Single-Stranded DNA Binding Proteins Involved in Genome Maintenance

  • Derek J. Richard
  • Kum Kum KhannaEmail author


The Single Stranded DNA Binding (SSB) family of proteins are ubiquitous to life. Structurally they are characterised by their oligonucleotide oligosaccharide-binding fold (OB fold), which binds to the single stranded DNA (ssDNA) substrate. Functionally they act in a number of cellular processes where ssDNA is exposed, such as DNA replication and DNA repair. They act by binding the exposed ssDNA, protecting it from nucleolytic degradation and attack from reactive chemical species. SSBs also function to stop the formation of secondary structures, prevent DNA re-annealing until appropriate and in the recruitment of protein partners. In humans two structurally distinct classes of SSBs exist. Replication Protein A (RPA), is a heterotrimeric polypeptide, widely believed to be a central component of both DNA replication and DNA repair pathways. Mammalian cells have long been thought to rely exclusively on one SSB, RPA, to perform repair function, however recent discovery of two other members of the SSB family in humans (hSSB1 and hSSB2) challenges many of the established models of DNA transactions involving ssDNA. Theses proteins are much more closely related to the bacterial and archaeal SSB families than RPA. hSSB1 has recently being described to have a central function in the repair of double strand DNA breaks (DSB) by homology directed repair (HDR). Unlike RPA however, hSSB1 appears to be dispensable for normal DNA replication. This chapter aims primarily to review the function of RPA in the DNA DSB repair process. It will also examine to some degree the implications of the recent discovery of hSSB1 and hSSB2 as well as look at the potential of these proteins as anticancer therapeutic targets.


SSB DNA RPA ATM Replication Repair 


  1. 1.
    Anantha, R.W., E. Sokolova, and J.A. Borowiec. 2008. RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage. Proc Natl Acad Sci USA. 105:12903–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson, D.G., and S.C. Kowalczykowski. 1997. The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes Dev. 11:571–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Andrews, B.J., and J.J. Turchi. 2004. Development of a high-throughput screen for inhibitors of replication protein A and its role in nucleotide excision repair. Mol Cancer Ther. 3:385–91.PubMedGoogle Scholar
  4. 4.
    Arad, G., A. Hendel, C. Urbanke, U. Curth, and Z. Livneh. 2008. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem. 283:8274–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Ariza, R.R., S.M. Keyse, J.G. Moggs, and R.D. Wood. 1996. Reversible protein phosphorylation modulates nucleotide excision repair of damaged DNA by human cell extracts. Nucleic Acids Res. 24:433–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Arunkumar, A.I., M.E. Stauffer, E. Bochkareva, A. Bochkarev, and W.J. Chazin. 2003. Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains. J Biol Chem. 278:41077–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Arunkumar, A.I., V. Klimovich, X. Jiang, R.D. Ott, L. Mizoue, E. Fanning, and W.J. Chazin. 2005. Insights into hRPA32 C-terminal domain – mediated assembly of the simian virus 40 replisome. Nat Struct Mol Biol. 12:332–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Ball, H.L., J.S. Myers, and D. Cortez. 2005. ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol Biol Cell. 16:2372–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Binz, S.K., A.M. Sheehan, and M.S. Wold. 2004. Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst). 3:1015–24.CrossRefGoogle Scholar
  10. 10.
    Bishop, D.K., U. Ear, A. Bhattacharyya, C. Calderone, M. Beckett, R.R. Weichselbaum, and A. Shinohara. 1998. Xrcc3 is required for assembly of Rad51 complexes in vivo. J Biol Chem. 273:21482–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Blackwell, L.J., J.A. Borowiec, and I.A. Masrangelo. 1996. Single-stranded-DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol Cell Biol. 16:4798–807.PubMedGoogle Scholar
  12. 12.
    Block, W.D., Y. Yu, and S.P. Lees-Miller. 2004. Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21. Nucleic Acids Res. 32:997–1005.PubMedCrossRefGoogle Scholar
  13. 13.
    Bochkarev, A., and E. Bochkareva. 2004. From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol. 14:36–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Bochkareva, E., L. Kaustov, A. Ayed, G.S. Yi, Y. Lu, A. Pineda-Lucena, J.C. Liao, A.L. Okorokov, J. Milner, C.H. Arrowsmith, and A. Bochkarev. 2005. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci USA. 102:15412–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Bochkareva, E., S. Korolev, S.P. Lees-Miller, and A. Bochkarev. 2002. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. Embo J. 21:1855–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Bork, P., N. Blomberg, and M. Nilges. 1996. Internal repeats in the BRCA2 protein sequence. Nat Genet. 13:22–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Butland, G., J.M. Peregrin-Alvarez, J. Li, W. Yang, X. Yang, V. Canadien, A. Starostine, D. Richards, B. Beattie, N. Krogan, M. Davey, J. Parkinson, J. Greenblatt, and A. Emili. 2005. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 433:531–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Cahill, D., B. Connor, and J.P. Carney. 2006. Mechanisms of eukaryotic DNA double strand break repair. Front Biosci. 11:1958–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Carty, M.P., M. Zernik-Kobak, S. McGrath, and K. Dixon. 1994. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein. Embo J. 13:2114–23.PubMedGoogle Scholar
  20. 20.
    Caspari, T., J.M. Murray, and A.M. Carr. 2002. Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III. Genes Dev. 16:1195–208.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen, C., K. Umezu, and R.D. Kolodner. 1998. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell. 2:9–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen, C., and R.D. Kolodner. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet. 23:81–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen, L., C.J. Nievera, A.Y. Lee, and X. Wu. 2008. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem. 283:7713–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen, P.L., C.F. Chen, Y. Chen, J. Xiao, Z.D. Sharp, and W.H. Lee. 1998b. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci USA. 95:5287–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Cheong, N., X. Wang, Y. Wang, and G. Iliakis. 1994. Loss of S-phase-dependent radioresistance in irs-1 cells exposed to X-rays. Mutat Res. 314:77–85.PubMedGoogle Scholar
  26. 26.
    Choudhary, S.K., and R. Li. 2002. BRCA1 modulates ionizing radiation-induced nuclear focus formation by the replication protein A p34 subunit. J Cell Biochem. 84:666–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Davis, A.P., and L.S. Symington. 2003. The Rad52-Rad59 complex interacts with Rad51 and replication protein A. DNA Repair (Amst). 2:1127–34.CrossRefGoogle Scholar
  28. 28.
    de Jager, M., J. van Noort, D.C. van Gent, C. Dekker, R. Kanaar, and C. Wyman. 2001. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell. 8:1129–35.PubMedCrossRefGoogle Scholar
  29. 29.
    de Laat, W.L., E. Appeldoorn, K. Sugasawa, E. Weterings, N.G. Jaspers, and J.H. Hoeijmakers. 1998. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 12:2598–609.PubMedCrossRefGoogle Scholar
  30. 30.
    Dean, F.B., P. Bullock, Y. Murakami, C.R. Wobbe, L. Weissbach, and J. Hurwitz. 1987. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc Natl Acad Sci USA. 84:16–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Din, S., S.J. Brill, M.P. Fairman, and B. Stillman. 1990. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4:968–77.PubMedCrossRefGoogle Scholar
  32. 32.
    Dutta, A., J.M. Ruppert, J.C. Aster, and E. Winchester. 1993. Inhibition of DNA replication factor RPA by p 53. Nature. 365:79–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Dutta, A., and B. Stillman. 1992. cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. Embo J. 11:2189–99.PubMedGoogle Scholar
  34. 34.
    Fairman, M.P., and B. Stillman. 1988. Cellular factors required for multiple stages of SV40 DNA replication in vitro. Embo J. 7:1211–8.PubMedGoogle Scholar
  35. 35.
    Fang, F., and J.W. Newport. 1993. Distinct roles of cdk2 and cdc2 in RP-A phosphorylation during the cell cycle. J Cell Sci. 106 (Pt 3):983–94.PubMedGoogle Scholar
  36. 36.
    Ferreira, M.G., and J.P. Cooper. 2001. The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol Cell. 7:55–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Godthelp, B.C., F. Artwert, H. Joenje, and M.Z. Zdzienicka. 2002. Impaired DNA damage-induced nuclear Rad51 foci formation uniquely characterizes Fanconi anemia group D 1. Oncogene. 21:5002–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Gomes, X.V., L.A. Henricksen, and M.S. Wold. 1996. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry. 35:5586–95.PubMedCrossRefGoogle Scholar
  39. 39.
    Han, E.S., D.L. Cooper, N.S. Persky, V.A. Sutera, Jr., R.D. Whitaker, M.L. Montello, and S.T. Lovett. 2006. RecJ exonuclease: substrates, products and interaction with SSB. Nucleic Acids Res. 34:1084–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Handa, P., N. Acharya, and U. Varshney. 2001. Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem. 276:16992–7.PubMedCrossRefGoogle Scholar
  41. 41.
    He, Z., B.T. Brinton, J. Greenblatt, J.A. Hassell, and C.J. Ingles. 1993. The transactivator proteins VP16 and GAL4 bind replication factor A. Cell. 73:1223–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Iftode, C., and J.A. Borowiec. 2000. 5' ➜ 3' molecular polarity of human replication protein A (hRPA) binding to pseudo-origin DNA substrates. Biochemistry. 39:11970–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Iftode, C., Y. Daniely, and J.A. Borowiec. 1999. Replication protein A (RPA): the eukaryotic SSB. Crit Rev Biochem Mol Biol. 34:141–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Ira, G., A. Pellicioli, A. Balijja, X. Wang, S. Fiorani, W. Carotenuto, G. Liberi, D. Bressan, L. Wan, N.M. Hollingsworth, J.E. Haber, and M. Foiani. 2004. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature. 431:1011–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Jackson, D., K. Dhar, J.K. Wahl, M.S. Wold, and G.E. Borgstahl. 2002. Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA. J Mol Biol. 321:133–48.PubMedCrossRefGoogle Scholar
  46. 46.
    Jazayeri, A., J. Falck, C. Lukas, J. Bartek, G.C. Smith, J. Lukas, and S.P. Jackson. 2006. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol. 8:37–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Kelman, Z., A. Yuzhakov, J. Andjelkovic, and M. O’Donnell. 1998. Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. Embo J. 17:2436–49.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim, C., B.F. Paulus, and M.S. Wold. 1994. Interactions of human replication protein A with oligonucleotides. Biochemistry. 33:14197–206.PubMedCrossRefGoogle Scholar
  49. 49.
    Kim, C., R.O. Snyder, and M.S. Wold. 1992. Binding properties of replication protein A from human and yeast cells. Mol Cell Biol. 12:3050–9.PubMedGoogle Scholar
  50. 50.
    Kim, C., and M.S. Wold. 1995. Recombinant human replication protein A binds to polynucleotides with low cooperativity. Biochemistry. 34:2058–64.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim, D.K., E. Stigger, and S.H. Lee. 1996. Role of the 70-kDa subunit of human replication protein A (I). Single-stranded dna binding activity, but not polymerase stimulatory activity, is required for DNA replication. J Biol Chem. 271:15124–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim, J.S., T.B. Krasieva, H. Kurumizaka, D.J. Chen, A.M. Taylor, and K. Yokomori. 2005. Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J Cell Biol. 170:341–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Kolpashchikov, D.M., S.N. Khodyreva, D.Y. Khlimankov, M.S. Wold, A. Favre, and O.I. Lavrik. 2001. Polarity of human replication protein A binding to DNA. Nucleic Acids Res. 29:373–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Krejci, L., S. Van Komen, Y. Li, J. Villemain, M.S. Reddy, H. Klein, T. Ellenberger, and P. Sung. 2003. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature. 423:305–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Krogh, B.O., and L.S. Symington. 2004. Recombination proteins in yeast. Annu Rev Genet. 38:233–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Kumagai, A., S.M. Kim, and W.G. Dunphy. 2004. Claspin and the activated form of ATR-ATRIP collaborate in the activation of Chk1. J Biol Chem. 279:49599–608.PubMedCrossRefGoogle Scholar
  57. 57.
    Lecointe, F., C. Serena, M. Velten, A. Costes, S. McGovern, J.C. Meile, J. Errington, S.D. Ehrlich, P. Noirot, and P. Polard. 2007. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. Embo J. 26:4239–51.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee, J., A. Kumagai, and W.G. Dunphy. 2003. Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol Cell. 11:329–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Li, R., and M.R. Botchan. 1993. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell. 73:1207–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Lin, S.Y., K. Li, G.S. Stewart, and S.J. Elledge. 2004. Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation. Proc Natl Acad Sci USA. 101:6484–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Lisby, M., J.H. Barlow, R.C. Burgess, and R. Rothstein. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell. 118:699–713.PubMedCrossRefGoogle Scholar
  62. 62.
    Liskay, R.M., A. Letsou, and J.L. Stachelek. 1987. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics. 115:161–7.PubMedGoogle Scholar
  63. 63.
    Liu, J.S., S.R. Kuo, M.M. McHugh, T.A. Beerman, and T. Melendy. 2000. Adozelesin triggers DNA damage response pathways and arrests SV40 DNA replication through replication protein A inactivation. J Biol Chem. 275:1391–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu, V.F., and D.T. Weaver. 1993. The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells. Mol Cell Biol. 13:7222–31.PubMedGoogle Scholar
  65. 65.
    Liu, Y., Z. Yang, C.D. Utzat, Y. Liu, N.E. Geacintov, A.K. Basu, and Y. Zou. 2005. Interactions of human replication protein A with single-stranded DNA adducts. Biochem J. 385:519–26.PubMedCrossRefGoogle Scholar
  66. 66.
    Lohman, T.M., and M.E. Ferrari. 1994. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem. 63:527–70.PubMedCrossRefGoogle Scholar
  67. 67.
    McIlwraith, M.J., E. Van Dyck, J.Y. Masson, A.Z. Stasiak, A. Stasiak, and S.C. West. 2000. Reconstitution of the strand invasion step of double-strand break repair using human Rad51 Rad52 and RPA proteins. J Mol Biol. 304:151–64.PubMedCrossRefGoogle Scholar
  68. 68.
    Mer, G., A. Bochkarev, R. Gupta, E. Bochkareva, L. Frappier, C.J. Ingles, A.M. Edwards, and W.J. Chazin. 2000. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell. 103:449–56.PubMedCrossRefGoogle Scholar
  69. 69.
    Meyer, R.R., and P.S. Laine. 1990. The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev. 54:342–80.PubMedGoogle Scholar
  70. 70.
    Michel, B., G. Grompone, M.J. Flores, and V. Bidnenko. 2004. Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA. 101:12783–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Mijakovic, I., D. Petranovic, B. Macek, T. Cepo, M. Mann, J. Davies, P.R. Jensen, and D. Vujaklija. 2006. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. 34:1588–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Milne, G.T., and D.T. Weaver. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7:1755–65.PubMedCrossRefGoogle Scholar
  73. 73.
    Molineux, I.J., and M.L. Gefter. 1974. Properties of the Escherichia coli in DNA binding (unwinding) protein: interaction with DNA polymerase and DNA. Proc Natl Acad Sci USA. 71:3858–62.PubMedCrossRefGoogle Scholar
  74. 74.
    Myers, J.S., and D. Cortez. 2006. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem. 281:9346–50.PubMedCrossRefGoogle Scholar
  75. 75.
    Namiki, Y., and L. Zou. 2006. ATRIP associates with replication protein A-coated ssDNA through multiple interactions. Proc Natl Acad Sci USA. 103:580–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Niu, H., H. Erdjument-Bromage, Z.Q. Pan, S.H. Lee, P. Tempst, and J. Hurwitz. 1997. Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro. J Biol Chem. 272:12634–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Nuss, J.E., S.M. Patrick, G.G. Oakley, G.M. Alter, J.G. Robison, K. Dixon, and J.J. Turchi. 2005. DNA damage induced hyperphosphorylation of replication protein A. 1. Identification of novel sites of phosphorylation in response to DNA damage. Biochemistry. 44:8428–37.PubMedCrossRefGoogle Scholar
  78. 78.
    Oakley, G.G., S.M. Patrick, J. Yao, M.P. Carty, J.J. Turchi, and K. Dixon. 2003. RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions. Biochemistry. 42:3255–64.PubMedCrossRefGoogle Scholar
  79. 79.
    Pan, Z.Q., A.A. Amin, E. Gibbs, H. Niu, and J. Hurwitz. 1994. Phosphorylation of the p34 subunit of human single-stranded-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent protein kinase. Proc Natl Acad Sci USA. 91:8343–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Pan, Z.Q., C.H. Park, A.A. Amin, J. Hurwitz, and A. Sancar. 1995. Phosphorylated and unphosphorylated forms of human single-stranded DNA-binding protein are equally active in simian virus 40 DNA replication and in nucleotide excision repair. Proc Natl Acad Sci USA. 92:4636–40.PubMedCrossRefGoogle Scholar
  81. 81.
    Paques, F., and J.E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 63:349–404.PubMedGoogle Scholar
  82. 82.
    Park, J.S., M. Wang, S.J. Park, and S.H. Lee. 1999. Zinc finger of replication protein A, a non-DNA binding element, regulates its DNA binding activity through redox. J Biol Chem. 274:29075–80.PubMedCrossRefGoogle Scholar
  83. 83.
    Parrilla-Castellar, E.R., and L.M. Karnitz. 2003. Cut5 is required for the binding of Atr and DNA polymerase alpha to genotoxin-damaged chromatin. J Biol Chem. 278:45507–11.PubMedCrossRefGoogle Scholar
  84. 84.
    Patrick, S.M., G.G. Oakley, K. Dixon, and J.J. Turchi. 2005. DNA damage induced hyperphosphorylation of replication protein A. 2. Characterization of DNA binding activity, protein interactions, and activity in DNA replication and repair. Biochemistry. 44:8438–48.PubMedCrossRefGoogle Scholar
  85. 85.
    Pestryakov, P.E., D.Y. Khlimankov, E. Bochkareva, A. Bochkarev, and O.I. Lavrik. 2004. Human replication protein A (RPA) binds a primer-template junction in the absence of its major ssDNA-binding domains. Nucleic Acids Res. 32:1894–903.PubMedCrossRefGoogle Scholar
  86. 86.
    Raghunathan, S., A.G. Kozlov, T.M. Lohman, and G. Waksman. 2000. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol. 7:648–52.PubMedCrossRefGoogle Scholar
  87. 87.
    Raghunathan, S., C.S. Ricard, T.M. Lohman, and G. Waksman. 1997. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proc Natl Acad Sci USA. 94:6652–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Richard, D.J., E. Bolderson, L. Cubeddu, R.I. Wadsworth, K. Savage, G.G. Sharma, M.L. Nicolette, S. Tsvetanov, M.J. McIlwraith, R.K. Pandita, S. Takeda, R.T. Hay, J. Gautier, S.C. West, T.T. Paull, T.K. Pandita, M.F. White, and K.K. Khanna. 2008. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature. 453:677–81.PubMedCrossRefGoogle Scholar
  89. 89.
    Robison, J.G., J. Elliott, K. Dixon, and G.G. Oakley. 2004. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks. J Biol Chem. 279:34802–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Rothkamm, K., I. Kruger, L.H. Thompson, and M. Lobrich. 2003. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 23:5706–15.PubMedCrossRefGoogle Scholar
  91. 91.
    Rubnitz, J., and S. Subramani. 1984. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol. 4:2253–8.PubMedGoogle Scholar
  92. 92.
    Sakasai, R., K. Shinohe, Y. Ichijima, N. Okita, A. Shibata, K. Asahina, and H. Teraoka. 2006. Differential involvement of phosphatidylinositol 3-kinase-related protein kinases in hyperphosphorylation of replication protein A2 in response to replication-mediated DNA double-strand breaks. Genes Cells. 11:237–46.PubMedCrossRefGoogle Scholar
  93. 93.
    Sartori, A.A., C. Lukas, J. Coates, M. Mistrik, S. Fu, J. Bartek, R. Baer, J. Lukas, and S.P. Jackson. 2007. Human CtIP promotes DNA end resection. Nature. 450:509–14.PubMedCrossRefGoogle Scholar
  94. 94.
    Shen, Z., K.G. Cloud, D.J. Chen, and M.S. Park. 1996. Specific interactions between the human RAD51 and RAD52 proteins. J Biol Chem. 271:148–52.PubMedCrossRefGoogle Scholar
  95. 95.
    Shereda, R.D., D.A. Bernstein, and J.L. Keck. 2007. A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem. 282:19247–58.PubMedCrossRefGoogle Scholar
  96. 96.
    Shroff, R., A. Arbel-Eden, D. Pilch, G. Ira, W.M. Bonner, J.H. Petrini, J.E. Haber, and M. Lichten. 2004. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol. 14:1703–11.PubMedCrossRefGoogle Scholar
  97. 97.
    Sigurdsson, S., S. Van Komen, W. Bussen, D. Schild, J.S. Albala, and P. Sung. 2001. Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev. 15:3308–18.PubMedCrossRefGoogle Scholar
  98. 98.
    Slocum, S.L., J.A. Buss, Y. Kimura, and P.R. Bianco. 2007. Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA. J Mol Biol. 367:647–64.PubMedCrossRefGoogle Scholar
  99. 99.
    Song, B., and P. Sung. 2000. Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J Biol Chem. 275:15895–904.PubMedCrossRefGoogle Scholar
  100. 100.
    Sonoda, E., H. Hochegger, A. Saberi, Y. Taniguchi, and S. Takeda. 2006. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst). 5:1021–9.CrossRefGoogle Scholar
  101. 101.
    Stauffer, M.E., and W.J. Chazin. 2004. Physical interaction between replication protein A and Rad51 promotes exchange on single-stranded DNA. J Biol Chem. 279:25638–45.PubMedCrossRefGoogle Scholar
  102. 102.
    Stracker, T.H., J.W. Theunissen, M. Morales, and J.H. Petrini. 2004. The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst). 3:845–54.CrossRefGoogle Scholar
  103. 103.
    Sugiyama, T., and S.C. Kowalczykowski. 2002. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem. 277:31663–72.PubMedCrossRefGoogle Scholar
  104. 104.
    Sugiyama, T., E.M. Zaitseva, and S.C. Kowalczykowski. 1997. A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J Biol Chem. 272:7940–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Sung, P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem. 272:28194–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Sung, P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11:1111–21.PubMedCrossRefGoogle Scholar
  107. 107.
    Symington, L.S. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev. 66:630–70, table of contents.PubMedCrossRefGoogle Scholar
  108. 108.
    Takata, M., M.S. Sasaki, E. Sonoda, C. Morrison, M. Hashimoto, H. Utsumi, Y. Yamaguchi-Iwai, A. Shinohara, and S. Takeda. 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. Embo J. 17:5497–508.PubMedCrossRefGoogle Scholar
  109. 109.
    Umezu, K., N.W. Chi, and R.D. Kolodner. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci USA. 90:3875–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Vassin, V.M., M.S. Wold, and J.A. Borowiec. 2004. Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol. 24:1930–43.PubMedCrossRefGoogle Scholar
  111. 111.
    Wang, Y., C.D. Putnam, M.F. Kane, W. Zhang, L. Edelmann, R. Russell, D.V. Carrion, L. Chin, R. Kucherlapati, R.D. Kolodner, and W. Edelmann. 2005. Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet. 37:750–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang, Y., X.Y. Zhou, H. Wang, M.S. Huq, and G. Iliakis. 1999. Roles of replication protein A and DNA-dependent protein kinase in the regulation of DNA replication following DNA damage. J Biol Chem. 274:22060–4.PubMedCrossRefGoogle Scholar
  113. 113.
    Witte, G., C. Urbanke, and U. Curth. 2003. DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids Res. 31:4434–40.PubMedCrossRefGoogle Scholar
  114. 114.
    Wobbe, C.R., L. Weissbach, J.A. Borowiec, F.B. Dean, Y. Murakami, P. Bullock, and J. Hurwitz. 1987. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc Natl Acad Sci USA. 84:1834–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Wold, M.S., D.H. Weinberg, D.M. Virshup, J.J. Li, and T.J. Kelly. 1989. Identification of cellular proteins required for simian virus 40 DNA replication. J Biol Chem. 264:2801–9.PubMedGoogle Scholar
  116. 116.
    Wold, M.S., and T. Kelly. 1988. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA. 85:2523–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Wong, A.K., R. Pero, P.A. Ormonde, S.V. Tavtigian, and P.L. Bartel. 1997. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem. 272:31941–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Wong, J.M., D. Ionescu, and C.J. Ingles. 2003. Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2. Oncogene. 22:28–33.PubMedCrossRefGoogle Scholar
  119. 119.
    Wu, X., Z. Yang, Y. Liu, and Y. Zou. 2005. Preferential localization of hyperphosphorylated replication protein A to double-strand break repair and checkpoint complexes upon DNA damage. Biochem J. 391:473–80.PubMedCrossRefGoogle Scholar
  120. 120.
    Wyka, I.M., K. Dhar, S.K. Binz, and M.S. Wold. 2003. Replication protein A interactions with DNA: differential binding of the core domains and analysis of the DNA interaction surface. Biochemistry. 42:12909–18.PubMedCrossRefGoogle Scholar
  121. 121.
    Yang, H., P.D. Jeffrey, J. Miller, E. Kinnucan, Y. Sun, N.H. Thoma, N. Zheng, P.L. Chen, W.H. Lee, and N.P. Pavletich. 2002. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. 297:1837–48.PubMedCrossRefGoogle Scholar
  122. 122.
    Yoo, E., B.U. Kim, S.Y. Lee, C.H. Cho, J.H. Chung, and C.H. Lee. 2005. 53BP1 is associated with replication protein A and is required for RPA2 hyperphosphorylation following DNA damage. Oncogene. 24:5423–30.PubMedCrossRefGoogle Scholar
  123. 123.
    Yuan, S.S., S.Y. Lee, G. Chen, M. Song, G.E. Tomlinson, and E.Y. Lee. 1999. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 59:3547–51.PubMedGoogle Scholar
  124. 124.
    Yuzhakov, A., Z. Kelman, and M. O’Donnell. 1999. Trading places on DNA – a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell. 96:153–63.PubMedCrossRefGoogle Scholar
  125. 125.
    Zernik-Kobak, M., K. Vasunia, M. Connelly, C.W. Anderson, and K. Dixon. 1997. Sites of UV-induced phosphorylation of the p34 subunit of replication protein A from HeLa cells. J Biol Chem. 272:23896–904.PubMedCrossRefGoogle Scholar
  126. 126.
    Zou, L., and S.J. Elledge. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 300:1542–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Cancer and Cell Biology DivisionThe Queensland Institute of Medical ResearchHerstonAustralia
  2. 2.Cancer and Cell Biology Division, Signal Transduction LaboratoryThe Queensland Institute of Medical ResearchBrisbaneAustralia

Personalised recommendations