Skip to main content

Cancer Biomarkers Associated with Damage Response Genes

  • Chapter
  • First Online:
The DNA Damage Response: Implications on Cancer Formation and Treatment

Abstract

The development and validation of prognostic and predictive cancers biomarkers associated with damage response genes is a rapidly moving field. Prognostic and predictive markers can be measured at the level of protein (by immunohistochemistry, proteomics, etc.), mRNA (mRNA expression, arrays, etc.) and DNA (DNA adducts, mutation and other sequence variant screens, epigenomics, including methylation studies, etc.). The challenge in the cancer biomarker field is in identifying which proteins play a critical limiting role in the cellular responses to DNA damage, the sequence variants, if any, that impact on the functionality of these responses and how these processes vary between normal and tumour cells. The understanding of these processes is essential in order that simple non-invasive tests that indicate cancer risk and allow early cancer detection and prognosis can be established. In addition biomarkers able to predict how an individual would respond to therapy could allow the personalisation and thus optimisation of therapeutic protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adlard JW, Richman SD, Seymour MT et al. (2002) Prediction of the response of colorectal cancer to systemic therapy. Lancet Oncol 3: 75–82.

    Article  PubMed  CAS  Google Scholar 

  2. Alsner J, Andreassen CN and Overgaard J (2008) Genetic markers for prediction of normal tissue toxicity after radiotherapy. Semin Radiat Oncol 18: 126–35.

    Article  PubMed  Google Scholar 

  3. Alsner J, Rodningen OK and Overgaard J (2007) Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis. Radiother Oncol 83: 261–6.

    Article  PubMed  CAS  Google Scholar 

  4. Angle S, Treilleux I, Bremond A et al. (2003) Altered expression of DNA double-strand break detection and repair proteins in breast carcinomas. Histopathology 43: 347–53.

    Article  PubMed  CAS  Google Scholar 

  5. Arriagada R, Bergman B, Dunant A et al. (2004) Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 350: 351–60.

    Article  PubMed  Google Scholar 

  6. Banks RE, Craven RA, Harnden P et al. (2007) Key clinical issues in renal cancer: a challenge for proteomics. World J Urol 25: 537–56.

    Article  PubMed  CAS  Google Scholar 

  7. Barrow E, McMahon R, Evans DG et al. (2008) Cost analysis of biomarker testing for mismatch repair deficiency in node-positive colorectal cancer. Br J Surg 95: 868–75.

    Article  PubMed  CAS  Google Scholar 

  8. Baynes C, Healey CS, Pooley KA et al. (2007) Common variants in the ATM, BRCA1, BRCA2, CHEK2 and TP53 cancer susceptibility genes are unlikely to increase breast cancer risk. Breast Cancer Res 9: R27.

    Article  PubMed  Google Scholar 

  9. Bellmunt J, Paz-Ares L, Cuello M et al. (2007) Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann Oncol 18: 522–8.

    Article  PubMed  CAS  Google Scholar 

  10. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69: 89–95.

    Article  Google Scholar 

  11. Braun MS, Richman SD, Quirke P et al. (2008) Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol 26: 2690–8.

    Article  PubMed  CAS  Google Scholar 

  12. Broderick P, Carvajal-Carmona L, Pittman AM et al. (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39: 1315–7.

    Article  PubMed  CAS  Google Scholar 

  13. Bubendorf L, Nocito A, Moch H et al. (2001) Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 195: 72–9.

    Article  PubMed  CAS  Google Scholar 

  14. Byun E, Caillier SJ, Montalban X et al. (2008) Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol 65: 337–44.

    Article  PubMed  Google Scholar 

  15. Callagy GM, Pharoah PD, Pinder SE et al. (2006) Bcl-2 is a prognostic marker in breast cancer independently of the Nottingham Prognostic Index. Clin Cancer Res 12: 2468–75.

    Article  PubMed  CAS  Google Scholar 

  16. Capalbo G, Rodel C, Stauber RH et al. (2007) The role of survivin for radiation therapy. Prognostic and predictive factor and therapeutic target. Strahlenther Onkol 183: 593–9.

    Article  PubMed  Google Scholar 

  17. Chatterjee SJ, Datar R, Youssefzadeh D et al. (2004) Combined effects of p53, p21, and pRb expression in the progression of bladder transitional cell carcinoma. J Clin Oncol 22: 1007–13.

    Article  PubMed  CAS  Google Scholar 

  18. Cobo M, Isla D, Massuti B et al. (2007) Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol 25: 2747–54.

    Article  PubMed  CAS  Google Scholar 

  19. Collins AR, Cadet J, Moller L et al. (2004) Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells? Arch Biochem Biophys 423: 57–65.

    Article  PubMed  CAS  Google Scholar 

  20. Cordon-Cardo C (2004) p53 and RB: simple interesting correlates or tumor markers of critical predictive nature? J Clin Oncol 22: 975–7.

    Article  PubMed  CAS  Google Scholar 

  21. Dai Z, Papp AC, Wang D et al. (2008) Genotyping panel for assessing response to cancer chemotherapy. BMC Med Genomics 1: 24.

    Article  Google Scholar 

  22. Diehl F, Schmidt K, Choti MA et al. (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14: 985–90.

    Article  PubMed  CAS  Google Scholar 

  23. Dong LM, Potter JD, White E et al. (2008) Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 299: 2423–36.

    Article  PubMed  CAS  Google Scholar 

  24. Efferth T and Volm M (2005) Pharmacogenetics for individualized cancer chemotherapy. Pharmacol Ther 107: 155–76.

    Article  PubMed  CAS  Google Scholar 

  25. Evans WE and McLeod HL (2003) Pharmacogenomics – drug disposition, drug targets, and side effects. N Engl J Med 348: 538–49.

    Article  PubMed  CAS  Google Scholar 

  26. Fernet M and Hall J (2008) Predictive markers for normal tissue reactions: fantasy or reality? Cancer Radiother 12: 614–18.

    Google Scholar 

  27. Figueroa JD, Malats N, Real FX et al. (2007) Genetic variation in the base excision repair pathway and bladder cancer risk. Hum Genet 121: 233–42.

    Article  PubMed  CAS  Google Scholar 

  28. Garcia del Muro X, Condom E, Vigues F et al. (2004) p53 and p21 Expression levels predict organ preservation and survival in invasive bladder carcinoma treated with a combined-modality approach. Cancer 100: 1859–67.

    Article  PubMed  Google Scholar 

  29. Garcia-Closas M, Malats N, Real FX et al. (2006) Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15: 536–42.

    Article  PubMed  CAS  Google Scholar 

  30. Garcia-Closas M, Malats N, Silverman D et al. (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366: 649–59.

    Article  PubMed  CAS  Google Scholar 

  31. Gormally E, Caboux E, Vineis P et al. (2007) Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res 635: 105–17.

    Article  PubMed  CAS  Google Scholar 

  32. Gossage L and Madhusudan S (2007) Current status of excision repair cross complementing-group 1 (ERCC1) in cancer. Cancer Treat Rev 33: 565–77.

    Article  PubMed  CAS  Google Scholar 

  33. Goulart BH, Clark JW, Pien HH et al. (2007) Trends in the use and role of biomarkers in phase I oncology trials. Clin Cancer Res 13: 6719–26.

    Article  PubMed  CAS  Google Scholar 

  34. Gudmundsson J, Sulem P, Manolescu A et al. (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39: 631–7.

    Article  PubMed  CAS  Google Scholar 

  35. Hanash SM, Pitteri SJ and Faca VM (2008) Mining the plasma proteome for cancer biomarkers. Nature 452: 571–9.

    Article  PubMed  CAS  Google Scholar 

  36. Hegi ME, Diserens AC, Gorlia T et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352: 997–1003.

    Article  PubMed  CAS  Google Scholar 

  37. Hendriks Y, Franken P, Dierssen JW et al. (2003) Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am J Pathol 162: 469–77.

    Article  PubMed  CAS  Google Scholar 

  38. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411: 366–74.

    Article  PubMed  CAS  Google Scholar 

  39. Hummerich J, Werle-Schneider G, Popanda O et al. (2006) Constitutive mRNA expression of DNA repair-related genes as a biomarker for clinical radio-resistance: a pilot study in prostate cancer patients receiving radiotherapy. Int J Radiat Biol 82: 593–604.

    Article  PubMed  Google Scholar 

  40. Hunter DJ, Kraft P, Jacobs KB et al. (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39: 870–4.

    Article  PubMed  CAS  Google Scholar 

  41. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23: 687–96.

    Article  PubMed  CAS  Google Scholar 

  42. Karam JA, Lotan Y, Karakiewicz PI et al. (2007) Use of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical cystectomy. Lancet Oncol 8: 128–36.

    Article  PubMed  CAS  Google Scholar 

  43. Kennedy RD and D’Andrea AD (2006) DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 24: 3799–808.

    Article  PubMed  CAS  Google Scholar 

  44. Kiemeney LA, Thorlacius S, Sulem P et al. (2008) Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 40: 1307–12.

    Google Scholar 

  45. Kruse JJ and Stewart FA (2007) Gene expression arrays as a tool to unravel mechanisms of normal tissue radiation injury and prediction of response. World J Gastroenterol 13: 2669–74.

    PubMed  CAS  Google Scholar 

  46. Kuo LJ and Yang LX (2008) Gamma-H2AX – a novel biomarker for DNA double-strand breaks. In Vivo 22: 305–9.

    PubMed  CAS  Google Scholar 

  47. Kwon HC, Roh MS, Oh SY et al. (2007) Prognostic value of expression of ERCC1, thymidylate synthase, and glutathione S-transferase P1 for 5-fluorouracil/oxaliplatin chemotherapy in advanced gastric cancer. Ann Oncol 18: 504–9.

    Article  PubMed  Google Scholar 

  48. Kyndi M, Sorensen FB, Knudsen H et al. (2008) Impact of BCL2 and p53 on postmastectomy radiotherapy response in high-risk breast cancer. A subgroup analysis of DBCG82 b&c. Acta Oncol 47: 608–17.

    Article  PubMed  CAS  Google Scholar 

  49. Lango H and Weedon MN (2008) What will whole genome searches for susceptibility genes for common complex disease offer to clinical practice? J Intern Med 263: 16–27.

    Article  PubMed  CAS  Google Scholar 

  50. Liu C, Batliwalla F, Li W et al. (2008) Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in Rheumatoid Arthritis. Mol Med 14: 575–81.

    Google Scholar 

  51. Loft S, Moller P, Cooke MS et al. (2008) Antioxidant vitamins and cancer risk: is oxidative damage to DNA a relevant biomarker? Eur J Nutr 47 Suppl 2: 19–28.

    Article  Google Scholar 

  52. Marchionni L, Wilson RF, Wolff AC et al. (2008) Systematic review: gene expression profiling assays in early-stage breast cancer. Ann Intern Med 148: 358–69.

    PubMed  Google Scholar 

  53. Martin SA, Lord CJ and Ashworth A (2008) DNA repair deficiency as a therapeutic target in cancer. Curr Opin Genet Dev 18: 80–6.

    Article  PubMed  CAS  Google Scholar 

  54. Moumen A, Masterson P, O’Connor MJ et al. (2005) hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 123: 1065–78.

    Article  PubMed  CAS  Google Scholar 

  55. Nirmalan NJ, Harnden P, Selby PJ et al. (2008) Mining the archival formalin-fixed paraffin-embedded tissue proteome: opportunities and challenges. Mol Biosyst 4: 712–20.

    Article  PubMed  CAS  Google Scholar 

  56. Niv Y (2007) Microsatellite instability and MLH1 promoter hypermethylation in colorectal cancer. World J Gastroenterol 13: 1767–9.

    PubMed  CAS  Google Scholar 

  57. Nuyten DS and van de Vijver MJ (2008) Using microarray analysis as a prognostic and predictive tool in oncology: focus on breast cancer and normal tissue toxicity. Semin Radiat Oncol 18: 105–14.

    Article  PubMed  Google Scholar 

  58. Olaussen KA, Dunant A, Fouret P et al. (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355: 983–91.

    Article  PubMed  CAS  Google Scholar 

  59. Olivier M, Langerod A, Carrieri P et al. (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12: 1157–67.

    Article  PubMed  CAS  Google Scholar 

  60. Paik S, Shak S, Tang G et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351: 2817–26.

    Article  PubMed  CAS  Google Scholar 

  61. Pavon MA, Parreno M, Leon X et al. (2008) Ku70 predicts response and primary tumor recurrence after therapy in locally advanced head and neck cancer. Int J Cancer 123: 1068–79.

    Article  PubMed  CAS  Google Scholar 

  62. Perou CM, Sorlie T, Eisen MB et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–52.

    Article  PubMed  CAS  Google Scholar 

  63. Rodningen OK, Borresen-Dale AL, Alsner J et al. (2008) Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis. Radiother Oncol 86: 314–20.

    Article  PubMed  CAS  Google Scholar 

  64. Rodningen OK, Overgaard J, Alsner J et al. (2005) Microarray analysis of the transcriptional response to single or multiple doses of ionizing radiation in human subcutaneous fibroblasts. Radiother Oncol 77: 231–40.

    Article  PubMed  Google Scholar 

  65. Russo A, Bazan V, Iacopetta B et al. (2005) The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol 23: 7518–28.

    Article  PubMed  CAS  Google Scholar 

  66. Sak SC, Barrett JH, Paul AB et al. (2006) Comprehensive analysis of 22 XPC polymorphisms and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15: 2537–41.

    Article  PubMed  CAS  Google Scholar 

  67. Shariat SF, Karakiewicz PI, Ashfaq R et al. (2008) Multiple biomarkers improve prediction of bladder cancer recurrence and mortality in patients undergoing cystectomy. Cancer 112: 315–25.

    Article  PubMed  Google Scholar 

  68. Shariat SF, Tokunaga H, Zhou J et al. (2004) p53, p21, pRB, and p16 expression predict clinical outcome in cystectomy with bladder cancer. J Clin Oncol 22: 1014–24.

    Article  PubMed  CAS  Google Scholar 

  69. Shedden K, Taylor JM, Enkemann SA et al. (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14: 822–7.

    Article  PubMed  CAS  Google Scholar 

  70. Shia J (2008) Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn 10: 293–300.

    Article  PubMed  Google Scholar 

  71. Shia J, Ellis NA and Klimstra DS (2004) The utility of immunohistochemical detection of DNA mismatch repair gene proteins. Virchows Arch 445: 431–41.

    Article  PubMed  CAS  Google Scholar 

  72. Soderlund K, Stal O, Skoog L et al. (2007) Intact Mre11/Rad50/Nbs1 complex predicts good response to radiotherapy in early breast cancer. Int J Radiat Oncol Biol Phys 68: 50–8.

    Article  PubMed  Google Scholar 

  73. Sorlie T, Perou CM, Tibshirani R et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–74.

    Article  PubMed  CAS  Google Scholar 

  74. Stadler WM, Cote R, Learner S et al. (2004) Phase III trial assessing 3 cycles of MVAC in organ-confined bladder cancer with p53. Oncology Times 26: 4.

    Google Scholar 

  75. Steel GG (eds) (2002) Basic Clinical Radiobiology. Arnold, London.

    Google Scholar 

  76. Swenberg JA, Fryar-Tita E, Jeong YC et al. (2008) Biomarkers in toxicology and risk assessment: informing critical dose-response relationships. Chem Res Toxicol 21: 253–65.

    Article  PubMed  Google Scholar 

  77. Thomas G, Jacobs KB, Yeager M et al. (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40: 310–5.

    Article  PubMed  CAS  Google Scholar 

  78. Tomlinson I, Webb E, Carvajal-Carmona L et al. (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39: 984–8.

    Article  PubMed  CAS  Google Scholar 

  79. van’t Veer LJ and Bernards R (2008) Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452: 564–70.

    Article  PubMed  Google Scholar 

  80. Wager M, Menei P, Guilhot J et al. (2008) Prognostic molecular markers with no impact on decision-making: the paradox of gliomas based on a prospective study. Br J Cancer 98: 1830–8.

    Article  PubMed  CAS  Google Scholar 

  81. Wiebalk K, Schmezer P, Kropp S et al. (2007) In vitro radiation-induced expression of XPC mRNA as a possible biomarker for developing adverse reactions during radiotherapy. Int J Cancer 121: 2340–5.

    Article  PubMed  CAS  Google Scholar 

  82. Wu W, Nishikawa H, Hayami R et al. (2007) BRCA1 ubiquitinates RPB8 in response to DNA damage. Cancer Res 67: 951–8.

    Article  PubMed  CAS  Google Scholar 

  83. Wu X, Gu J, Grossman HB et al. (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78: 464–79.

    Article  PubMed  CAS  Google Scholar 

  84. Ye C, Cai Q, Dai Q et al. (2007) Expression patterns of the ATM gene in mammary tissues and their associations with breast cancer survival. Cancer 109: 1729–35.

    Article  PubMed  Google Scholar 

  85. Yeager M, Orr N, Hayes RB et al. (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39: 645–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review was prepared during Anne Kiltie’s Collaborator’s visit to the Institute Curie, Orsay, funded by a Cancer Research UK Collaborator Bursary as part of her Cancer Research UK Clinician Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne E. Kiltie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kiltie, A.E., Fernet, M., Hall, J. (2009). Cancer Biomarkers Associated with Damage Response Genes. In: Khanna, K., Shiloh, Y. (eds) The DNA Damage Response: Implications on Cancer Formation and Treatment. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2561-6_14

Download citation

Publish with us

Policies and ethics