Skip to main content
  • 962 Accesses

Abstract

When the replication machinery encounters a DNA lesion, it is able to continue to replicate the DNA either by damage avoidance processes involving switching templates, or by translesion synthesis past the lesion using specialized DNA polymerases. Most of these polymerases are in the Y-family and have open structures that enable them to accommodate particular damaged bases in their active sites. Translesion synthesis can be error-free or error-prone and defective DNA polymerase η results in the variant form of the highly skin-cancer prone disorder xeroderma pigmentosum. Single-stranded regions of DNA exposed at sites of stalled replication forks trigger the ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA). This increases the affinity of the Y-family polymerases for PCNA, as they all contain ubiquitin-binding domains, and provides a mechanism for the recruitment of these enzymes to stalled replication forks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BP:

benzo[a]pyrene

CPD:

cyclobutane pyrimidine dimers

MMS:

methyl methanesulfonate

SHM:

somatic hypermutation

NER:

nucleotide excision repair

TLS:

Translesion synthesis

UV:

ultraviolet

XP:

xeroderma pigmentosum

XP-V:

xeroderma pigmentosum variant

References

  1. Albertella, M. R., Green, C. M., Lehmann, A. R., and O’Connor, M. J. (2005). A role for polymerase eta in the cellular tolerance to cisplatin-induced damage. Cancer Res 65, 9799–9806.

    PubMed  CAS  Google Scholar 

  2. Andersen, P. L., Xu, F., and Xiao, W. (2008). Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18, 162–173.

    PubMed  CAS  Google Scholar 

  3. Arakawa, H., Moldovan, G. L., Saribasak, H., Saribasak, N. N., Jentsch, S., and Buerstedde, J. M. (2006). A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol 4, e366.

    PubMed  Google Scholar 

  4. Arlett, C. F., Harcourt, S. A., and Broughton, B. C. (1975). The influence of caffeine on cell survival in excision- proficient and excision-deficient xeroderma pigmentosum and normal human cell strains following ultraviolet light irradiation. Mutat. Res. 33, 341–346.

    PubMed  CAS  Google Scholar 

  5. Avkin, S., Goldsmith, M., Velasco-Miguel, S., Geacintov, N., Friedberg, E. C., and Livneh, Z. (2004). Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymeraseκ. J Biol Chem 279, 53298–58305.

    PubMed  CAS  Google Scholar 

  6. Bavoux, C., Leopoldino, A. M., Bergoglio, V., J, O. W., Ogi, T., Bieth, A., Judde, J. G., Pena, S. D., Poupon, M. F., Helleday, T., et al. (2005). Up-regulation of the error-prone DNA polymerase κ promotes pleiotropic genetic alterations and tumorigenesis. Cancer Res 65, 325–330.

    PubMed  CAS  Google Scholar 

  7. Becherel, O. J., Fuchs, R. P. P., and Wagner, J. (2002). Pivotal role of the β-clamp in translesion DNA synthesis and mutagenesis in E. coli cells. DNA Repair 1, 703–708.

    PubMed  CAS  Google Scholar 

  8. Bi, X., Barkley, L. R., Slater, D. M., Tateishi, S., Yamaizumi, M., Ohmori, H., and Vaziri, C. (2006). Rad18 regulates DNA polymerase κ and is required for recovery from S-phase checkpoint-mediated arrest. Mol Cell Biol 26, 3527–3540.

    PubMed  CAS  Google Scholar 

  9. Bienko, M., Green, C. M., Crosetto, N., Rudolf, F., Zapart, G., Coull, B., Kannouche, P., Wider, G., Peter, M., Lehmann, A. R., et al. (2005). Ubiquitin-binding domains in translesion synthesis polymerases. Science 310, 1821–1824.

    PubMed  CAS  Google Scholar 

  10. Blastyak, A., Pinter, L., Unk, I., Prakash, L., Prakash, S., and Haracska, L. (2007). Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28, 167–175.

    PubMed  CAS  Google Scholar 

  11. Bresson, A., and Fuchs, R. P. (2002). Lesion bypass in yeast cells: Polη participates in a multi-DNA polymerase process. Embo J 21, 3881–3887.

    PubMed  CAS  Google Scholar 

  12. Burr, K. L., Velasco-Miguel, S., Duvvuri, V. S., McDaniel, L. D., Friedberg, E. C., and Dubrova, Y. E. (2006). Elevated mutation rates in the germline of Polkappa mutant male mice. DNA Repair (Amst) 5, 860–862.

    CAS  Google Scholar 

  13. Busuttil, R. A., Lin, Q., Stambrook, P. J., Kucherlapati, R., and Vijg, J. (2008). Mutation frequencies and spectra in DNA polymerase η-deficient mice. Cancer Res 68, 2081–2084.

    PubMed  CAS  Google Scholar 

  14. Chang, D. J., Lupardus, P. J., and Cimprich, K. A. (2006). Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities. J Biol Chem 281, 32081–32088.

    PubMed  CAS  Google Scholar 

  15. Chen, S., Davies, A. A., Sagan, D., and Ulrich, H. D. (2005). The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner. Nucleic Acids Res 33, 5878–5886.

    PubMed  CAS  Google Scholar 

  16. Chen, Y. W., Cleaver, J. E., Hanaoka, F., Chang, C. F., and Chou, K. M. (2006). A novel role of DNA polymerase eta in modulating cellular sensitivity to chemotherapeutic agents. Mol Cancer Res 4, 257–265.

    PubMed  CAS  Google Scholar 

  17. Chiu, R. K., Brun, J., Ramaekers, C., Theys, J., Werng, L., Lambin, P., Gray, D. A., and Wouters, B. G. (2006). Lysine 63-polyubiquitination guards against translesion synthesis-induced mutations. PLOS Genet 2, e116.

    PubMed  Google Scholar 

  18. Choi, J. H., Besaratinia, A., Lee, D. H., Lee, C. S., and Pfeifer, G. P. (2006). The role of DNA polymerase iota in UV mutational spectra. Mutat Res 599, 58–65.

    PubMed  CAS  Google Scholar 

  19. Clark, D. R., Zacharias, W., Panaitescu, L., and McGregor, W. G. (2003). Ribozyme-mediated REV1 inhibition reduces the frequency of UV-induced mutations in the human HPRT gene. Nucleic Acids Res 31, 4981–4988.

    PubMed  CAS  Google Scholar 

  20. Cleaver, J. E., Afzal, V., Feeney, L., McDowell, M., Sadinski, W., Volpe, J. P., Busch, D. B., Coleman, D. M., Ziffer, D. W., Yu, Y., et al. (1999). Increased ultraviolet sensitivity and chromosomal instability related to p53 function in the xeroderma pigmentosum variant. Cancer Res 59, 1102–1108.

    PubMed  CAS  Google Scholar 

  21. Cohn, M. A., Kowal, P., Yang, K., Haas, W., Huang, T. T., Gygi, S. P., and D’Andrea, A. D. (2007). A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol Cell 28, 786–797.

    PubMed  CAS  Google Scholar 

  22. Davies, A. A., Huttner, D., Daigaku, Y., Chen, S., and Ulrich, H. D. (2008). Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein A. Molecular Cell 29, 625–636.

    PubMed  CAS  Google Scholar 

  23. Delbos, F., Aoufouchi, S., Faili, A., Weill, J. C., and Reynaud, C. A. (2007). DNA polymerase η is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse. J Exp Med 204, 17–23.

    PubMed  CAS  Google Scholar 

  24. Diaz, M., Watson, N. B., Turkington, G., Verkoczy, L. K., Klinman, N. R., and McGregor, W. G. (2003). Decreased frequency and highly aberrant spectrum of ultraviolet-induced mutations in the hprt gene of mouse fibroblasts expressing antisense RNA to DNA polymerase ζ. Mol Cancer Res 1, 836–847.

    PubMed  CAS  Google Scholar 

  25. Dumstorf, C., Clark, A. B., Q., L., Kissling, G. E., Yuan, T., Kucherlapati, R., McGregor, W. G., and Kunkel, T. A. (2006). Participation of mouse DNA polymerase ι in strand-biased mutagenic bypass of UV photoproducts and suppression of skin cancer. Proc Natl Acad Sci, USA 103, 18083–18088.

    PubMed  CAS  Google Scholar 

  26. Edmunds, C. E., Simpson, L. J., and Sale, J. E. (2008). PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol Cell 30, 519–529.

    PubMed  CAS  Google Scholar 

  27. Frampton, J., Irmisch, A., Green, C. M., Neiss, A., Trickey, M., Ulrich, H. D., Furuya, K., Watts, F. Z., Carr, A. M., and Lehmann, A. R. (2006). Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol Biol Cell 17, 2976–2985.

    PubMed  CAS  Google Scholar 

  28. Friedberg, E. C. (2005). Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Biol 6, 943–953.

    PubMed  CAS  Google Scholar 

  29. Friedberg, E. C., Lehmann, A. R., and Fuchs, R. P. (2005a). Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol Cell 18, 499–505.

    PubMed  CAS  Google Scholar 

  30. Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., and Ellenberger, T. (2005b). DNA Repair and Mutagenesis, second edition (Washington DC: ASM Press).

    Google Scholar 

  31. Fu, Y., Zhu, Y., Zhang, K., Yeung, M., Durocher, D., and Xiao, W. (2008). Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell 133, 601–611.

    PubMed  CAS  Google Scholar 

  32. Garg, P., and Burgers, P. M. (2005). Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases η and REV1. Proc Natl Acad Sci USA 102, 18361–18366.

    PubMed  CAS  Google Scholar 

  33. Gerlach, V. L., Aravind, L., Gotway, G., Schultz, R. A., Koonin, E. V., and Friedberg, E. C. (1999). Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc Natl Acad Sci USA 96, 11922–11927.

    PubMed  CAS  Google Scholar 

  34. Gibbs, P. E., McDonald, J., Woodgate, R., and Lawrence, C. W. (2005). The relative roles in vivo of Saccharomyces cerevisiae Pol η, Pol ζ, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer. Genetics 169, 575–582.

    PubMed  CAS  Google Scholar 

  35. Gibbs, P. E. M., McGregor, W. G., Maher, V. M., Nisson, P., and Lawrence, C. W. (1998). A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ. Proc Natl Acad Sci USA 95, 6876–6880.

    PubMed  CAS  Google Scholar 

  36. Gibbs, P. E. M., Wang, X.-D., Li, Z., McManus, T. P., McGregor, G., Lawrence, C. W., and Maher, V. M. (2000). The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by ultraviolet light. Proc Natl Acad Sci USA 97, 4186–4191.

    PubMed  CAS  Google Scholar 

  37. Goehler, T., Munoz, I. M., Rouse, J., and Blow, J. J. (2008). PTIP/Swift is required for efficient PCNA ubiquitination in response to DNA damage. DNA Repair (Amst) 7, 775–787.

    CAS  Google Scholar 

  38. Gueranger, Q., Stary, A., Aoufouchi, S., Faili, A., Sarasin, A., Reynaud, C. A., and Weill, J. C. (2008). Role of DNA polymerases η, ι and ζ in UV resistance and UV-induced mutagenesis in a human cell line. DNA Repair (Amst) 7, 1551–1562.

    Google Scholar 

  39. Guo, C., Fischhaber, P. L., Luk-Paszyc, M. J., Masuda, Y., Zhou, J., Kamiya, K., Kisker, C., and Friedberg, E. C. (2003). Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. Embo J 22, 6621–6630.

    PubMed  CAS  Google Scholar 

  40. Guo, C., Sonoda, E., Tang, T. S., Parker, J. L., Bielen, A. B., Takeda, S., Ulrich, H. D., and Friedberg, E. C. (2006a). REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol Cell 23, 265–271.

    PubMed  CAS  Google Scholar 

  41. Guo, C., Tang, T. S., Bienko, M., Dikic, I., and Friedberg, E. C. (2008). Requirements for the interaction of mouse Polκ with ubiquitin, and its biological significance. J Biol Chem 283, 4658–4664.

    PubMed  CAS  Google Scholar 

  42. Guo, C., Tang, T. S., Bienko, M., Parker, J. L., Bielen, A. B., Sonoda, E., Takeda, S., Ulrich, H. D., Dikic, I., and Friedberg, E. C. (2006b). Ubiquitin-Binding Motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol Cell Biol 26, 8892–8900.

    PubMed  CAS  Google Scholar 

  43. Haracska, L., Johnson, R. E., Unk, I., Phillips, B., Hurwitz, J., Prakash, L., and Prakash, S. (2001a). Physical and functional interactions of human DNA polymerase η with PCNA. Mol Cell Biol 21, 7199–7206.

    PubMed  CAS  Google Scholar 

  44. Haracska, L., Johnson, R. E., Unk, I., Phillips, B. B., Hurwitz, J., Prakash, L., and Prakash, S. (2001b). Targeting of human DNA polymerase ι to the replication machinery via interaction with PCNA. Proc Natl Acad Sci USA 98, 14256–14261.

    PubMed  CAS  Google Scholar 

  45. Haracska, L., Unk, I., Johnson, R. E., Phillips, B. B., Hurwitz, J., Prakash, L., and Prakash, S. (2002). Stimulation of DNA synthesis activity of human DNA polymerase κ by PCNA. Mol Cell Biol 22, 784–791.

    PubMed  CAS  Google Scholar 

  46. Hendel, A., Ziv, O., Gueranger, Q., Geacintov, N., and Livneh, Z. (2008). Reduced efficiency and increased mutagenicity of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproduct, in human cells lacking DNA polymerase η. DNA Repair (Amst) 7, 1636–1646.

    Google Scholar 

  47. Higgins, N. P., Kato, K., and Strauss, B. (1976). A model for replication repair in mammalian cells. J Mol Biol 101, 417–425.

    PubMed  CAS  Google Scholar 

  48. Hoege, C., Pfander, B., Moldovan, G.-L., Pyrolowakis, G., and Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141.

    PubMed  CAS  Google Scholar 

  49. Huang, T. T., Nijman, S. M., Mirchandani, K. D., Galardy, P. J., Cohn, M. A., Haas, W., Gygi, S. P., Ploegh, H. L., Bernards, R., and D’Andrea, A. D. (2006). Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8, 341–347.

    Google Scholar 

  50. Jansen, J. G., Fousteri, M. I., and de Wind, N. (2007). Send in the clamps: control of DNA translesion synthesis in eukaryotes. Mol Cell 28, 522–529.

    PubMed  CAS  Google Scholar 

  51. Jansen, J. G., Langerak, P., Tsaalbi-Shtylik, A., van den Berk, P., Jacobs, H., and de Wind, N. (2006). Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice. J Exp Med 203, 319–323.

    PubMed  Google Scholar 

  52. Jansen, J. G., Tsaalbi-Shtylik, A., Langerak, P., Calleja, F., Meijers, C. M., Jacobs, H., and de Wind, N. (2005). The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis. Nucleic Acids Res 33, 356–365.

    PubMed  CAS  Google Scholar 

  53. Johnson, R. E., Kondratick, C. M., Prakash, S., and Prakash, L. (1999a). hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265.

    PubMed  CAS  Google Scholar 

  54. Johnson, R. E., Prakash, S., and Prakash, L. (1999b). Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Polη. Science 283, 1001–1004.

    PubMed  CAS  Google Scholar 

  55. Kai, M., and Wang, T. (2003). Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev 17, 64–76.

    PubMed  CAS  Google Scholar 

  56. Kannouche, P., Broughton, B. C., Volker, M., Hanaoka, F., Mullenders, L. H. F., and Lehmann, A. R. (2001). Domain structure, localization and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev 15, 158–172.

    PubMed  CAS  Google Scholar 

  57. Kannouche, P., Fernandez de Henestrosa, A. R., Coull, B., Vidal, A. E., Gray, C., Zicha, D., Woodgate, R., and Lehmann, A. R. (2003). Localization of DNA polymerases η and ι to the replication machinery is tightly co-ordinated in human cells. Embo J 22, 1223–1233.

    PubMed  CAS  Google Scholar 

  58. Kannouche, P. L., Wing, J., and Lehmann, A. R. (2004). Interaction of Human DNA Polymerase η with Monoubiquitinated PCNA; A Possible Mechanism for the Polymerase Switch in Response to DNA Damage. Mol Cell 14, 491–500.

    PubMed  CAS  Google Scholar 

  59. King, N. M., Nikolaishvili-Feinberg, N., Bryant, M. F., Luche, D. D., Heffernan, T. P., Simpson, D. A., Hanaoka, F., Kaufmann, W. K., and Cordeiro-Stone, M. (2005). Overproduction of DNA polymerase η does not raise the spontaneous mutation rate in diploid human fibroblasts. DNA Repair (Amst) 4, 714–724.

    CAS  Google Scholar 

  60. Kraemer, K. H., Lee, M. M., and Scotto, J. (1987). Xeroderma Pigmentosum. Cutaneous, ocular and neurologic abnormalities in 830 published cases. Arch Dermatol 123, 241–250.

    PubMed  CAS  Google Scholar 

  61. Langerak, P., Nygren, A. O., Krijger, P. H., van den Berk, P. C., and Jacobs, H. (2007). A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification. J Exp Med 204, 1989–1998.

    PubMed  CAS  Google Scholar 

  62. Langie, S. A., Knaapen, A. M., Ramaekers, C. H., Theys, J., Brun, J., Godschalk, R. W., van Schooten, F. J., Lambin, P., Gray, D. A., Wouters, B. G., and Chiu, R. K. (2007). Formation of lysine 63-linked poly-ubiquitin chains protects human lung cells against benzo[a]pyrene-diol-epoxide-induced mutagenicity. DNA Repair (Amst) 6, 852–862.

    CAS  Google Scholar 

  63. Lehmann, A. R. (1972). Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J Mol Biol 66, 319–337.

    PubMed  CAS  Google Scholar 

  64. Lehmann, A. R., Kirk-Bell, S., Arlett, C. F., Paterson, M. C., Lohman, P. H. M., de Weerd-Kastelein, E. A., and Bootsma, D. (1975). Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc Natl Acad Sci USA 72, 219–223.

    PubMed  CAS  Google Scholar 

  65. Lehmann, A. R., Niimi, A., Ogi, T., Brown, S., Sabbioneda, S., Wing, J. F., Kannouche, P. L., and Green, C. M. (2007). Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst) 6, 891–899.

    CAS  Google Scholar 

  66. Lemontt, J. F. (1971). Mutants of yeast defective in mutation induced by ultraviolet light. Adv Genet 68, 21–33.

    CAS  Google Scholar 

  67. Li, Z., Xiao, W., McCormick, J. J., and Maher, V. M. (2002a). Identification of a protein essential for a major pathway used by human cells to avoid UV- induced DNA damage. Proc Natl Acad Sci USA 99, 4459–4464.

    PubMed  CAS  Google Scholar 

  68. Li, Z., Zhang, H., McManus, T. P., McCormick, J. J., Lawrence, C. W., and Maher, V. M. (2002b). hREV3 is essential for error-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts. Mutat Res 510, 71–80.

    PubMed  CAS  Google Scholar 

  69. Limoli, C. L., Giedzinski, E., Bonner, W. M., and Cleaver, J. E. (2002). UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, γ -H2AX formation, and Mre11 relocalization. Proc Natl Acad Sci USA 99, 233–238.

    PubMed  CAS  Google Scholar 

  70. Lin, Q., Clark, A. B., McCulloch, S. D., Yuan, T., Bronson, R. T., Kunkel, T. A., and Kucherlapati, R. (2006). Increased susceptibility to UV-induced skin carcinogenesis in polymerase eta-deficient mice. Cancer Res 66, 87–94.

    PubMed  CAS  Google Scholar 

  71. Ling, H., Boudsocq, F., Plosky, B. S., Woodgate, R., and Yang, W. (2003). Replication of a cis-syn thymine dimer at atomic resolution. Nature 424, 1083–1087.

    PubMed  CAS  Google Scholar 

  72. Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001). Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102.

    PubMed  CAS  Google Scholar 

  73. Lone, S., Townson, S. A., Uljon, S. N., Johnson, R. E., Brahma, A., Nair, D. T., Prakash, S., Prakash, L., and Aggarwal, A. K. (2007). Human DNA polymerase κ encircles DNA: implications for mismatch extension and lesion bypass. Mol Cell 25, 601–614.

    PubMed  CAS  Google Scholar 

  74. Lopes, M., Foiani, M., and Sogo, J. M. (2006). Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21, 15–27.

    PubMed  CAS  Google Scholar 

  75. Maher, V. M., Ouellette, L. M., Curren, R. D., and McCormick, J. J. (1976). Frequency of ultraviolet light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature 261, 593–595.

    PubMed  CAS  Google Scholar 

  76. Martomo, S. A., Yang, W. W., Vaisman, A., Maas, A., Yokoi, M., Hoeijmakers, J. H., Hanaoka, F., Woodgate, R., and Gearhart, P. J. (2006). Normal hypermutation in antibody genes from congenic mice defective for DNA polymerase ι. DNA Repair (Amst) 5, 392–398.

    CAS  Google Scholar 

  77. Martomo, S. A., Yang, W. W., Wersto, R. P., Ohkumo, T., Kondo, Y., Yokoi, M., Masutani, C., Hanaoka, F., and Gearhart, P. J. (2005). Different mutation signatures in DNA polymerase η- and MSH6-deficient mice suggest separate roles in antibody diversification. Proc Natl Acad Sci USA 102, 8656–8661.

    CAS  Google Scholar 

  78. Masutani, C., Kusumoto, R., Iwai, S., and Hanaoka, F. (2000). Accurate translesion synthesis by human DNA polymerase η. EMBO J 19, 3100–3109.

    PubMed  CAS  Google Scholar 

  79. Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K., and Hanaoka, F. (1999). The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704.

    PubMed  CAS  Google Scholar 

  80. McCulloch, S. D., Kokoska, R. J., Masutani, C., Iwai, S., Hanaoka, F., and Kunkel, T. A. (2004). Preferential cis-syn thymine dimer bypass by DNA polymerase η occurs with biased fidelity. Nature 428, 97–100.

    PubMed  CAS  Google Scholar 

  81. McDonald, J. P., Frank, E. G., Plosky, B. S., Rogozin, I. B., Masutani, C., Hanaoka, F., Woodgate, R., and Gearhart, P. J. (2003). 129-derived strains of mice are deficient in DNA polymerase ι and have normal immunoglobulin hypermutation. J Exp Med 198, 635–643.

    PubMed  CAS  Google Scholar 

  82. McDonald, J. P., Rapic-Otrin, V., Epstein, J. A., Broughton, B. C., Wang, X., Lehmann, A. R., Wolgemuth, D. J., and Woodgate, R. (1999). Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase η. Genomics 60, 20–30.

    PubMed  CAS  Google Scholar 

  83. Miyase, S., Tateishi, S., Watanabe, K., Tomita, K., Suzuki, K., Inoue, H., and Yamaizumi, M. (2005). Differential regulation of Rad18 through Rad6-dependent mono- and polyubiquitination. J Biol Chem 280, 515–524.

    PubMed  CAS  Google Scholar 

  84. Moldovan, G. L., Pfander, B., and Jentsch, S. (2007). PCNA, the maestro of the replication fork. Cell 129, 665–679.

    PubMed  CAS  Google Scholar 

  85. Motegi, A., Sood, R., Moinova, H., Markowitz, S. D., Liu, P. P., and Myung, K. (2006). Human SHPRH suppresses genomic instability through PCNA polyubiquitination. J Cell Biol 175, 703–708.

    PubMed  CAS  Google Scholar 

  86. Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (2005). Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309, 2219–2222.

    PubMed  CAS  Google Scholar 

  87. Nair, D. T., Johnson, R. E., Prakash, S., Prakash, L., and Aggarwal, A. K. (2004). Replication by human DNA polymerase-ι occurs by Hoogsteen base-pairing. Nature 430, 377–380.

    PubMed  CAS  Google Scholar 

  88. Nakajima, S., Lan, L., Kanno, S., Takao, M., Yamamoto, K., Eker, A. P., and Yasui, A. (2004). UV light-induced DNA damage and tolerance for the survival of nucleotide excision repair-deficient human cells. J Biol Chem 279, 46674–46677.

    PubMed  CAS  Google Scholar 

  89. Nelson, J. R., Lawrence, C. W., and Hinkle, D. C. (1996a). Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382, 729–731.

    PubMed  CAS  Google Scholar 

  90. Nelson, J. R., Lawrence, C. W., and Hinkle, D. C. (1996b). Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science 272, 1646–1649.

    PubMed  CAS  Google Scholar 

  91. Nick McElhinny, S. A., Gordenin, D. A., Stith, C. M., Burgers, P. M., and Kunkel, T. A. (2008). Division of labor at the eukaryotic replication fork. Mol Cell 30, 137–144.

    PubMed  CAS  Google Scholar 

  92. Niimi, A., Brown, S., Sabbioneda, S., Kannouche, P. L., Scott, A., Yasui, A., Green, C. M., and Lehmann, A. R. (2008). Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc Natl Acad Sci USA 105, 16125–16130.

    PubMed  CAS  Google Scholar 

  93. Nikolaishvili-Feinberg, N., Jenkins, G. S., Nevis, K. R., Staus, D. P., Scarlett, C. O., Unsal-Kacmaz, K., Kaufmann, W. K., and Cordeiro-Stone, M. (2008). Ubiquitylation of proliferating cell nuclear antigen and recruitment of human DNA polymerase eta. Biochemistry 47, 4141–4150.

    PubMed  CAS  Google Scholar 

  94. Notenboom, V., Hibbert, R. G., van Rossum-Fikkert, S. E., Olsen, J. V., Mann, M., and Sixma, T. K. (2007). Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification. Nucleic Acids Res 35, 5819–5830.

    PubMed  CAS  Google Scholar 

  95. Oestergaard, V. H., Langevin, F., Kuiken, H. J., Pace, P., Niedzwiedz, W., Simpson, L. J., Ohzeki, M., Takata, M., Sale, J. E., and Patel, K. J. (2007). Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol Cell 28, 798–809.

    PubMed  CAS  Google Scholar 

  96. Ogi, T., Kannouche, P., and Lehmann, A. R. (2005). Localization of human DNA polymerase κ (polκ), a Y-family DNA polymerase: relationship to PCNA foci. J Cell Sci 118, 129–136.

    PubMed  CAS  Google Scholar 

  97. Ogi, T., Kato, T., Kato, T., and Ohmori, H. (1999). Mutation enhancement by DINB1, a mammalian homologue of the Escherichia coli mutagenesis protein dinB. Genes Cells 4, 607–618.

    PubMed  CAS  Google Scholar 

  98. Ogi, T., and Lehmann, A. R. (2006). The Y-family DNA polymerase κ (pol κ) functions in mammalian nucleotide-excision repair. Nat Cell Biol 8, 640–642.

    PubMed  CAS  Google Scholar 

  99. Ogi, T., Shinkai, Y., Tanaka, K., and Ohmori, H. (2002). Pol κ protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Natl Acad Sci USA 99, 15548–15553.

    PubMed  CAS  Google Scholar 

  100. Ohashi, E., Murakumo, Y., Kanjo, N., Akagi, J., Masutani, C., Hanaoka, F., and Ohmori, H. (2004). Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 9, 523–531.

    PubMed  CAS  Google Scholar 

  101. Ohkumo, T., Kondo, Y., Yokoi, M., Tsukamoto, T., Yamada, A., Sugimoto, T., Kanao, R., Higashi, Y., Kondoh, H., Tatematsu, M., et al. (2006). UV-B radiation induces epithelial tumors in mice lacking DNA polymerase η and mesenchymal tumors in mice deficient for DNA polymerase iota. Mol Cell Biol 26, 7696–7706.

    PubMed  CAS  Google Scholar 

  102. Ohmori, H., Friedberg, E. C., Fuchs, R. P. P., Goodman, M. F., Hanaoka, F., Hinkle, D., Kunkel, T. A., Lawrence, C. W., Livneh, Z., Nohmi, T., et al. (2001). The Y-family of DNA polymerases. Molecular Cell 8, 7–8.

    PubMed  CAS  Google Scholar 

  103. Okada, T., Sonoda, E., Yoshimura, M., Kawano, Y., Saya, H., Kohzaki, M., and Takeda, S. (2005). Multiple roles of vertebrate REV genes in DNA repair and recombination. Mol Cell Biol 25, 6103–6111.

    PubMed  CAS  Google Scholar 

  104. Otsuka, C., Kunitomi, N., Iwai, S., Loakes, D., and Negishi, K. (2005). Roles of the polymerase and BRCT domains of Rev1 protein in translesion DNA synthesis in yeast in vivo. Mutat Res 578, 79–87.

    PubMed  CAS  Google Scholar 

  105. Otsuka, C., Sanadai, S., Hata, Y., Okuto, H., Noskov, V. N., Loakes, D., and Negishi, K. (2002). Difference between deoxyribose- and tetrahydrofuran-type abasic sites in the in vivo mutagenic responses in yeast. Nucleic Acids Res 30, 5129–5135.

    PubMed  CAS  Google Scholar 

  106. Pages, V., and Fuchs, R. P. (2003). Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 300, 1300–1303.

    PubMed  CAS  Google Scholar 

  107. Parker, J. L., Bielen, A. B., Dikic, I., and Ulrich, H. D. (2007). Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase eta in Saccharomyces cerevisiae. Nucleic Acids Res 35, 881–889.

    PubMed  CAS  Google Scholar 

  108. Paulovich, A. G., Armour, C. D., and Hartwell, L. H. (1998). The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics 150, 75–93.

    PubMed  CAS  Google Scholar 

  109. Pavlov, Y. I., Nguyen, D., and Kunkel, T. A. (2001). Mutator effects of overproducing DNA polymerase η (Rad30) and its catalytically inactive variant in yeast. Mutat Res 478, 129–139.

    PubMed  CAS  Google Scholar 

  110. Plosky, B. S., Vidal, A. E., Fernandez de Henestrosa, A. R., McLenigan, M. P., McDonald, J. P., Mead, S., and Woodgate, R. (2006). Controlling the subcellular localization of DNA polymerases ι and η via interactions with ubiquitin. Embo J 25, 2847–2855.

    PubMed  CAS  Google Scholar 

  111. Poltoratsky, V., Horton, J. K., Prasad, R., and Wilson, S. H. (2005). REV1 mediated mutagenesis in base excision repair deficient mouse fibroblast. DNA Repair (Amst) 4, 1182–1188.

    CAS  Google Scholar 

  112. Prakash, L. (1981). Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol Gen Genet 184, 471–478.

    PubMed  CAS  Google Scholar 

  113. Prakash, S., Johnson, R. E., and Prakash, L. (2005). Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74, 317–353.

    PubMed  CAS  Google Scholar 

  114. Pursell, Z. F., Isoz, I., Lundstrom, E. B., Johansson, E., and Kunkel, T. A. (2007). Yeast DNA polymerase ɛ participates in leading-strand DNA replication. Science 317, 127–130.

    PubMed  CAS  Google Scholar 

  115. Rada, C., Di Noia, J. M., and Neuberger, M. S. (2004). Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell 16, 163–171.

    PubMed  CAS  Google Scholar 

  116. Reuven, N. B., Arad, G., Maor-Shoshani, A., and Livneh, Z. (1999). The mutagenesis protein UmuC is a DNA polymerase activated by UmuD’, RecA, and SSB and Is specialized for translesion replication. J Biol Chem 274, 31763–31766.

    PubMed  CAS  Google Scholar 

  117. Ross, A. L., Simpson, L. J., and Sale, J. E. (2005). Vertebrate DNA damage tolerance requires the C-terminus but not BRCT or transferase domains of REV1. Nucleic Acids Res 33, 1280–1289.

    PubMed  CAS  Google Scholar 

  118. Rupp, W. D., and Howard-Flanders, P. (1968). Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31, 291–304.

    PubMed  CAS  Google Scholar 

  119. Rupp, W. D., Wilde, C. E., Reno, D. L., and Howard-Flanders, P. (1971). Exchanges between DNA strands in ultraviolet irradiated Escherichia coli. J Mol Biol 61, 25–44.

    PubMed  CAS  Google Scholar 

  120. Sabbioneda, S., Bortolomai, I., Giannattasio, M., Plevani, P., and Muzi-Falconi, M. (2007). Yeast Rev1 is cell cycle regulated, phosphorylated in response to DNA damage and its binding to chromosomes is dependent upon MEC1. DNA Repair (Amst) 6, 121–127.

    CAS  Google Scholar 

  121. Sabbioneda, S., Gourdin, A. M., Green, C. M., Zotter, A., Giglia-Mari, G., Houtsmuller, A., Vermeulen, W., and Lehmann, A. R. (2008). Effect of Proliferating Cell Nuclear Antigen ubiquitination and chromatin structure on the dynamic properties of the Y-family DNA polymerases. Mol Biol Cell 19, 5193–5202.

    PubMed  CAS  Google Scholar 

  122. Sabbioneda, S., Minesinger, B. K., Giannattasio, M., Plevani, P., Muzi-Falconi, M., and Jinks-Robertson, S. (2005). The 9-1-1 checkpoint clamp physically interacts with polzeta and is partially required for spontaneous polζ-dependent mutagenesis in Saccharomyces cerevisiae. J Biol Chem 280, 38657–38665.

    PubMed  CAS  Google Scholar 

  123. Sale, J. E., Batters, C., Edmunds, C. E., Phillips, L. G., Simpson, L. J., and Szuts, D. (2008). Timing matters: error-prone gap filling and translesion synthesis in immunoglobulin gene hypermutation. Philos Trans R Soc Lond B 364, 595–603.

    Google Scholar 

  124. Sarkar, S., Davies, A. A., Ulrich, H. D., and McHugh, P. J. (2006). DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase ζ. Embo J 25, 1285–1294.

    PubMed  CAS  Google Scholar 

  125. Schenten, D., Gerlach, V. L., Guo, C., Velasco-Miguel, S., Hladik, C. L., White, C. L., Friedberg, E. C., Rajewsky, K., and Esposito, G. (2002). DNA polymerase κ deficiency does not affect somatic hypermutation in mice. Eur J Immunol 32, 3152–3160.

    PubMed  CAS  Google Scholar 

  126. Shen, X., Jun, S., O’Neal, L. E., Sonoda, E., Bemark, M., Sale, J. E., and Li, L. (2006). REV3 and REV1 play major roles in recombination-independent repair of DNA interstrand cross-links mediated by monoubiquitinated proliferating cell nuclear antigen (PCNA). J Biol Chem 281, 13869–13872.

    PubMed  CAS  Google Scholar 

  127. Shimizu, T., Shinkai, Y., Ogi, T., Ohmori, H., and Azuma, T. (2003). The absence of DNA polymerase κ does not affect somatic hypermutation of the mouse immunoglobulin heavy chain gene. Immunol Lett 86, 265–270.

    PubMed  CAS  Google Scholar 

  128. Shinagawa, H., Iwasaki, H., Kato, T., and Nakata, A. (1988). RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc Natl Acad Sci USA 85, 1806–1810.

    PubMed  CAS  Google Scholar 

  129. Simpson, L. J., Ross, A. L., Szuts, D., Alviani, C. A., Oestergaard, V. H., Patel, K. J., and Sale, J. E. (2006). RAD18-independent ubiquitination of proliferating-cell nuclear antigen in the avian cell line DT40. EMBO Rep 7, 927–932.

    PubMed  CAS  Google Scholar 

  130. Simpson, L. J., and Sale, J. E. (2003). Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. Embo J 22, 1654–1664.

    PubMed  CAS  Google Scholar 

  131. Sogo, J. M., Lopes, M., and Foiani, M. (2002). Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 279, 599–602.

    Google Scholar 

  132. Solovjeva, L., Svetlova, M., Sasina, L., Tanaka, K., Saijo, M., Nazarov, I., Bradbury, M., and Tomilin, N. (2005). High mobility of flap endonuclease 1 and DNA polymerase η associated with replication foci in mammalian S-phase nucleus. Mol Biol Cell 16, 2518–2528.

    PubMed  CAS  Google Scholar 

  133. Sonoda, E., Okada, T., Zhao, G. Y., Tateishi, S., Araki, K., Yamaizumi, M., Yagi, T., Verkaik, N. S., van Gent, D. C., Takata, M., and Takeda, S. (2003). Multiple roles of Rev3, the catalytic subunit of polzeta in maintaining genome stability in vertebrates. Embo J 22, 3188–3197.

    PubMed  CAS  Google Scholar 

  134. Soria, G., Podhajcer, O., Prives, C., and Gottifredi, V. (2006). P21(Cip1/WAF1) downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene 25, 2829–2838.

    PubMed  CAS  Google Scholar 

  135. Stary, A., Kannouche, P., Lehmann, A. R., and Sarasin, A. (2003). Role of DNA polymerase η in the UV-mutation spectrum in human cells. J Biol Chem 278, 18767–18775.

    PubMed  CAS  Google Scholar 

  136. Stelter, P., and Ulrich, H. D. (2003). Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191.

    PubMed  CAS  Google Scholar 

  137. Takenaka, K., Ogi, T., Okada, T., Sonoda, E., Guo, C., Friedberg, E. C., and Takeda, S. (2006). Involvement of vertebrate Polκ in translesion DNA synthesis across DNA monoalkylation damage. J Biol Chem 281, 2000–2004.

    PubMed  CAS  Google Scholar 

  138. Tang, M., Shen, X., Frank, E. G., O’Donnell, M., Woodgate, R., and Goodman, M. F. (1999). UmuD’(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci USA 96, 8919–8924.

    PubMed  CAS  Google Scholar 

  139. Tateishi, S., Niwa, H., Miyazaki, J., Fujimoto, S., Inoue, H., and Yamaizumi, M. (2003). Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells. Mol Cell Biol 23, 474–481.

    PubMed  CAS  Google Scholar 

  140. Tissier, A., Kannouche, P., Reck, M.-P., Lehmann, A. R., Fuchs, R. P. P., and Cordonnier, A. (2004). Co-localization in replication foci and interaction of human Y-family members, DNA polymerase polη and Rev1 protein. DNA repair 3, 1503–1514.

    PubMed  CAS  Google Scholar 

  141. Tissier, A., McDonald, J. P., Frank, E. G., and Woodgate, R. (2000). Polι, a remarkably error-prone human DNA polymerase. Genes Dev 14, 1642–1650.

    PubMed  CAS  Google Scholar 

  142. Trincao, J., Johnson, R. E., Escalante, C. R., Prakash, S., Prakash, L., and Aggarwal, A. K. (2001). Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion DNA synthesis. Mol Cell 8, 417–426.

    PubMed  CAS  Google Scholar 

  143. Tsuji, Y., Watanabe, K., Araki, K., Shinohara, M., Yamagata, Y., Tsurimoto, T., Hanaoka, F., Yamamura, K., Yamaizumi, M., and Tateishi, S. (2008). Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes Cells 13, 343–354.

    PubMed  CAS  Google Scholar 

  144. Ulrich, H. D., and Jentsch, S. (2000). Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. Embo J 19, 3388–3397.

    PubMed  CAS  Google Scholar 

  145. Unk, I., Hajdu, I., Fatyol, K., Hurwitz, J., Yoon, J. H., Prakash, L., Prakash, S., and Haracska, L. (2008). Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc Natl Acad Sci USA 105, 3768–3773.

    PubMed  CAS  Google Scholar 

  146. Unk, I., Hajdu, I., Fatyol, K., Szakal, B., Blastyak, A., Bermudez, V., Hurwitz, J., Prakash, L., Prakash, S., and Haracska, L. (2006). Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc Natl Acad Sci USA 103, 18107–18112.

    PubMed  CAS  Google Scholar 

  147. Velasco-Miguel, S., Richardson, J. A., Gerlach, V. L., Lai, W. C., Gao, T., Russell, L. D., Hladik, C. L., White, C. L., and Friedberg, E. C. (2003). Constitutive and regulated expression of the mouse Dinb (Polkappa) gene encoding DNA polymerase kappa. DNA Repair (Amst) 2, 91–106.

    CAS  Google Scholar 

  148. Vidal, A. E., Kannouche, P. P., Podust, V. N., Yang, W., Lehmann, A. R., and Woodgate, R. (2004). PCNA-dependent coordination of the biological functions of human DNA polymerase ι. J Biol Chem 279, 48360–48368.

    PubMed  CAS  Google Scholar 

  149. Wagner, J., Gruz, P., Kim, S. R., Yamada, M., Matsui, K., Fuchs, R. P., and Nohmi, T. (1999). The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol Cell 4, 281–286.

    PubMed  CAS  Google Scholar 

  150. Watanabe, K., Tateishi, S., Kawasuji, M., Tsurimoto, T., Inoue, H., and Yamaizumi, M. (2004). Rad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitination. Embo J 28, 3886–3896.

    Google Scholar 

  151. Wittschieben, J. P., Reshmi, S. C., Gollin, S. M., and Wood, R. D. (2006). Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Res 66, 134–142.

    PubMed  CAS  Google Scholar 

  152. Wood, A., Garg, P., and Burgers, P. M. (2007). A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage. J Biol Chem 282, 20256–20263.

    PubMed  CAS  Google Scholar 

  153. Xiao, W., Chow, B. L., Broomfield, S., and Hanna, M. (2000). The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics 155, 1633–1641.

    PubMed  CAS  Google Scholar 

  154. Yamashita, Y. M., Okada, T., Matsusaka, T., Sonoda, E., Zhao, G. Y., Araki, K., Tateishi, S., Yamaizumi, M., and Takeda, S. (2002). RAD18 and RAD54 cooperatively contribute to maintenance of genomic stability in vertebrate cells. Embo J 21, 5558–5566.

    PubMed  CAS  Google Scholar 

  155. Yang, W. (2005). Portraits of a Y-family DNA polymerase. FEBS Lett 579, 868–872.

    PubMed  CAS  Google Scholar 

  156. Yang, W., and Woodgate, R. (2007). What a difference a decade makes: insights into translesion DNA synthesis. Proc Natl Acad Sci USA 104, 15591–15598.

    PubMed  CAS  Google Scholar 

  157. Yang, X. H., Shiotani, B., Classon, M., and Zou, L. (2008). Chk1 and Claspin potentiate PCNA ubiquitination. Genes Dev 22, 1147–1152.

    PubMed  CAS  Google Scholar 

  158. Yuasa, M. S., Masutani, C., Hirano, A., Cohn, M. A., Yamaizumi, M., Nakatani, Y., and Hanaoka, F. (2006). A human DNA polymerase eta complex containing Rad18, Rad6 and Rev1; proteomic analysis and targeting of the complex to the chromatin-bound fraction of cells undergoing replication fork arrest. Genes Cells 11, 731–744.

    PubMed  CAS  Google Scholar 

  159. Zander, L., and Bemark, M. (2004). Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment. DNA Repair (Amst) 3, 743–752.

    CAS  Google Scholar 

  160. Zeng, X., Winter, D. B., Kasmer, C., Kraemer, K. H., Lehmann, A. R., and Gearhart, P. J. (2001). DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat Immunol 2, 537–541.

    PubMed  CAS  Google Scholar 

  161. Zhang, H., and Siede, W. (2002). UV-induced T–>C transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase η in vivo. Nucleic Acids Res 30, 1262–1267.

    PubMed  CAS  Google Scholar 

  162. Zheng, H., Wang, X., Warren, A. J., Legerski, R. J., Nairn, R. S., Hamilton, J. W., and Li, L. (2003). Nucleotide excision repair- and polymerase η-mediated error-prone removal of mitomycin C interstrand cross-links. Mol Cell Biol 23, 754–761.

    PubMed  CAS  Google Scholar 

  163. Zhuang, Z., Johnson, R. E., Haracska, L., Prakash, L., Prakash, S., and Benkovic, S. J. (2008). Regulation of polymerase exchange between Polη and Polδ by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc Natl Acad Sci USA 105, 5361–5366.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to Julian Sale for helpful comments on the manuscript. Work in my laboratory is supported by the Medical Research Council, ESF Eurodyna programme and the European Community integrated project on DNA repair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lehmann, A.R. (2009). DNA Damage Tolerance and Translesion Synthesis. In: Khanna, K., Shiloh, Y. (eds) The DNA Damage Response: Implications on Cancer Formation and Treatment. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2561-6_10

Download citation

Publish with us

Policies and ethics