Skip to main content

Single-Stranded DNA Binding Proteins Involved in Genome Maintenance

  • Chapter
  • First Online:
The DNA Damage Response: Implications on Cancer Formation and Treatment

Abstract

The Single Stranded DNA Binding (SSB) family of proteins are ubiquitous to life. Structurally they are characterised by their oligonucleotide oligosaccharide-binding fold (OB fold), which binds to the single stranded DNA (ssDNA) substrate. Functionally they act in a number of cellular processes where ssDNA is exposed, such as DNA replication and DNA repair. They act by binding the exposed ssDNA, protecting it from nucleolytic degradation and attack from reactive chemical species. SSBs also function to stop the formation of secondary structures, prevent DNA re-annealing until appropriate and in the recruitment of protein partners. In humans two structurally distinct classes of SSBs exist. Replication Protein A (RPA), is a heterotrimeric polypeptide, widely believed to be a central component of both DNA replication and DNA repair pathways. Mammalian cells have long been thought to rely exclusively on one SSB, RPA, to perform repair function, however recent discovery of two other members of the SSB family in humans (hSSB1 and hSSB2) challenges many of the established models of DNA transactions involving ssDNA. Theses proteins are much more closely related to the bacterial and archaeal SSB families than RPA. hSSB1 has recently being described to have a central function in the repair of double strand DNA breaks (DSB) by homology directed repair (HDR). Unlike RPA however, hSSB1 appears to be dispensable for normal DNA replication. This chapter aims primarily to review the function of RPA in the DNA DSB repair process. It will also examine to some degree the implications of the recent discovery of hSSB1 and hSSB2 as well as look at the potential of these proteins as anticancer therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anantha, R.W., E. Sokolova, and J.A. Borowiec. 2008. RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage. Proc Natl Acad Sci USA. 105:12903–8.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, D.G., and S.C. Kowalczykowski. 1997. The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes Dev. 11:571–81.

    Article  PubMed  CAS  Google Scholar 

  3. Andrews, B.J., and J.J. Turchi. 2004. Development of a high-throughput screen for inhibitors of replication protein A and its role in nucleotide excision repair. Mol Cancer Ther. 3:385–91.

    PubMed  CAS  Google Scholar 

  4. Arad, G., A. Hendel, C. Urbanke, U. Curth, and Z. Livneh. 2008. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem. 283:8274–82.

    Article  PubMed  CAS  Google Scholar 

  5. Ariza, R.R., S.M. Keyse, J.G. Moggs, and R.D. Wood. 1996. Reversible protein phosphorylation modulates nucleotide excision repair of damaged DNA by human cell extracts. Nucleic Acids Res. 24:433–40.

    Article  PubMed  CAS  Google Scholar 

  6. Arunkumar, A.I., M.E. Stauffer, E. Bochkareva, A. Bochkarev, and W.J. Chazin. 2003. Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains. J Biol Chem. 278:41077–82.

    Article  PubMed  CAS  Google Scholar 

  7. Arunkumar, A.I., V. Klimovich, X. Jiang, R.D. Ott, L. Mizoue, E. Fanning, and W.J. Chazin. 2005. Insights into hRPA32 C-terminal domain – mediated assembly of the simian virus 40 replisome. Nat Struct Mol Biol. 12:332–9.

    Article  PubMed  CAS  Google Scholar 

  8. Ball, H.L., J.S. Myers, and D. Cortez. 2005. ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol Biol Cell. 16:2372–81.

    Article  PubMed  CAS  Google Scholar 

  9. Binz, S.K., A.M. Sheehan, and M.S. Wold. 2004. Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst). 3:1015–24.

    Article  CAS  Google Scholar 

  10. Bishop, D.K., U. Ear, A. Bhattacharyya, C. Calderone, M. Beckett, R.R. Weichselbaum, and A. Shinohara. 1998. Xrcc3 is required for assembly of Rad51 complexes in vivo. J Biol Chem. 273:21482–8.

    Article  PubMed  CAS  Google Scholar 

  11. Blackwell, L.J., J.A. Borowiec, and I.A. Masrangelo. 1996. Single-stranded-DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol Cell Biol. 16:4798–807.

    PubMed  CAS  Google Scholar 

  12. Block, W.D., Y. Yu, and S.P. Lees-Miller. 2004. Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21. Nucleic Acids Res. 32:997–1005.

    Article  PubMed  CAS  Google Scholar 

  13. Bochkarev, A., and E. Bochkareva. 2004. From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol. 14:36–42.

    Article  PubMed  CAS  Google Scholar 

  14. Bochkareva, E., L. Kaustov, A. Ayed, G.S. Yi, Y. Lu, A. Pineda-Lucena, J.C. Liao, A.L. Okorokov, J. Milner, C.H. Arrowsmith, and A. Bochkarev. 2005. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci USA. 102:15412–7.

    Article  PubMed  CAS  Google Scholar 

  15. Bochkareva, E., S. Korolev, S.P. Lees-Miller, and A. Bochkarev. 2002. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. Embo J. 21:1855–63.

    Article  PubMed  CAS  Google Scholar 

  16. Bork, P., N. Blomberg, and M. Nilges. 1996. Internal repeats in the BRCA2 protein sequence. Nat Genet. 13:22–3.

    Article  PubMed  CAS  Google Scholar 

  17. Butland, G., J.M. Peregrin-Alvarez, J. Li, W. Yang, X. Yang, V. Canadien, A. Starostine, D. Richards, B. Beattie, N. Krogan, M. Davey, J. Parkinson, J. Greenblatt, and A. Emili. 2005. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 433:531–7.

    Article  PubMed  CAS  Google Scholar 

  18. Cahill, D., B. Connor, and J.P. Carney. 2006. Mechanisms of eukaryotic DNA double strand break repair. Front Biosci. 11:1958–76.

    Article  PubMed  CAS  Google Scholar 

  19. Carty, M.P., M. Zernik-Kobak, S. McGrath, and K. Dixon. 1994. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein. Embo J. 13:2114–23.

    PubMed  CAS  Google Scholar 

  20. Caspari, T., J.M. Murray, and A.M. Carr. 2002. Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III. Genes Dev. 16:1195–208.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, C., K. Umezu, and R.D. Kolodner. 1998. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell. 2:9–22.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, C., and R.D. Kolodner. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet. 23:81–5.

    Article  PubMed  CAS  Google Scholar 

  23. Chen, L., C.J. Nievera, A.Y. Lee, and X. Wu. 2008. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem. 283:7713–20.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, P.L., C.F. Chen, Y. Chen, J. Xiao, Z.D. Sharp, and W.H. Lee. 1998b. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci USA. 95:5287–92.

    Article  PubMed  CAS  Google Scholar 

  25. Cheong, N., X. Wang, Y. Wang, and G. Iliakis. 1994. Loss of S-phase-dependent radioresistance in irs-1 cells exposed to X-rays. Mutat Res. 314:77–85.

    PubMed  CAS  Google Scholar 

  26. Choudhary, S.K., and R. Li. 2002. BRCA1 modulates ionizing radiation-induced nuclear focus formation by the replication protein A p34 subunit. J Cell Biochem. 84:666–74.

    Article  PubMed  CAS  Google Scholar 

  27. Davis, A.P., and L.S. Symington. 2003. The Rad52-Rad59 complex interacts with Rad51 and replication protein A. DNA Repair (Amst). 2:1127–34.

    Article  CAS  Google Scholar 

  28. de Jager, M., J. van Noort, D.C. van Gent, C. Dekker, R. Kanaar, and C. Wyman. 2001. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell. 8:1129–35.

    Article  PubMed  Google Scholar 

  29. de Laat, W.L., E. Appeldoorn, K. Sugasawa, E. Weterings, N.G. Jaspers, and J.H. Hoeijmakers. 1998. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 12:2598–609.

    Article  PubMed  Google Scholar 

  30. Dean, F.B., P. Bullock, Y. Murakami, C.R. Wobbe, L. Weissbach, and J. Hurwitz. 1987. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc Natl Acad Sci USA. 84:16–20.

    Article  PubMed  CAS  Google Scholar 

  31. Din, S., S.J. Brill, M.P. Fairman, and B. Stillman. 1990. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4:968–77.

    Article  PubMed  CAS  Google Scholar 

  32. Dutta, A., J.M. Ruppert, J.C. Aster, and E. Winchester. 1993. Inhibition of DNA replication factor RPA by p 53. Nature. 365:79–82.

    Article  PubMed  CAS  Google Scholar 

  33. Dutta, A., and B. Stillman. 1992. cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. Embo J. 11:2189–99.

    PubMed  CAS  Google Scholar 

  34. Fairman, M.P., and B. Stillman. 1988. Cellular factors required for multiple stages of SV40 DNA replication in vitro. Embo J. 7:1211–8.

    PubMed  CAS  Google Scholar 

  35. Fang, F., and J.W. Newport. 1993. Distinct roles of cdk2 and cdc2 in RP-A phosphorylation during the cell cycle. J Cell Sci. 106 (Pt 3):983–94.

    PubMed  CAS  Google Scholar 

  36. Ferreira, M.G., and J.P. Cooper. 2001. The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol Cell. 7:55–63.

    Article  PubMed  CAS  Google Scholar 

  37. Godthelp, B.C., F. Artwert, H. Joenje, and M.Z. Zdzienicka. 2002. Impaired DNA damage-induced nuclear Rad51 foci formation uniquely characterizes Fanconi anemia group D 1. Oncogene. 21:5002–5.

    Article  PubMed  CAS  Google Scholar 

  38. Gomes, X.V., L.A. Henricksen, and M.S. Wold. 1996. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry. 35:5586–95.

    Article  PubMed  CAS  Google Scholar 

  39. Han, E.S., D.L. Cooper, N.S. Persky, V.A. Sutera, Jr., R.D. Whitaker, M.L. Montello, and S.T. Lovett. 2006. RecJ exonuclease: substrates, products and interaction with SSB. Nucleic Acids Res. 34:1084–91.

    Article  PubMed  CAS  Google Scholar 

  40. Handa, P., N. Acharya, and U. Varshney. 2001. Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem. 276:16992–7.

    Article  PubMed  CAS  Google Scholar 

  41. He, Z., B.T. Brinton, J. Greenblatt, J.A. Hassell, and C.J. Ingles. 1993. The transactivator proteins VP16 and GAL4 bind replication factor A. Cell. 73:1223–32.

    Article  PubMed  CAS  Google Scholar 

  42. Iftode, C., and J.A. Borowiec. 2000. 5' ➜ 3' molecular polarity of human replication protein A (hRPA) binding to pseudo-origin DNA substrates. Biochemistry. 39:11970–81.

    Article  PubMed  CAS  Google Scholar 

  43. Iftode, C., Y. Daniely, and J.A. Borowiec. 1999. Replication protein A (RPA): the eukaryotic SSB. Crit Rev Biochem Mol Biol. 34:141–80.

    Article  PubMed  CAS  Google Scholar 

  44. Ira, G., A. Pellicioli, A. Balijja, X. Wang, S. Fiorani, W. Carotenuto, G. Liberi, D. Bressan, L. Wan, N.M. Hollingsworth, J.E. Haber, and M. Foiani. 2004. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature. 431:1011–7.

    Article  PubMed  CAS  Google Scholar 

  45. Jackson, D., K. Dhar, J.K. Wahl, M.S. Wold, and G.E. Borgstahl. 2002. Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA. J Mol Biol. 321:133–48.

    Article  PubMed  CAS  Google Scholar 

  46. Jazayeri, A., J. Falck, C. Lukas, J. Bartek, G.C. Smith, J. Lukas, and S.P. Jackson. 2006. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol. 8:37–45.

    Article  PubMed  CAS  Google Scholar 

  47. Kelman, Z., A. Yuzhakov, J. Andjelkovic, and M. O’Donnell. 1998. Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. Embo J. 17:2436–49.

    Article  PubMed  CAS  Google Scholar 

  48. Kim, C., B.F. Paulus, and M.S. Wold. 1994. Interactions of human replication protein A with oligonucleotides. Biochemistry. 33:14197–206.

    Article  PubMed  CAS  Google Scholar 

  49. Kim, C., R.O. Snyder, and M.S. Wold. 1992. Binding properties of replication protein A from human and yeast cells. Mol Cell Biol. 12:3050–9.

    PubMed  CAS  Google Scholar 

  50. Kim, C., and M.S. Wold. 1995. Recombinant human replication protein A binds to polynucleotides with low cooperativity. Biochemistry. 34:2058–64.

    Article  PubMed  CAS  Google Scholar 

  51. Kim, D.K., E. Stigger, and S.H. Lee. 1996. Role of the 70-kDa subunit of human replication protein A (I). Single-stranded dna binding activity, but not polymerase stimulatory activity, is required for DNA replication. J Biol Chem. 271:15124–9.

    Article  PubMed  CAS  Google Scholar 

  52. Kim, J.S., T.B. Krasieva, H. Kurumizaka, D.J. Chen, A.M. Taylor, and K. Yokomori. 2005. Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J Cell Biol. 170:341–7.

    Article  PubMed  CAS  Google Scholar 

  53. Kolpashchikov, D.M., S.N. Khodyreva, D.Y. Khlimankov, M.S. Wold, A. Favre, and O.I. Lavrik. 2001. Polarity of human replication protein A binding to DNA. Nucleic Acids Res. 29:373–9.

    Article  PubMed  CAS  Google Scholar 

  54. Krejci, L., S. Van Komen, Y. Li, J. Villemain, M.S. Reddy, H. Klein, T. Ellenberger, and P. Sung. 2003. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature. 423:305–9.

    Article  PubMed  CAS  Google Scholar 

  55. Krogh, B.O., and L.S. Symington. 2004. Recombination proteins in yeast. Annu Rev Genet. 38:233–71.

    Article  PubMed  CAS  Google Scholar 

  56. Kumagai, A., S.M. Kim, and W.G. Dunphy. 2004. Claspin and the activated form of ATR-ATRIP collaborate in the activation of Chk1. J Biol Chem. 279:49599–608.

    Article  PubMed  CAS  Google Scholar 

  57. Lecointe, F., C. Serena, M. Velten, A. Costes, S. McGovern, J.C. Meile, J. Errington, S.D. Ehrlich, P. Noirot, and P. Polard. 2007. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. Embo J. 26:4239–51.

    Article  PubMed  CAS  Google Scholar 

  58. Lee, J., A. Kumagai, and W.G. Dunphy. 2003. Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol Cell. 11:329–40.

    Article  PubMed  CAS  Google Scholar 

  59. Li, R., and M.R. Botchan. 1993. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell. 73:1207–21.

    Article  PubMed  CAS  Google Scholar 

  60. Lin, S.Y., K. Li, G.S. Stewart, and S.J. Elledge. 2004. Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation. Proc Natl Acad Sci USA. 101:6484–9.

    Article  PubMed  CAS  Google Scholar 

  61. Lisby, M., J.H. Barlow, R.C. Burgess, and R. Rothstein. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell. 118:699–713.

    Article  PubMed  CAS  Google Scholar 

  62. Liskay, R.M., A. Letsou, and J.L. Stachelek. 1987. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics. 115:161–7.

    PubMed  CAS  Google Scholar 

  63. Liu, J.S., S.R. Kuo, M.M. McHugh, T.A. Beerman, and T. Melendy. 2000. Adozelesin triggers DNA damage response pathways and arrests SV40 DNA replication through replication protein A inactivation. J Biol Chem. 275:1391–7.

    Article  PubMed  CAS  Google Scholar 

  64. Liu, V.F., and D.T. Weaver. 1993. The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells. Mol Cell Biol. 13:7222–31.

    PubMed  CAS  Google Scholar 

  65. Liu, Y., Z. Yang, C.D. Utzat, Y. Liu, N.E. Geacintov, A.K. Basu, and Y. Zou. 2005. Interactions of human replication protein A with single-stranded DNA adducts. Biochem J. 385:519–26.

    Article  PubMed  CAS  Google Scholar 

  66. Lohman, T.M., and M.E. Ferrari. 1994. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem. 63:527–70.

    Article  PubMed  CAS  Google Scholar 

  67. McIlwraith, M.J., E. Van Dyck, J.Y. Masson, A.Z. Stasiak, A. Stasiak, and S.C. West. 2000. Reconstitution of the strand invasion step of double-strand break repair using human Rad51 Rad52 and RPA proteins. J Mol Biol. 304:151–64.

    Article  PubMed  CAS  Google Scholar 

  68. Mer, G., A. Bochkarev, R. Gupta, E. Bochkareva, L. Frappier, C.J. Ingles, A.M. Edwards, and W.J. Chazin. 2000. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell. 103:449–56.

    Article  PubMed  CAS  Google Scholar 

  69. Meyer, R.R., and P.S. Laine. 1990. The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev. 54:342–80.

    PubMed  CAS  Google Scholar 

  70. Michel, B., G. Grompone, M.J. Flores, and V. Bidnenko. 2004. Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA. 101:12783–8.

    Article  PubMed  CAS  Google Scholar 

  71. Mijakovic, I., D. Petranovic, B. Macek, T. Cepo, M. Mann, J. Davies, P.R. Jensen, and D. Vujaklija. 2006. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. 34:1588–96.

    Article  PubMed  CAS  Google Scholar 

  72. Milne, G.T., and D.T. Weaver. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7:1755–65.

    Article  PubMed  CAS  Google Scholar 

  73. Molineux, I.J., and M.L. Gefter. 1974. Properties of the Escherichia coli in DNA binding (unwinding) protein: interaction with DNA polymerase and DNA. Proc Natl Acad Sci USA. 71:3858–62.

    Article  PubMed  CAS  Google Scholar 

  74. Myers, J.S., and D. Cortez. 2006. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem. 281:9346–50.

    Article  PubMed  CAS  Google Scholar 

  75. Namiki, Y., and L. Zou. 2006. ATRIP associates with replication protein A-coated ssDNA through multiple interactions. Proc Natl Acad Sci USA. 103:580–5.

    Article  PubMed  CAS  Google Scholar 

  76. Niu, H., H. Erdjument-Bromage, Z.Q. Pan, S.H. Lee, P. Tempst, and J. Hurwitz. 1997. Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro. J Biol Chem. 272:12634–41.

    Article  PubMed  CAS  Google Scholar 

  77. Nuss, J.E., S.M. Patrick, G.G. Oakley, G.M. Alter, J.G. Robison, K. Dixon, and J.J. Turchi. 2005. DNA damage induced hyperphosphorylation of replication protein A. 1. Identification of novel sites of phosphorylation in response to DNA damage. Biochemistry. 44:8428–37.

    Article  PubMed  CAS  Google Scholar 

  78. Oakley, G.G., S.M. Patrick, J. Yao, M.P. Carty, J.J. Turchi, and K. Dixon. 2003. RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions. Biochemistry. 42:3255–64.

    Article  PubMed  CAS  Google Scholar 

  79. Pan, Z.Q., A.A. Amin, E. Gibbs, H. Niu, and J. Hurwitz. 1994. Phosphorylation of the p34 subunit of human single-stranded-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent protein kinase. Proc Natl Acad Sci USA. 91:8343–7.

    Article  PubMed  CAS  Google Scholar 

  80. Pan, Z.Q., C.H. Park, A.A. Amin, J. Hurwitz, and A. Sancar. 1995. Phosphorylated and unphosphorylated forms of human single-stranded DNA-binding protein are equally active in simian virus 40 DNA replication and in nucleotide excision repair. Proc Natl Acad Sci USA. 92:4636–40.

    Article  PubMed  CAS  Google Scholar 

  81. Paques, F., and J.E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 63:349–404.

    PubMed  CAS  Google Scholar 

  82. Park, J.S., M. Wang, S.J. Park, and S.H. Lee. 1999. Zinc finger of replication protein A, a non-DNA binding element, regulates its DNA binding activity through redox. J Biol Chem. 274:29075–80.

    Article  PubMed  CAS  Google Scholar 

  83. Parrilla-Castellar, E.R., and L.M. Karnitz. 2003. Cut5 is required for the binding of Atr and DNA polymerase alpha to genotoxin-damaged chromatin. J Biol Chem. 278:45507–11.

    Article  PubMed  CAS  Google Scholar 

  84. Patrick, S.M., G.G. Oakley, K. Dixon, and J.J. Turchi. 2005. DNA damage induced hyperphosphorylation of replication protein A. 2. Characterization of DNA binding activity, protein interactions, and activity in DNA replication and repair. Biochemistry. 44:8438–48.

    Article  PubMed  CAS  Google Scholar 

  85. Pestryakov, P.E., D.Y. Khlimankov, E. Bochkareva, A. Bochkarev, and O.I. Lavrik. 2004. Human replication protein A (RPA) binds a primer-template junction in the absence of its major ssDNA-binding domains. Nucleic Acids Res. 32:1894–903.

    Article  PubMed  CAS  Google Scholar 

  86. Raghunathan, S., A.G. Kozlov, T.M. Lohman, and G. Waksman. 2000. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol. 7:648–52.

    Article  PubMed  CAS  Google Scholar 

  87. Raghunathan, S., C.S. Ricard, T.M. Lohman, and G. Waksman. 1997. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proc Natl Acad Sci USA. 94:6652–7.

    Article  PubMed  CAS  Google Scholar 

  88. Richard, D.J., E. Bolderson, L. Cubeddu, R.I. Wadsworth, K. Savage, G.G. Sharma, M.L. Nicolette, S. Tsvetanov, M.J. McIlwraith, R.K. Pandita, S. Takeda, R.T. Hay, J. Gautier, S.C. West, T.T. Paull, T.K. Pandita, M.F. White, and K.K. Khanna. 2008. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature. 453:677–81.

    Article  PubMed  CAS  Google Scholar 

  89. Robison, J.G., J. Elliott, K. Dixon, and G.G. Oakley. 2004. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks. J Biol Chem. 279:34802–10.

    Article  PubMed  CAS  Google Scholar 

  90. Rothkamm, K., I. Kruger, L.H. Thompson, and M. Lobrich. 2003. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 23:5706–15.

    Article  PubMed  CAS  Google Scholar 

  91. Rubnitz, J., and S. Subramani. 1984. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol. 4:2253–8.

    PubMed  CAS  Google Scholar 

  92. Sakasai, R., K. Shinohe, Y. Ichijima, N. Okita, A. Shibata, K. Asahina, and H. Teraoka. 2006. Differential involvement of phosphatidylinositol 3-kinase-related protein kinases in hyperphosphorylation of replication protein A2 in response to replication-mediated DNA double-strand breaks. Genes Cells. 11:237–46.

    Article  PubMed  CAS  Google Scholar 

  93. Sartori, A.A., C. Lukas, J. Coates, M. Mistrik, S. Fu, J. Bartek, R. Baer, J. Lukas, and S.P. Jackson. 2007. Human CtIP promotes DNA end resection. Nature. 450:509–14.

    Article  PubMed  CAS  Google Scholar 

  94. Shen, Z., K.G. Cloud, D.J. Chen, and M.S. Park. 1996. Specific interactions between the human RAD51 and RAD52 proteins. J Biol Chem. 271:148–52.

    Article  PubMed  CAS  Google Scholar 

  95. Shereda, R.D., D.A. Bernstein, and J.L. Keck. 2007. A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem. 282:19247–58.

    Article  PubMed  CAS  Google Scholar 

  96. Shroff, R., A. Arbel-Eden, D. Pilch, G. Ira, W.M. Bonner, J.H. Petrini, J.E. Haber, and M. Lichten. 2004. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol. 14:1703–11.

    Article  PubMed  CAS  Google Scholar 

  97. Sigurdsson, S., S. Van Komen, W. Bussen, D. Schild, J.S. Albala, and P. Sung. 2001. Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev. 15:3308–18.

    Article  PubMed  CAS  Google Scholar 

  98. Slocum, S.L., J.A. Buss, Y. Kimura, and P.R. Bianco. 2007. Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA. J Mol Biol. 367:647–64.

    Article  PubMed  CAS  Google Scholar 

  99. Song, B., and P. Sung. 2000. Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J Biol Chem. 275:15895–904.

    Article  PubMed  CAS  Google Scholar 

  100. Sonoda, E., H. Hochegger, A. Saberi, Y. Taniguchi, and S. Takeda. 2006. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst). 5:1021–9.

    Article  CAS  Google Scholar 

  101. Stauffer, M.E., and W.J. Chazin. 2004. Physical interaction between replication protein A and Rad51 promotes exchange on single-stranded DNA. J Biol Chem. 279:25638–45.

    Article  PubMed  CAS  Google Scholar 

  102. Stracker, T.H., J.W. Theunissen, M. Morales, and J.H. Petrini. 2004. The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst). 3:845–54.

    Article  CAS  Google Scholar 

  103. Sugiyama, T., and S.C. Kowalczykowski. 2002. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem. 277:31663–72.

    Article  PubMed  CAS  Google Scholar 

  104. Sugiyama, T., E.M. Zaitseva, and S.C. Kowalczykowski. 1997. A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J Biol Chem. 272:7940–5.

    Article  PubMed  CAS  Google Scholar 

  105. Sung, P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem. 272:28194–7.

    Article  PubMed  CAS  Google Scholar 

  106. Sung, P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11:1111–21.

    Article  PubMed  CAS  Google Scholar 

  107. Symington, L.S. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev. 66:630–70, table of contents.

    Article  PubMed  CAS  Google Scholar 

  108. Takata, M., M.S. Sasaki, E. Sonoda, C. Morrison, M. Hashimoto, H. Utsumi, Y. Yamaguchi-Iwai, A. Shinohara, and S. Takeda. 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. Embo J. 17:5497–508.

    Article  PubMed  CAS  Google Scholar 

  109. Umezu, K., N.W. Chi, and R.D. Kolodner. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci USA. 90:3875–9.

    Article  PubMed  CAS  Google Scholar 

  110. Vassin, V.M., M.S. Wold, and J.A. Borowiec. 2004. Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol. 24:1930–43.

    Article  PubMed  CAS  Google Scholar 

  111. Wang, Y., C.D. Putnam, M.F. Kane, W. Zhang, L. Edelmann, R. Russell, D.V. Carrion, L. Chin, R. Kucherlapati, R.D. Kolodner, and W. Edelmann. 2005. Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet. 37:750–5.

    Article  PubMed  CAS  Google Scholar 

  112. Wang, Y., X.Y. Zhou, H. Wang, M.S. Huq, and G. Iliakis. 1999. Roles of replication protein A and DNA-dependent protein kinase in the regulation of DNA replication following DNA damage. J Biol Chem. 274:22060–4.

    Article  PubMed  CAS  Google Scholar 

  113. Witte, G., C. Urbanke, and U. Curth. 2003. DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids Res. 31:4434–40.

    Article  PubMed  CAS  Google Scholar 

  114. Wobbe, C.R., L. Weissbach, J.A. Borowiec, F.B. Dean, Y. Murakami, P. Bullock, and J. Hurwitz. 1987. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc Natl Acad Sci USA. 84:1834–8.

    Article  PubMed  CAS  Google Scholar 

  115. Wold, M.S., D.H. Weinberg, D.M. Virshup, J.J. Li, and T.J. Kelly. 1989. Identification of cellular proteins required for simian virus 40 DNA replication. J Biol Chem. 264:2801–9.

    PubMed  CAS  Google Scholar 

  116. Wold, M.S., and T. Kelly. 1988. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA. 85:2523–7.

    Article  PubMed  CAS  Google Scholar 

  117. Wong, A.K., R. Pero, P.A. Ormonde, S.V. Tavtigian, and P.L. Bartel. 1997. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem. 272:31941–4.

    Article  PubMed  CAS  Google Scholar 

  118. Wong, J.M., D. Ionescu, and C.J. Ingles. 2003. Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2. Oncogene. 22:28–33.

    Article  PubMed  CAS  Google Scholar 

  119. Wu, X., Z. Yang, Y. Liu, and Y. Zou. 2005. Preferential localization of hyperphosphorylated replication protein A to double-strand break repair and checkpoint complexes upon DNA damage. Biochem J. 391:473–80.

    Article  PubMed  CAS  Google Scholar 

  120. Wyka, I.M., K. Dhar, S.K. Binz, and M.S. Wold. 2003. Replication protein A interactions with DNA: differential binding of the core domains and analysis of the DNA interaction surface. Biochemistry. 42:12909–18.

    Article  PubMed  CAS  Google Scholar 

  121. Yang, H., P.D. Jeffrey, J. Miller, E. Kinnucan, Y. Sun, N.H. Thoma, N. Zheng, P.L. Chen, W.H. Lee, and N.P. Pavletich. 2002. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. 297:1837–48.

    Article  PubMed  CAS  Google Scholar 

  122. Yoo, E., B.U. Kim, S.Y. Lee, C.H. Cho, J.H. Chung, and C.H. Lee. 2005. 53BP1 is associated with replication protein A and is required for RPA2 hyperphosphorylation following DNA damage. Oncogene. 24:5423–30.

    Article  PubMed  CAS  Google Scholar 

  123. Yuan, S.S., S.Y. Lee, G. Chen, M. Song, G.E. Tomlinson, and E.Y. Lee. 1999. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 59:3547–51.

    PubMed  CAS  Google Scholar 

  124. Yuzhakov, A., Z. Kelman, and M. O’Donnell. 1999. Trading places on DNA – a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell. 96:153–63.

    Article  PubMed  CAS  Google Scholar 

  125. Zernik-Kobak, M., K. Vasunia, M. Connelly, C.W. Anderson, and K. Dixon. 1997. Sites of UV-induced phosphorylation of the p34 subunit of replication protein A from HeLa cells. J Biol Chem. 272:23896–904.

    Article  PubMed  CAS  Google Scholar 

  126. Zou, L., and S.J. Elledge. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 300:1542–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kum Kum Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Richard, D.J., Khanna, K.K. (2009). Single-Stranded DNA Binding Proteins Involved in Genome Maintenance. In: Khanna, K., Shiloh, Y. (eds) The DNA Damage Response: Implications on Cancer Formation and Treatment. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2561-6_16

Download citation

Publish with us

Policies and ethics