Nucleotide Excision Repair: from DNA Damage Processing to Human Disease

  • Mischa G. Vrouwe
  • Leon H.F. MullendersEmail author


A network of DNA damage surveillance systems warrants genomic stability under conditions where cells and organisms are continuously exposed to DNA damaging agents. This network includes DNA repair pathways, but also signaling pathways that activate cell cycle checkpoints, apoptosis, transcription, and chromatin remodeling. Among the various repair pathways nucleotide excision repair (NER) is a highly versatile and evolutionary conserved pathway with an intriguing wide substrate specificity; this pathway removes structurally unrelated bulky DNA lesions from the genome such as sunlight induced photolesions, bulky adducts formed by polycyclic aromatic hydrocarbons, cisplatin intrastrand crosslinks, and alkylation products. The common features of these lesions are the variable degree of DNA helix distortion inflicted and their potency to block replication and transcription. The importance of functional NER for human health is highlighted by the existence of rare autosomal recessive human disorders such as xeroderma pigmentosum (XP). Affected individuals, characterized by a defect in NER, suffer from hypersensitivity to sunlight and display strongly enhanced cancer susceptibility in sunlight exposed parts of the skin. Mammalian NER involves multiple proteins (in excess of 30) and carries out the repair reaction in a highly orchestrated fashion.

In this book chapter, we discuss the current knowledge of the molecular mechanisms underlying NER, its relation with human disease and the translation of knowledge to clinical use.


Ultraviolet light (UV) Nucleotide excision repair (NER) Global genome repair Transcription coupled repair UV-photolesions Xeroderma pigmentosum Cockayne Syndrome Trichothiodystrophy DNA damage recognition Dual incision Repair synthesis DNA damage signalling UV induced skin cancer Chromatin Mouse models UV-induced mutations Ubiquitylation ATM/ATR kinases 



This work was supported by grants from ZonMw (912-03-012 and 917-46-364) and from EU (MRTN-Ct-2003-503618).


  1. 1.
    Aboussekhra, A., Biggerstaff, M., Shivji, M.K., Vilpo, J.A., Moncollin, V., Podust, V.N., Protic, M., Hubscher, U., Egly, J.M., and Wood, R.D. (1995). Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell, 80, 859–868.PubMedCrossRefGoogle Scholar
  2. 2.
    Alekseev, S., Kool, H., Rebel, H., Fousteri, M., Moser, J., Backendorf, C., de Gruijl, F.R., Vrieling, H., and Mullenders, L.H. (2005). Enhanced DDB2 expression protects mice from carcinogenic effects of chronic UV-B irradiation. Cancer Res., 65, 10298–10306.PubMedCrossRefGoogle Scholar
  3. 3.
    Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y., and Hanaoka, F. (2001). Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J. Biol. Chem., 276, 18665–18672.PubMedCrossRefGoogle Scholar
  4. 4.
    Auclair, Y., Rouget, R., Affar, E.B., and Drobetsky, E.A. (2008). ATR kinase is required for global genomic nucleotide excision repair exclusively during S phase in human cells. Proc. Natl Acad. Sci. U.S.A, 105, 17896–17901.PubMedCrossRefGoogle Scholar
  5. 5.
    Batty, D., Rapic’-Otrin, V., Levine, A.S., and Wood, R.D. (2000). Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J. Mol. Biol., 300, 275–290.PubMedCrossRefGoogle Scholar
  6. 6.
    Berg, R.J., Ruven, H.J., Sands, A.T., de Gruijl, F.R., and Mullenders, L.H. (1998). Defective global genome repair in XPC mice is associated with skin cancer susceptibility but not with sensitivity to UVB induced erythema and edema. J. Invest Dermatol., 110, 405–409.PubMedCrossRefGoogle Scholar
  7. 7.
    Bergink, S., Salomons, F.A., Hoogstraten, D., Groothuis, T.A., de Waard, H., Wu, J., Yuan, L., Citterio, E., Houtsmuller, A.B., Neefjes, J., Hoeijmakers, J.H., Vermeulen, W., and Dantuma, N.P. (2006). DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes Dev., 20, 1343–1352.PubMedCrossRefGoogle Scholar
  8. 8.
    Birger, Y., West, K.L., Postnikov, Y.V., Lim, J.H., Furusawa, T., Wagner, J.P., Laufer, C.S., Kraemer, K.H., and Bustin, M. (2003). Chromosomal protein HMGN1 enhances the rate of DNA repair in chromatin. EMBO J., 22, 1665–1675.PubMedCrossRefGoogle Scholar
  9. 9.
    Camenisch, U., Dip, R., Schumacher, S.B., Schuler, B., and Naegeli, H. (2006). Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. Nat. Struct. Mol. Biol., 13, 278–284.PubMedCrossRefGoogle Scholar
  10. 10.
    Camenisch, U., Dip, R., Vitanescu, M., and Naegeli, H. (2007). Xeroderma pigmentosum complementation group A protein is driven to nucleotide excision repair sites by the electrostatic potential of distorted DNA. DNA Repair (Amst), 6, 1819–1828.CrossRefGoogle Scholar
  11. 11.
    Citterio, E., van den Boom, V., Schnitzler, G., Kanaar, R., Bonte, E., Kingston, R.E., Hoeijmakers, J.H., and Vermeulen, W. (2000). ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell Biol., 20, 7643–7653.PubMedCrossRefGoogle Scholar
  12. 12.
    Coin, F., Oksenych, V., and Egly, J.M. (2007). Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol. Cell, 26, 245–256.PubMedCrossRefGoogle Scholar
  13. 13.
    Datta, A., Bagchi, S., Nag, A., Shiyanov, P., Adami, G.R., Yoon, T., and Raychaudhuri, P. (2001). The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat. Res., 486, 89–97.PubMedGoogle Scholar
  14. 14.
    de Laat, W.L., Appeldoorn, E., Sugasawa, K., Weterings, E., Jaspers, N.G., and Hoeijmakers, J.H. (1998). DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev., 12, 2598–2609.PubMedCrossRefGoogle Scholar
  15. 15.
    Delacroix, S., Wagner, J.M., Kobayashi, M., Yamamoto, K., and Karnitz, L.M. (2007). The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev., 21, 1472–1477.PubMedCrossRefGoogle Scholar
  16. 16.
    Derheimer, F.A., O’Hagan, H.M., Krueger, H.M., Hanasoge, S., Paulsen, M.T., and Ljungman, M. (2007). RPA and ATR link transcriptional stress to p53. Proc. Natl Acad. Sci. U.S.A, 104, 12778–12783.PubMedCrossRefGoogle Scholar
  17. 17.
    Dunand-Sauthier, I., Hohl, M., Thorel, F., Jaquier-Gubler, P., Clarkson, S.G., and Scharer, O.D. (2005). The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J. Biol. Chem., 280, 7030–7037.PubMedCrossRefGoogle Scholar
  18. 18.
    Evans, E., Fellows, J., Coffer, A., and Wood, R.D. (1997). Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J., 16, 625–638.PubMedCrossRefGoogle Scholar
  19. 19.
    Ford, J.M. and Hanawalt, P.C. (1995). Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc. Natl Acad. Sci. U.S.A., 92, 8876–8880.PubMedCrossRefGoogle Scholar
  20. 20.
    Fousteri, M., Vermeulen, W., van Zeeland, A.A., and Mullenders, L.H. (2006). Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell, 23, 471–482.PubMedCrossRefGoogle Scholar
  21. 21.
    Frit, P., Kwon, K., Coin, F., Auriol, J., Dubaele, S., Salles, B., and Egly, J.M. (2002). Transcriptional activators stimulate DNA repair. mol. cell, 10, 1391–1401Google Scholar
  22. 22.
    Gaillard, H., Fitzgerald, D.J., Smith, C.L., Peterson, C.L., Richmond, T.J., and Thoma, F. (2003). Chromatin remodeling activities act on UV-damaged nucleosomes and modulate DNA damage accessibility to photolyase. J. Biol. Chem., 278, 17655–17663.PubMedCrossRefGoogle Scholar
  23. 23.
    Gerard, A., Koundrioukoff, S., Ramillon, V., Sergere, J.C., Mailand, N., Quivy, J.P., and Almouzni, G. (2006). The replication kinase Cdc7-Dbf4 promotes the interaction of the p150 subunit of chromatin assembly factor 1 with proliferating cell nuclear antigen. EMBO Rep., 7, 817–823.PubMedGoogle Scholar
  24. 24.
    Gillet, L.C. and Scharer, O.D. (2006). Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev., 106, 253–276.PubMedCrossRefGoogle Scholar
  25. 25.
    Gong, F., Fahy, D., and Smerdon, M.J. (2006). Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair. Nat. Struct. Mol. Biol., 13, 902–907.PubMedCrossRefGoogle Scholar
  26. 26.
    Green, C.M. and Almouzni, G. (2002). When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep., 3, 28–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A.F., Tanaka, K., and Nakatani, Y. (2003). The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell, 113, 357–367.PubMedCrossRefGoogle Scholar
  28. 28.
    Hara, R., Mo, J., and Sancar, A. (2000). DNA damage in the nucleosome core is refractory to repair by human excision nuclease. Mol. Cell Biol., 20, 9173–9181.PubMedCrossRefGoogle Scholar
  29. 29.
    Hara, R. and Sancar, A. (2003). Effect of damage type on stimulation of human excision nuclease by SWI/SNF chromatin remodeling factor. Mol. Cell Biol., 23, 4121–4125.PubMedCrossRefGoogle Scholar
  30. 30.
    Hasan, S., Hassa, P.O., Imhof, R., and Hottiger, M.O. (2001). Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature, 410, 387–391.PubMedCrossRefGoogle Scholar
  31. 31.
    Hendriks, G., Calleja, F., Vrieling, H., Mullenders, L.H., Jansen, J.G., and de Wind, N. (2008). Gene transcription increases DNA damage-induced mutagenesis in mammalian stem cells. DNA Repair (Amst), 7, 1330–1339.CrossRefGoogle Scholar
  32. 32.
    Hoogstraten, D., Nigg, A.L., Heath, H., Mullenders, L.H., van Driel, R., Hoeijmakers, J.H., Vermeulen, W., and Houtsmuller, A.B. (2002). Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol. Cell, 10, 1163–1174.PubMedCrossRefGoogle Scholar
  33. 33.
    Hoogstraten, D., Nigg, A.L., van Cappellen, W.A., Hoeijmakers, J.H., Houtsmuller, A.B., and Vermeulen, W. (2003). DNA-damage sensing in living cells by xeroderma pigmentosum group C. Thesis.Google Scholar
  34. 34.
    Hwang, B.J., Ford, J.M., Hanawalt, P.C., and Chu, G. (1999). Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl Acad. Sci. U.S.A., 96, 424–428.PubMedCrossRefGoogle Scholar
  35. 35.
    Ito, S., Kuraoka, I., Chymkowitch, P., Compe, E., Takedachi, A., Ishigami, C., Coin, F., Egly, J.M., and Tanaka, K. (2007). XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol. Cell, 26, 231–243.PubMedCrossRefGoogle Scholar
  36. 36.
    Janicijevic, A., Sugasawa, K., Shimizu, Y., Hanaoka, F., Wijgers, N., Djurica, M., Hoeijmakers, J.H., and Wyman, C. (2003). DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair (Amst), 2, 325–336.CrossRefGoogle Scholar
  37. 37.
    Jans, J., Schul, W., Sert, Y.G., Rijksen, Y., Rebel, H., Eker, A.P., Nakajima, S., van Steeg, H., de Gruijl, F.R., Yasui, A., Hoeijmakers, J.H., and van der Horst, G.T. (2005). Powerful skin cancer protection by a CPD-photolyase transgene. Curr. Biol., 15, 105–115.PubMedCrossRefGoogle Scholar
  38. 38.
    Jaspers, N.G., Raams, A., Silengo, M.C., Wijgers, N., Niedernhofer, L.J., Robinson, A.R., Giglia-Mari, G., Hoogstraten, D., Kleijer, W.J., Hoeijmakers, J.H., and Vermeulen, W. (2007). First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am. J. Hum. Genet., 80, 457–466.PubMedCrossRefGoogle Scholar
  39. 39.
    Kapetanaki, M.G., Guerrero-Santoro, J., Bisi, D.C., Hsieh, C.L., Rapic-Otrin, V., and Levine, A.S. (2006). The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc. Natl Acad. Sci. U.S.A., 103, 2588–2593.PubMedCrossRefGoogle Scholar
  40. 40.
    Keeney, S., Chang, G.J., and Linn, S. (1993). Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J. Biol. Chem., 268, 21293–21300.PubMedGoogle Scholar
  41. 41.
    Kumagai, A., Lee, J., Yoo, H.Y., and Dunphy, W.G. (2006). TopBP1 activates the ATR-ATRIP complex. Cell, 124, 943–955.PubMedCrossRefGoogle Scholar
  42. 42.
    Kuraoka, I., Ito, S., Wada, T., Hayashida, M., Lee, L., Saijo, M., Nakatsu, Y., Matsumoto, M., Matsunaga, T., Handa, H., Qin, J., Nakatani, Y., and Tanaka, K. (2008). Isolation of XAB2 complex involved in pre-mRNA splicing, transcription, and transcription-coupled repair. J. Biol. Chem., 283, 940–950.PubMedCrossRefGoogle Scholar
  43. 43.
    Lange, S.S., Mitchell, D.L., and Vasquez, K.M. (2008). High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proc. Natl. Acad. Sci. U.S.A., 105, 10320–10325.PubMedCrossRefGoogle Scholar
  44. 44.
    Lim, J.H., Catez, F., Birger, Y., West, K.L., Prymakowska-Bosak, M., Postnikov, Y.V., and Bustin, M. (2004). Chromosomal protein HMGN1 modulates histone H3 phosphorylation. Mol. Cell, 15, 573–584.PubMedCrossRefGoogle Scholar
  45. 45.
    Lim, J.H., West, K.L., Rubinstein, Y., Bergel, M., Postnikov, Y.V., and Bustin, M. (2005). Chromosomal protein HMGN1 enhances the acetylation of lysine 14 in histone H3. EMBO J., 24, 3038–3048.PubMedCrossRefGoogle Scholar
  46. 46.
    Ljungman, M., Zhang, F., Chen, F., Rainbow, A.J., and McKay, B.C. (1999). Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene, 18, 583–592.PubMedCrossRefGoogle Scholar
  47. 47.
    Maga, G. and Hubscher, U. (2003). Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci., 116, 3051–3060.PubMedCrossRefGoogle Scholar
  48. 48.
    Marini, F., Nardo, T., Giannattasio, M., Minuzzo, M., Stefanini, M., Plevani, P., and Falconi, M.M. (2006). DNA nucleotide excision repair-dependent signaling to checkpoint activation. Proc. Natl Acad. Sci. U.S.A., 103, 17325–17330.PubMedCrossRefGoogle Scholar
  49. 49.
    Marti, T.M., Hefner, E., Feeney, L., Natale, V., and Cleaver, J.E. (2006). H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc. Natl Acad. Sci. U.S.A., 103, 9891–9896.PubMedCrossRefGoogle Scholar
  50. 50.
    Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P.J., and Bootsma, D., (1994). Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J., 13, 1831–1843.PubMedGoogle Scholar
  51. 51.
    Matsumoto, M., Yaginuma, K., Igarashi, A., Imura, M., Hasegawa, M., Iwabuchi, K., Date, T., Mori, T., Ishizaki, K., Yamashita, K., Inobe, M., and Matsunaga, T. (2007). Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. J. Cell Sci., 120, 1104–1112.PubMedCrossRefGoogle Scholar
  52. 52.
    Matsunaga, T., Mu, D., Park, C.H., Reardon, J.T., and Sancar, A. (1995). Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J. Biol. Chem., 270, 20862–20869.PubMedCrossRefGoogle Scholar
  53. 53.
    Mayne, L.V. and Lehmann, A.R. (1982). Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res., 42, 1473–1478.PubMedGoogle Scholar
  54. 54.
    Min, J.H. and Pavletich, N.P. (2007). Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature, 449, 570–575.PubMedCrossRefGoogle Scholar
  55. 55.
    Moggs, J.G., Yarema, K.J., Essigmann, J.M., and Wood, R.D. (1996). Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct. J. Biol. Chem., 271, 7177–7186.PubMedCrossRefGoogle Scholar
  56. 56.
    Mone, M.J., Volker, M., Nikaido, O., Mullenders, L.H., van Zeeland, A.A., Verschure, P.J., Manders, E.M., and van Driel, R. (2001). Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep., 2, 1013–1017.PubMedCrossRefGoogle Scholar
  57. 57.
    Moser, J., Kool, H., Giakzidis, I., Caldecott, K., Mullenders, L.H., and Fousteri, M.I. (2007). Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol. Cell, 27, 311–323.PubMedCrossRefGoogle Scholar
  58. 58.
    Moser, J., Volker, M., Kool, H., Alekseev, S., Vrieling, H., Yasui, A., van Zeeland, A.A., and Mullenders, L.H. (2005). The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair (Amst), 4, 571–582.CrossRefGoogle Scholar
  59. 59.
    Mu, D. and Sancar, A. (1997). Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J. Biol. Chem., 272, 7570–7573.PubMedCrossRefGoogle Scholar
  60. 60.
    Mullenders, L.H. (1998). Transcription response and nucleotide excision repair. Mutat. Res., 409, 59–64.PubMedGoogle Scholar
  61. 61.
    Mullenders, L.H., van Kesteren, A.C., Bussmann, C.J., van Zeeland, A.A., and Natarajan, A.T. (1986). Distribution of u.v.-induced repair events in higher-order chromatin loops in human and hamster fibroblasts. Carcinogenesis, 7, 995–1002.PubMedCrossRefGoogle Scholar
  62. 62.
    Mullenders, L.H., Vrieling, H., Venema, J., and van Zeeland, A.A. (1991). Hierarchies of DNA repair in mammalian cells: biological consequences. Mutat. Res., 250, 223–228.PubMedGoogle Scholar
  63. 63.
    Newman, J.C., Bailey, A.D., and Weiner, A.M. (2006). Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling. Proc. Natl. Acad. Sci. U.S.A., 103, 9613–9618.PubMedCrossRefGoogle Scholar
  64. 64.
    Niedernhofer, L.J., Garinis, G.A., Raams, A., Lalai, A.S., Robinson, A.R., Appeldoorn, E., Odijk, H., Oostendorp, R., Ahmad, A., van Leeuwen, W., Theil, A.F., Vermeulen, W., van der Horst, G.T., Meinecke, P., Kleijer, W.J., Vijg, J., Jaspers, N.G., and Hoeijmakers, J.H. (2006). A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 444, 1038–1043.PubMedCrossRefGoogle Scholar
  65. 65.
    O’Donovan, A., Davies, A.A., Moggs, J.G., West, S.C., and Wood, R.D. (1994). XPG endonuclease makes the 3 incision in human DNA nucleotide excision repair. Nature, 371, 432–435.PubMedCrossRefGoogle Scholar
  66. 66.
    O’Driscoll, M., Ruiz-Perez, V.L., Woods, C.G., Jeggo, P.A., and Goodship, J.A. (2003). A splicing mutation affecting expression of ataxia-telangiectasia and Rad3–related protein (ATR) results in Seckel syndrome. Nat. Genet., 33, 497–501.PubMedCrossRefGoogle Scholar
  67. 67.
    Ogi, T. and Lehmann, A.R. (2006). The Y-family DNA polymerase kappa (pol kappa) functions in mammalian nucleotide-excision repair. Nat. Cell Biol., 8, 640–642.PubMedCrossRefGoogle Scholar
  68. 68.
    Park, C.H., Mu, D., Reardon, J.T., and Sancar, A. (1995). The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J. Biol. Chem., 270, 4896–4902.PubMedCrossRefGoogle Scholar
  69. 69.
    Pines, A., Backendorf, C., Alekseev, S., Jansen, J.G., de Gruijl, F.R., Vrieling, H., and Mullenders, L.H. (2008). Differential activity of UV-DDB in mouse keratinocytes and fibroblasts: Impact on DNA repair and UV-induced skin cancer. DNA Repair (Amst).Google Scholar
  70. 70.
    Politi, A., Mone, M.J., Houtsmuller, A.B., Hoogstraten, D., Vermeulen, W., Heinrich, R., and van Driel, R. (2005). Mathematical modeling of nucleotide excision repair reveals efficiency of sequential assembly strategies. Mol. Cell, 19, 679–690.PubMedCrossRefGoogle Scholar
  71. 71.
    Polo, S.E., Roche, D., and Almouzni, G. (2006). New histone incorporation marks sites of UV repair in human cells. Cell, 127, 481–493.PubMedCrossRefGoogle Scholar
  72. 72.
    Rademakers, S., Volker, M., Hoogstraten, D., Nigg, A.L., Mone, M.J., van Zeeland, A.A., Hoeijmakers, J.H., Houtsmuller, A.B., and Vermeulen, W. (2003). Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions. Mol. Cell Biol., 23, 5755–5767.PubMedCrossRefGoogle Scholar
  73. 73.
    Ramanathan, B. and Smerdon, M.J. (1989). Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J. Biol. Chem., 264, 11026–11034.PubMedGoogle Scholar
  74. 74.
    Rapic-Otrin, V., McLenigan, M.P., Bisi, D.C., Gonzalez, M., and Levine, A.S. (2002). Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res., 30, 2588–2598.PubMedCrossRefGoogle Scholar
  75. 75.
    Rebel, H., Kram, N., Westerman, A., Banus, S., van Kranen, H.J., and de Gruijl, F.R. (2005). Relationship between UV-induced mutant p53 patches and skin tumours, analysed by mutation spectra and by induction kinetics in various DNA-repair-deficient mice. Carcinogenesis, 26, 2123–2130.PubMedCrossRefGoogle Scholar
  76. 76.
    Riedl, T., Hanaoka, F., and Egly, J.M. (2003). The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J., 22, 5293–5303.PubMedCrossRefGoogle Scholar
  77. 77.
    Rockx, D.A., Mason, R., van Hoffen, A., Barton, M.C., Citterio, E., Bregman, D.B., van Zeeland, A.A., Vrieling, H., and Mullenders, L.H. (2000). UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc. Natl. Acad. Sci. U.S.A., 97, 10503–10508.PubMedCrossRefGoogle Scholar
  78. 78.
    Sarker, A.H., Tsutakawa, S.E., Kostek, S., Ng, C., Shin, D.S., Peris, M., Campeau, E., Tainer, J.A., Nogales, E., and Cooper, P.K. (2005). Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol. Cell, 20, 187–198.PubMedCrossRefGoogle Scholar
  79. 79.
    Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D.A., Smith, S., Uziel, T., Sfez, S., Ashkenazi, M., Pecker, I., Frydman, M., Harnik, R., Patanjali, S.R., Simmmons, A., Clines, G.A., Sartiel, A., Gatti, R.A., Chessa, L., Sanal, O., Lavin, M.F., Jaspers, N.G., Taylor, A.M.,Arlett, C.F., Miki, T., Weissman, S.M., Lovett, M., Collins, F.S., and Shiloh, Y.(1995). A single ataxia telangiectasia gene with a product simillar to PI-3 Kinase. Science, 268, 1749–1753.Google Scholar
  80. 80.
    Selby, C.P. and Sancar, A. (1994). Mechanisms of transcription-repair coupling and mutation frequency decline. Microbiol. Rev., 58, 317–329.PubMedGoogle Scholar
  81. 81.
    Selby, C.P., Witkin, E.M., and Sancar, A. (1991). Escherichia coli mfd mutant deficient in “mutation frequency decline” lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc. Natl Acad. Sci. U.S.A., 88, 11574–11578.PubMedCrossRefGoogle Scholar
  82. 82.
    Shivji, K.K., Kenny, M.K., and Wood, R.D. (1992). Proliferating cell nuclear antigen is required for DNA excision repair. Cell, 69, 367–374.PubMedCrossRefGoogle Scholar
  83. 83.
    Shivji, M.K., Podust, V.N., Hubscher, U., and Wood, R.D. (1995). Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry, 34, 5011–5017.PubMedCrossRefGoogle Scholar
  84. 84.
    Sijbers, A.M., de Laat, W.L., Ariza, R.R., Biggerstaff, M., Wei, Y.F., Moggs, J.G., Carter, K.C., Shell, B.K., Evans, E., de Jong, M.C., Rademakers, S., de Rooij, J., Jaspers, N.G., Hoeijmakers, J.H., and Wood, R.D. (1996). Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell, 86, 811–822.PubMedCrossRefGoogle Scholar
  85. 85.
    Smerdon, M.J., Lan, S.Y., Calza, R.E., and Reeves, R. (1982). Sodium butyrate stimulates DNA repair in UV-irradiated normal and xeroderma pigmentosum human fibroblasts. J. Biol. Chem., 257, 13441–13447.PubMedGoogle Scholar
  86. 86.
    Spatz, A., Giglia-Mari, G., Benhamou, S., and Sarasin, A. (2001). Association between DNA repair-deficiency and high level of p53 mutations in melanoma of Xeroderma pigmentosum. cancer Res., 61, 2480–2486.Google Scholar
  87. 87.
    Stiff, T., Cerosaletti, K., Concannon, P., O’Driscoll, M., and Jeggo, P.A. (2008). Replication independent ATR signalling leads to G2/M arrest requiring Nbs1, 53BP1 and MDC1. Hum. Mol. Genet., 17, 3247–3253.PubMedCrossRefGoogle Scholar
  88. 88.
    Stout, G.J., Oosten, M., Acherrat, F.Z., Wit, J., Vermeij, W.P., Mullenders, L.H., Gruijl, F.R., and Backendorf, C. (2005). Selective DNA damage responses in murine Xpa–/–, Xpc–/– and Csb–/– keratinocyte cultures. DNA Repair (Amst), 4, 1337–1344.CrossRefGoogle Scholar
  89. 89.
    Sugasawa, K. and Hanaoka, F. (2007). Sensing of DNA damage by XPC/Rad4: one protein for many lesions. Nat. Struct. Mol. Biol., 14, 887–888.PubMedCrossRefGoogle Scholar
  90. 90.
    Sugasawa, K., Ng, J.M., Masutani, C., Iwai, S., van der Spek, P.J., Eker, A.P., Hanaoka, F., Bootsma, D., and Hoeijmakers, J.H. (1998). Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell, 2, 223–232.PubMedCrossRefGoogle Scholar
  91. 91.
    Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., Tanaka, K., and Hanaoka, F. (2005). UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell, 121, 387–400.PubMedCrossRefGoogle Scholar
  92. 92.
    Tang, J.Y., Hwang, B.J., Ford, J.M., Hanawalt, P.C., and Chu, G. (2000). Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol. Cell, 5, 737–744.PubMedCrossRefGoogle Scholar
  93. 93.
    Ura, K., Araki, M., Saeki, H., Masutani, C., Ito, T., Iwai, S., Mizukoshi, T., Kaneda, Y., and Hanaoka, F. (2001). ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J., 20, 2004–2014.PubMedCrossRefGoogle Scholar
  94. 94.
    van Gool, A.J., Citterio, E., Rademakers, S., van Os, R., Vermeulen, W., Constantinou, A., Egly, J.M., Bootsma, D., and Hoeijmakers, J.H. (1997). The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J., 16, 5955–5965.PubMedCrossRefGoogle Scholar
  95. 95.
    van Oosten, M., Rebel, H., Friedberg, E.C., van Steeg, H., van der Horst, G.T., van Kranen, H.J., Westerman, A., van Zeeland, A.A., Mullenders, L.H., and de Gruijl, F.R. (2000). Differential role of transcription-coupled repair in UVB-induced G2 arrest and apoptosis in mouse epidermis. Proc. Natl Acad. Sci. U.S.A., 97, 11268–11273.PubMedCrossRefGoogle Scholar
  96. 96.
    van Oosterwijk, M.F., Versteeg, A., Filon, R., van Zeeland, A.A., and Mullenders, L.H. (1996). The sensitivity of Cockayne’s syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes. Mol. Cell Biol., 16, 4436–4444.PubMedGoogle Scholar
  97. 97.
    Volker, M., Mone, M.J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J.H., van Driel, R., van Zeeland, A.A., and Mullenders, L.H. (2001). Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell, 8, 213–224.PubMedCrossRefGoogle Scholar
  98. 98.
    Wakasugi, M., Reardon, J.T., and Sancar, A. (1997). The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J. Biol. Chem., 272, 16030–16034.PubMedCrossRefGoogle Scholar
  99. 99.
    Wang, H., Zhai, L., Xu, J., Joo, H.Y., Jackson, S., Erdjument-Bromage, H., Tempst, P., Xiong, Y., and Zhang, Y. (2006). Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell, 22, 383–394.PubMedCrossRefGoogle Scholar
  100. 100.
    Wijnhoven, S.W., Kool, H.J., Mullenders, L.H., Slater, R., van Zeeland, A.A., and Vrieling, H. (2001). DMBA-induced toxic and mutagenic responses vary dramatically between NER-deficient Xpa, Xpc and Csb mice. Carcinogenesis, 22, 1099–1106.PubMedCrossRefGoogle Scholar
  101. 101.
    Yamaizumi, M. and Sugano, T. (1994). U.v.-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene, 9, 2775–2784.PubMedGoogle Scholar
  102. 102.
    Yarosh, D.B. (2002). Enhanced DNA repair of cyclobutane pyrimidine dimers changes the biological response to UV-B radiation. Mutat. Res., 509, 221–226.PubMedGoogle Scholar
  103. 103.
    Yu, Y., Teng, Y., Liu, H., Reed, S.H., and Waters, R. (2005). UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus. Proc. Natl Acad. Sci. U.S.A., 102, 8650–8655.PubMedCrossRefGoogle Scholar
  104. 104.
    Zotter, A., Luijsterburg, M.S., Warmerdam, D.O., Ibrahim, S., Nigg, A., van Cappellen, W.A., Hoeijmakers, J.H., van Driel, R., Vermeulen, W., and Houtsmuller, A.B. (2006). Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced DNA damage depends on functional TFIIH. Mol. Cell Biol., 26, 8868–8879.PubMedCrossRefGoogle Scholar
  105. 105.
    Zou, L. and Elledge, S.J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 300, 1542–1548.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of ToxicogeneticsLeiden University Medical CenterLeidenNederland

Personalised recommendations