. S.K. Mallapragada, B. Narasimhan (eds.), Handbook of Biodegradable Polymeric Materials and their Applications (American Scientific Publishers, Ames, 2006)

    Google Scholar 

  301. L. Introzzi, T.O.J. Blomfeldt, S. Trabattoni, S. Tavazzi, N. Santo, A. Schiraldi, L. Piergiovanni, S. Farris, Langmuir 28, 11206 (2012)

    Google Scholar 

  302. I. Siró, D. Plackett, Cellulose 17, 459 (2010)

    Google Scholar 

  303. A.N. Nakagaito, S. Iwamoto, H. Yano, Appl. Phys. A Mater. Sci. Process. 80, 93 (2005)

    Google Scholar 

  304. I. Cherny, E. Gazit, Angew. Chem. Int. Ed. 47, 4062 (2008)

    Google Scholar 

  305. www.mercedesbenz.pt/content/portugal/mpc/mpc_portugal_website/ptng/home_mpc/passengercars/home/passenger_cars_world/environment_portugal/environments/value_chain/natural_fibre.html. Accessed March 2010

  306. A. Zimmer, M.J. Andrade, F.A.L. Sánchez, A.S. Takimi, Use of natural and modified natural nanostructured materials, in Nanostructured Materials for Engineering Applications, ed. by C.P. Bergmann, M.J. Andrade (Springer, Heidelberg, 2011), p. 157

    Google Scholar 

  307. D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Angew. Chem. Int. Ed. 44, 3358 (2005)

    Google Scholar 

  308. A.N. Nakagaito, H. Yano, Appl. Phys. A. 80, 155 (2005)

    Google Scholar 

  309. M.C. Floody, B.K.G. Theng, P. Reyes, M.L. Mora, Clay Miner. 44, 161 (2009)

    Google Scholar 

  310. D. Sánchez-García, A. López-Rubio, J.M. Lagaron, Trends Food Sci. Technol. 21, 528 (2010)

    Google Scholar 

  311. F. Rodriguez, H.M. Sepulveda, J. Bruna, A. Guarda, M.J. Galotto, Packag. Technol. Sci. 26, 149 (2013)

    Google Scholar 

  312. M.M. Meier, L.A. Kanis, J.C.D. Lima, A.T.N. Pires, V. Soldi, Polym. Adv. Technol. 15, 593 (2004)

    Google Scholar 

  313. T. Zhang, W. Wang, D. Zhang, X. Zhang, Y. Ma, Y. Zhou, L. Qi, Adv. Funct. Mater. 20, 1152 (2010)

    Google Scholar 

  314. Y.-L. Chung, H.-M. Lai, Carbohydr. Polym. 80, 525 (2010)

    Google Scholar 

  315. A. Vazquez, V.A. Alvarez, Biodegradable nanocomposites based on starch, PCL and their blends, in Nanocomposites: Preparation, Properties and Performance, ed. by L. Mancini, C. Espósito (Nova Publisher, New York, 2009), pp. 133–164

    Google Scholar 

  316. M. Avella, J.J. De Vlieger, M.E. Errico, S. Fischer, P. Vacca, M.G. Volpe, Food Chem. 93, 467 (2005)

    Google Scholar 

  317. V.P. Cyras, L.B. Manfredi, M.-T. Ton-That, A. Vázquez, Carbohydr. Polym. 73, 55 (2008)

    Google Scholar 

  318. K. Majdzadeh-Ardakani, A.H. Navarchian, F. Sadeghi, Carbohydr. Polym. 79, 547 (2010)

    Google Scholar 

  319. Q.-X. Zhang, Z.-Z. Yu, X.-L. Xie, K. Naito, Y. Kagawa, Polymer 48(24), 7193 (2007)

    Google Scholar 

  320. A.K. Mohanty, M. Misra, L.T. Drzal (eds.), Natural Fibers, Biopolymers, and Biocomposites (CRC Press/Taylor & Francis Group, Boca Raton, 2006), p. 896

    Google Scholar 

  321. A.K. Sugih, Synthesis and Properties of Starch based Biomaterials (University of Groningen, Groningen, 2008), p. 155

    Google Scholar 

  322. B.-S. Chiou, E. Yee, G.M. Glenn, W.J. Orts, Carbohydr. Polym. 59, 467 (2005)

    Google Scholar 

  323. F. Chivrac, E. Pollet, M. Schmutz, L. Avérous, Carbohydr. Polym. 80, 145 (2010)

    Google Scholar 

  324. B. Chen, J.R.G. Evans, Carbohydr. Polym. 61, 455 (2005)

    Google Scholar 

  325. L.N. Luduena, J.M. Kenny, A. Vazquez, V.A. Alvarez, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Proc. 529, 215 (2011)

    Google Scholar 

  326. N.E. Kochkina, V.A. Padokhin, Russ. J. Appl. Chem. 84, 1451 (2011)

    Google Scholar 

  327. L. Chen, T. Wang, J. Tong, Trends Anal. Chem. 30, 1095 (2011)

    Google Scholar 

  328. H. Sun, L. Cao, L. Lu, Nano Res. 4, 550 (2011)

    Google Scholar 

  329. N.A. Travlou, G.Z. Kyzas, N.K. Lazaridis, E.A. Deliyanni, Langmuir 29, 1657 (2013)

    Google Scholar 

  330. M.C. Gutierrez, M.L. Ferrer, P. Tartaj, F. Monte, in Hybrid Nanocomposites for Nanotechnology, ed. by L. Merhari (Springer, New York, 2009), p. 707

    Google Scholar 

  331. C.M. Niemeyer, Angew. Chem. Int. Ed. 40, 128 (2001)

    Google Scholar 

  332. C. Sanchez, P. Gomez-Romero, Functional Hybrid Materials (Wiley, Weinheim, 2004)

    Google Scholar 

  333. G.M. Whitesides, Nat. Biotechnol. 21, 1161 (2004)

    Google Scholar 

  334. K. Katagiri, R. Hamasaki, K. Ariga, J.-I. Kikuchi, J. Am. Chem. Soc. 124, 7892 (2002)

    Google Scholar 

  335. K. Matsui, S. Sando, T. Sera, Y. Aoyama, Y. Sasaki, T. Komatsu, T. Terashima, J.-I. Kikuchi, J. Am. Chem. Soc. 128, 3114 (2006)

    Google Scholar 

  336. D.G. Shchukin, I.L. Radtchenko, G.B. Sukhorukov, Mater. Lett. 57, 1743 (2003)

    Google Scholar 

  337. N. Gaponik, I.L. Radtchenko, G.B. Sukhorukov, H. Weller, A.L. Rogach, Adv. Mater. 14, 879 (2002)

    Google Scholar 

  338. E. Ruiz-Hernandez, A. Lopez-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki, M. Vallet-Regi, Chem. Mater. 19, 3455 (2007)

    Google Scholar 

  339. K. Kostarelos, Adv. Colloid Int. Sci. 106, 147 (2003)

    Google Scholar 

  340. D.A. Lavan, T. McGuire, R. Langer, Nat. Biotechnol. 21, 1184 (2003)

    Google Scholar 

  341. M. Creixell, N.A. Peppas, Nano Today 7, 367 (2012)

    Google Scholar 

  342. M.G. Shapiro, T. Atanasijevic, H. Faas, G.G. Westmeyer, A. Jasanoff, Magn. Reson. Imaging 24, 449 (2006)

    Google Scholar 

  343. S. Svenson, D.A. Tomalia, Adv. Drug Deliv. Rev. 57, 2106 (2005)

    Google Scholar 

  344. P. Tartaj, M.P. Morales, T. Gonzalez-Carreño, S. Veintemillas-Verdaguer, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles, Chapter 5, in Handbook of Magnetic Materials, ed. by K.H.J. Buschow, vol. 16 (Elsevier, Amsterdam, 2006), p. 403

    Google Scholar 

  345. O. Bomati-Miguel, M.P. Morales, P. Tartaj, J. Ruiz-Cabello, P. Bonville, M. Santos, X.Q. Zhao, Biomaterials 26, 5695 (2005)

    Google Scholar 

  346. Z. Li, L. Wei, M. Gao, H. Lei, Adv. Mater. 17, 1001 (2005)

    Google Scholar 

  347. W. Li, Z. Huang, J.A. MacKay, S. Grube, F.C. Szoka Jr., J. Gene Med. 7, 67 (2005)

    Google Scholar 

  348. Y. Jun, Y. Hou, J.S. Choi, J.H. Lee, H.T. Song, S. Kim, S. Yoon, K.S. Kim, J.S. Shin, J.S. Su, J. Cheon, J. Am. Chem. Soc. 127, 5732 (2005)

    Google Scholar 

  349. R.I. Mahato, Adv. Drug Deliv. Rev. 57, 699 (2005)

    Google Scholar 

  350. S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 14, 2161 (2004)

    Google Scholar 

  351. X. Xu, S. Majetich, S. Asher, J. Am. Chem. Soc. 124, 13864 (2002)

    Google Scholar 

  352. S. Lu, J. Forcada, J. Polym. Sci. A Polym. Chem. 44, 4187 (2006)

    Google Scholar 

  353. F. Caruso, M. Spasova, A. Sucha, M. Giersig, R.A. Caruso, Chem. Mater. 13, 109 (2001)

    Google Scholar 

  354. D. Horak, J. Polym. Sci. A Polym. Chem. 39, 3707 (2001)

    Google Scholar 

  355. X. Xu, G. Friedman, K. Humfeld, S. Majetich, S. Asher, Chem. Mater. 14, 1249 (2002)

    Google Scholar 

  356. C. Yang, Y. Guan, J. Xing, H. Liu, Langmuir 24, 9006 (2008)

    Google Scholar 

  357. C. Yang, Y. Guan, J. Xing, H. Liu, J. Polym. Sci. A Polym. Chem. 46, 203 (2008)

    Google Scholar 

  358. H. Lin, Y. Watanabe, M. Kimura, K. Hanabusa, H. Shirai, J. Appl. Polym. Sci. 87, 1239 (2003)

    Google Scholar 

  359. A.H. Lu, E.L. Salabas, F. Schuth, Angew. Chem. Int. Ed. 46, 1222 (2007)

    Google Scholar 

  360. J.P. Jolivet, C. Chaneac, E. Tronc, Chem. Commun. 481 (2004)

    Google Scholar 

  361. N.A. Frey, S. Peng, K. Cheng, S.H. Sun, Chem. Soc. Rev. 38, 2532 (2009)

    Google Scholar 

  362. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008)

    Google Scholar 

  363. R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Ann. Surg. 146, 596 (1957)

    Google Scholar 

  364. S. Biyikli, M.F. Modest, R. Tarr, J. Biomed. Mater. Res. 20, 1335 (1986)

    Google Scholar 

  365. K.L. Reed, T.D. Brown, M.G. Conzemius, J. Biomech. 36, 1317 (2003)

    Google Scholar 

  366. I. Hilger, R. Hergt, W.A. Kaiser, IEE Proc. Nanobiotechnol. 152, 33 (2005)

    Google Scholar 

  367. S. Wada, K. Tazawa, I. Furuta, H. Nagae, Oral Dis. 9, 218 (2003)

    Google Scholar 

  368. A. Ito, M. Shinkai, H. Honda, T. Kobayashi, Cancer Gene Ther. 8, 649 (2001)

    Google Scholar 

  369. H. Gu, K. Xu, Z. Yang, C.K. Chang, B. Xu, Chem. Commun. 4270 (2005)

    Google Scholar 

  370. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607 (1996)

    Google Scholar 

  371. A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez Jr., P.G. Schultz, Nature 382, 609 (1996)

    Google Scholar 

  372. W. Shenton, S.A. Davis, S. Mann, Adv. Mater. 11, 449 (1999)

    Google Scholar 

  373. S. Connolly, D. Fitzmaurice, Adv. Mater. 11, 1202 (1999)

    Google Scholar 

  374. S. Srivastava, A. Verma, B.L. Frankamp, V.M. Rotello, Adv. Mater. 17, 617 (2005)

    Google Scholar 

  375. E. Ruiz-Hitzky, P. Aranda, M. Dardera, G. Rytwo, J. Mater. Chem. 20, 9306 (2010)

    Google Scholar 

  376. L. Ai, C. Zhang, Z. Chen, J. Hazard. Mater. 192, 1515 (2011)

    Google Scholar 

  377. P. Alivisatos, Nat. Biotechnol. 22, 47 (2004)

    Google Scholar 

  378. A.K. Boal, V.M. Rotello, J. Am. Chem. Soc. 12, 4914 (1999)

    Google Scholar 

  379. V. Singh, S. Pandey, S.K. Singh, R. Sanghi, J. Sol-Gel Sci. Technol. 47, 58 (2008)

    Google Scholar 

  380. R.B. Bathia, C.J. Brinker, Chem. Mater. 12, 2434 (2000)

    Google Scholar 

  381. M. Kato, K. Sakai-Kato, N. Matsumoto, T. Toyóoka, Anal. Chem. 74, 1915 (2002)

    Google Scholar 

  382. A. Llobera, V.J. Cadarso, M. Darder, C. Domıґnguez, C. Fernaґndez-Saґnchez, Lab Chip 8, 1185 (2008)

    Google Scholar 

  383. E.J.A. Pope, K. Braun, C.M. Peterson, J. Sol-Gel Sci. Technol. 8, 635 (1997)

    Google Scholar 

  384. J.C. Rooke, A. Leґonard, B.-L. Su, J. Mater. Chem. 18, 1333 (2008)

    Google Scholar 

  385. S. Weiss, M. Tauber, W. Somitsch, R. Meincke, H. Muller, G. Berg, G.M. Guebitz, Water Res. 44, 1970 (2010)

    Google Scholar 

  386. A. Sorrentino, G. Gorrasi, V. Vittoria, Trends Food Sci. Technol. 18, 84 (2007)

    Google Scholar 

  387. J.H. An, S. Dultz, Appl. Clay Sci. 36, 256 (2007)

    Google Scholar 

  388. M. Darder, M. López-Blanco, P. Aranda, A.J. Aznar, J. Bravo, E. Ruiz-Hitzky, Chem. Mater. 18, 1602 (2006)

    Google Scholar 

  389. H.L. Zhu, J.Y. Shen, X.X. Feng, H.P. Zhang, Y.H. Guo, J.Y. Chen, Mater. Sci. Eng. C 30, 132 (2010)

    Google Scholar 

  390. H.J. Bae, H.J. Park, S.I. Hong, Y.J. Byun, D.O. Darby, R.M. Kimmel, W.S. Whiteside, LWT Food Sci. Technol. 42, 1179 (2009)

    Google Scholar 

  391. C. Mousty, S. Cosnier, M. Sanchez-Paniagua Lopez, E. Lopez-Cabarcos, B. Lopez-Ruiz, Electroanalysis 19, 253 (2007)

    Google Scholar 

  392. V. Caballero, F.M. Bautista, J.M. Campelo, D. Luna, J.M. Marinas, A.A. Romero, J.M. Hidalgo, R. Luque, A. Macario, G. Giordano, Process Biochem. 44, 334 (2009)

    Google Scholar 

  393. R. Donat, S. Aytas, J. Radioanal. Nucl. Chem. 265, 107 (2005)

    Google Scholar 

  394. E. Ruiz-Hitzky, M. Darder, P. Aranda, M.A. Martıґn del Burgo, G. del Real, Adv. Mater. 21, 4167 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pomogailo, A.D., Dzhardimalieva, G.I. (2014). Bionanocomposites Assembled by “From Bottom to Top” Method. In: Nanostructured Materials Preparation via Condensation Ways. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2567-8_7

Download citation

Publish with us

Policies and ethics