Skip to main content

Abstract

Oxygen is essential for life yet at the same time has been shown to be a harmful cause of cellular deterioration. To avoid its deleterious effects many intricate cellular mechanisms have evolved to neutralize oxygen reactive metabolites. Every mulitcellular organism needs different types of cells with different energy needs. The level of oxygen consumption and oxidative phosphorylation of each cell type and tissue correspond to its energy needs. Oxidative stress occurs when the production of reactive oxygen species (ROS), a normal product of cellular metabolism, exceeds the ability of the cell to repair the damage caused by ROS. For that purpose, cellular oxygen concentrations are maintained with a narrow “nomoxic” range to circumvent the risk of oxidative damage from excess O2. High levels of ROS can lead to the accumulation of damage to various cellular macromolecules including DNA, protein and lipids. Here we provide a definition for the redox state and oxidative stress. We also describe, in brief, the most prevalent oxygen radicals and non-radicals ROS. Additionally, we depict the antioxidant defense mechanisms. Since oxidative stress is a common denominator of many neurodegenerative diseases we provide information about the vulnerability of the brain to oxidative stress and the effect of ROS on brain aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alom-Ruiz SP, Anilkumar N, Shah AM (2008) Reactive oxygen species and endothelial activation. Antioxid Redox Signal 10:1089–1100.

    Article  PubMed  CAS  Google Scholar 

  2. Ames BN, Shigenaga MK (1992) Oxidants are a major contributor to aging. Ann NY Acad Sci 663:85–96.

    Article  PubMed  CAS  Google Scholar 

  3. Atamna H, Cheung I, Ames BN (2000) A method for detecting abasic sites in living cells: age-dependent changes in base excision repair. Proc Natl Acad Sci USA 97:686–691.

    Article  PubMed  CAS  Google Scholar 

  4. Babior BM (2000) The NADPH oxidase of endothelial cells. IUBMB Life 50:267–269.

    Article  PubMed  CAS  Google Scholar 

  5. Barzilai A, Yamamoto K (2004) DNA damage responses to oxidative stress. DNA Repair (Amst) 3:1109–1115.

    Article  CAS  Google Scholar 

  6. Barzilai A, Biton S, Shiloh Y (2008) The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst) 7:1010–1027.

    Article  CAS  Google Scholar 

  7. Beckman JS, Ischiropoulos H, Zhu L, van der Woerd M, Smith C, Chen J, Harrison J, Martin JC, Tsai M (1992) Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 298:438–445.

    Article  PubMed  CAS  Google Scholar 

  8. Boveris A, Navarro A (2008) Brain mitochondrial dysfunction in aging. IUBMB Life 60:308–314.

    Article  PubMed  CAS  Google Scholar 

  9. Brozmanova J, Dudas A, Henriques JA (2001) Repair of oxidative DNA damage – an important factor reducing cancer risk. Minireview Neoplasma 48:85–93.

    CAS  Google Scholar 

  10. Cadet J, Bourdat AG, D’Ham C, Duarte V, Gasparutto D, Romieu A, Ravanat JL (2000) Oxidative base damage to DNA: specificity of base excision repair enzymes. Mutat Res 462:121–128.

    Article  PubMed  CAS  Google Scholar 

  11. Cao G, Prior RL (1998) Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 44:1309–1315.

    PubMed  CAS  Google Scholar 

  12. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605.

    PubMed  CAS  Google Scholar 

  13. Conger AD, Fairchild LM (1952) Breakage of Chromosomes by Oxygen. Proc Natl Acad Sci USA 38:289–299.

    Article  PubMed  CAS  Google Scholar 

  14. Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289.

    Article  PubMed  CAS  Google Scholar 

  15. Dianov GL, Souza-Pinto N, Nyaga SG, Thybo T, Stevnsner T, Bohr VA (2001) Base excision repair in nuclear and mitochondrial DNA. Prog Nucleic Acid Res Mol Biol 68:285–297.

    Article  PubMed  CAS  Google Scholar 

  16. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32:1102–1115.

    Article  PubMed  CAS  Google Scholar 

  17. Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370.

    Article  PubMed  CAS  Google Scholar 

  18. Elliott RM, Astley SB, Southon S, Archer DB (2000) Measurement of cellular repair activities for oxidative DNA damage. Free Radic Biol Med 28:1438–1446.

    Article  PubMed  CAS  Google Scholar 

  19. Evans PH (1993) Free radicals in brain metabolism and pathology. Br Med Bull 49:577–587.

    PubMed  CAS  Google Scholar 

  20. Gilbert D, (ed.) (1981) Perspective on the history of oxygen and life. New York: Springer Verlag.

    Google Scholar 

  21. Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542.

    PubMed  CAS  Google Scholar 

  22. Griffiths HR (2000) Antioxidants and protein oxidation. Free Radic Res 33 Suppl:S47–58.

    PubMed  CAS  Google Scholar 

  23. Forman HJ, Boveris A (1982) Superoxide radical and hydrogen peroxide in mitochondria, in: WA Pryor (Ed.), Free Radicals in Biology, Vol. V, New York: Academic Press, pp. 65–90.

    Google Scholar 

  24. Halliwell B (1996) Vitamin C: antioxidant or prooxidant in vivo. Free Rad Res 25:439–454.

    Article  CAS  Google Scholar 

  25. Halliwell B (1997) What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett 411:157–160.

    Article  PubMed  CAS  Google Scholar 

  26. Halliwell B GJ (1999) Free Radicals in Biology and Medicine, third edition. Edition. Midsomer Norton, Avon, third edition. Oxford University Press, Oxford.

    Google Scholar 

  27. Halliwell B, Gutteridge, JMC, (1989) Free Radicals in Biology and Medicine Oxford, Clarendon Press, Oxford University Press, Oxford.

    Google Scholar 

  28. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300.

    PubMed  CAS  Google Scholar 

  29. Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128.

    Article  PubMed  CAS  Google Scholar 

  30. Hogg N, Kalyanaraman B (1999) Nitric oxide and lipid peroxidation. Biochim Biophys Acta 1411:378–384.

    Article  PubMed  CAS  Google Scholar 

  31. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966.

    PubMed  CAS  Google Scholar 

  32. Hrbac JKR (2000) Biological redox activity: Its importance, method for its quantification and implication for health and disease. Drug Develop Res 50:516–527.

    Article  CAS  Google Scholar 

  33. Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642.

    Article  PubMed  CAS  Google Scholar 

  34. Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298:431–437.

    Article  PubMed  CAS  Google Scholar 

  35. Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11:1–14.

    Article  PubMed  CAS  Google Scholar 

  36. King PA, Anderson VE, Edwards  JO, Gustafson G, Plumb RC, Sugas JW (1992) A stable solid that generates hydroxyl radical upon dissolution in aqueous solution: reaction with proteins and nucleic acids. J Am Chem Soc 114:5430 –5432.

    Google Scholar 

  37. Kohen R (1999) Skin antioxidants: their role in aging and in oxidative stress–new approaches for their evaluation. Biomed Pharmacother 53:181–192.

    Article  PubMed  CAS  Google Scholar 

  38. Kohen R, Gati I (2000) Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology 148:149–157.

    Article  PubMed  CAS  Google Scholar 

  39. Levine RL, Moskovitz J, Stadtman ER (2000) Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life 50:301–307.

    Article  PubMed  CAS  Google Scholar 

  40. Mates JM, Sanchez-Jimenez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4:D339–345.

    Article  PubMed  CAS  Google Scholar 

  41. Meissner C (2007) Mutations of mitochondrial DNA – cause or consequence of the ageing process? Z Gerontol Geriatr 40:325–333.

    Article  PubMed  CAS  Google Scholar 

  42. Michalik V, Spotheim Maurizot M, Charlier M (1995) Calculation of hydroxyl radical attack on different forms of DNA. J Biomol Struct Dyn 13:565–575.

    PubMed  CAS  Google Scholar 

  43. Moreno JJ, Pryor WA (1992) Inactivation of alpha 1-proteinase inhibitor by peroxynitrite. Chem Res Toxicol 5:425–431.

    Article  PubMed  CAS  Google Scholar 

  44. Morrison JH, Hof PR (2002) Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer’s disease. Prog Brain Res 136:467–486.

    Article  PubMed  CAS  Google Scholar 

  45. Nohl H, Hegner D (1978) Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 82:563–567.

    Article  PubMed  CAS  Google Scholar 

  46. Offord E, van Poppel G, Tyrrell R (2000) Markers of oxidative damage and antioxidant protection: current status and relevance to disease. Free Radic Res 33 Suppl:S5-19.

    PubMed  CAS  Google Scholar 

  47. Packer MA, Murphy MP (1994) Peroxynitrite causes calcium efflux from mitochondria which is prevented by Cyclosporin A. FEBS Lett 345:237–240.

    Article  PubMed  CAS  Google Scholar 

  48. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526.

    Article  PubMed  CAS  Google Scholar 

  49. Porwol T, Ehleben W, Brand V, Acker H (2001) Tissue oxygen sensor function of NADPH oxidase isoforms, an unusual cytochrome aa3 and reactive oxygen species. Respir Physiol 128:331–348.

    Article  PubMed  CAS  Google Scholar 

  50. Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27:1173–1181.

    Article  PubMed  CAS  Google Scholar 

  51. Radi R, Beckman JS, Bush KM, Freeman BA (1991a) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487.

    Article  PubMed  CAS  Google Scholar 

  52. Radi R, Beckman JS, Bush KM, Freeman BA (1991b) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250.

    PubMed  CAS  Google Scholar 

  53. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95.

    Article  PubMed  CAS  Google Scholar 

  54. Reiter RJ (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 9:526–533.

    PubMed  CAS  Google Scholar 

  55. Reynolds A, Laurie C, Mosley RL, Gendelman HE (2007) Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 82:297–325.

    Article  PubMed  CAS  Google Scholar 

  56. Roy S, Khanna S, Wallace WA, Lappalainen J, Rink C, Cardounel AJ, Zweier JL, Sen CK (2003) Characterization of perceived hyperoxia in isolated primary cardiac fibroblasts and in the reoxygenated heart. J Biol Chem 278:47129–47135.

    Article  PubMed  CAS  Google Scholar 

  57. Rutten BP, Korr H, Steinbusch HW, Schmitz C (2003) The aging brain: less neurons could be better. Mech Ageing Dev 124:349–355.

    Article  PubMed  Google Scholar 

  58. Samuni A, Aronovitch J, Godinger D, Chevion M, Czapski G (1983) On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism. Eur J Biochem 137:119–124.

    Article  PubMed  CAS  Google Scholar 

  59. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212.

    Article  PubMed  CAS  Google Scholar 

  60. Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3.

    Article  PubMed  CAS  Google Scholar 

  61. Sen CK (2001) Antioxidant and redox regulation of cellular signaling: introduction. Med Sci Sports Exerc 33:368–370.

    Article  PubMed  CAS  Google Scholar 

  62. Shapiro M (1972) Redox balance in the body: An approach to quantification. J Surg Res 3:138–152.

    Article  Google Scholar 

  63. Shohami E, Beit-Yannai E, Horowitz M, Kohen R (1997) Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cereb Blood Flow Metab 17:1007–1019.

    Article  PubMed  CAS  Google Scholar 

  64. Slemmer JE, Shacka JJ, Sweeney MI, Weber JT (2008) Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 15:404–414.

    Article  PubMed  CAS  Google Scholar 

  65. Sohal RS (1997) Mitochondria generate superoxide anion radicals and hydrogen peroxide. FASEB J 11:1269–1270.

    PubMed  CAS  Google Scholar 

  66. Streit WJ, Miller KR, Lopes KO, Njie E (2008) Microglial degeneration in the aging brain–bad news for neurons? Front Biosci 13:3423–3438.

    Article  PubMed  CAS  Google Scholar 

  67. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374.

    Article  PubMed  CAS  Google Scholar 

  68. Viveros MP, Arranz L, Hernanz A, Miquel J, De la Fuente M (2007) A model of premature aging in mice based on altered stress-related behavioral response and immunosenescence. Neuroimmunomodulation 14:157–162.

    Article  PubMed  CAS  Google Scholar 

  69. Watson B (1993) Evaluation of the concomitance of lipid peroxidation in experimental models of cerebral ischemia and stroke. Elsevier Science Publishers, B.V., Amsterdam.

    Google Scholar 

  70. Wells WW, Yang Y, Deits TL, Gan ZR (1993) Thioltransferases. Adv Enzymol Relat Areas Mol Biol 66:149–201.

    PubMed  CAS  Google Scholar 

  71. Yamasaki I, Piette LH (1991) EPR spin trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide. J Am Chem Soc 113:7588–7593.

    Article  Google Scholar 

  72. Haber F, Weiss, J, (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London 147:332–351.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Barzilai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dar, I., Barzilai, A. (2009). Cellular Responses to Oxidative Stress. In: Khanna, K., Shiloh, Y. (eds) The DNA Damage Response: Implications on Cancer Formation and Treatment. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2561-6_4

Download citation

Publish with us

Policies and ethics