Skip to main content

Fundamentals of Chaos Theory

  • Chapter
  • First Online:
Chaos in Hydrology

Abstract

Almost all natural, physical, and socio-economic systems are inherently nonlinear. Nonlinear systems display a very broad range of characteristics. The property of “chaos” refers to the combined existence of nonlinear interdependence, determinism and order, and sensitive dependence in systems. Chaotic systems typically have a ‘random-looking’ structure. However, their determinism allows accurate predictions in the short term, although long-term predictions are not possible. Since ‘random-looking’ structures are a common encounter in numerous systems, the concepts of chaos theory have gained considerable attention in various scientific fields. This chapter discusses the fundamentals of chaos theory. First, a brief account of the definition and history of the development of chaos theory is presented. Next, several basic properties and concepts of chaotic systems are described, including attractors, bifurcations, interaction and interdependence, state phase and phase space, and fractals. Finally, four examples of chaotic dynamic systems are presented to illustrate how simple nonlinear deterministic equations can generate highly complex and random-looking structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarbanel HDI (1996) Analysis of observed chaotic data. Springer-Verlag, New York

    Book  Google Scholar 

  • Abraham R, Shaw C (1984) Dynamics of the geometry and behavior, part two: stable and chaotic behavior. Aerial Press, Santa Cruz, CA

    Google Scholar 

  • Andronov AA (1929) Les cycles limits de Poincaré et al théorie des oscillations autoentretenues. C R Acad Sci 189:559–561

    Google Scholar 

  • Arnol’d VI (1964) Instability of dynamical systems with many degrees of freedom. Sov Math Dokl 5:581–585

    Google Scholar 

  • Baumol WJ, Benhabib J (1989) Chaos: significance, mechanism, and economic applications. J Econ Pers 3:77–105

    Article  Google Scholar 

  • Birkhoff GD (1927) Dynamical systems. American Mathematical Society, New York

    Book  Google Scholar 

  • Briggs K (1987) Simple experiments in chaotic dynamics. Am J Phys 55:1083–1089

    Article  Google Scholar 

  • Cartwright ML (1935) Some inequalities in the theory of functions. Math Ann 111:98–118

    Article  Google Scholar 

  • Casdagli M (1989) Nonlinear prediction of chaotic time series. Physica D 35:335–356

    Article  Google Scholar 

  • Casdagli M (1992) Chaos and deterministic versus stochastic nonlinear modeling. J R Stat Soc B 54(2):303–328

    Google Scholar 

  • Casdagli M, Eubank S, Farmer JD, Gibson J (1991) State space reconstruction in the presence of noise. Physica D 51:52–98

    Article  Google Scholar 

  • Euler L (1767) De motu rectilineo trium corporum se mutuo attrahentium, Novi commentarii academiæ scientarum Petropolitanæ 11, pp. 144–151 in Oeuvres, Seria Secunda tome XXV Commentationes Astronomicæ (p 286)

    Google Scholar 

  • Farmer DJ, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848

    Article  Google Scholar 

  • Feigenbaum MJ (1978) Quantitative universality for a class of nonlinear transformations. J Stat Phys 19:25–52

    Google Scholar 

  • Gleick J (1987) Chaos: making a new science. Penguin Books, New York

    Google Scholar 

  • Goerner SJ (1994) Chaos and the Evolving Ecological Universe. Gordon and Breach, Langhorne

    Google Scholar 

  • Grassberger P, Procaccia I (1983a) Measuring the strangeness of strange attractors. Physica D 9:189–208

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983b) Characterisation of strange attractors. Phys Rev Lett 50(5):346–349

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983c) Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591–2593

    Article  Google Scholar 

  • Haken H (1983) Advanced synergetics column instability hierarchies of self-organizing systems and devices. Springer-Verlag, Berlin

    Google Scholar 

  • Hausdorff (1918) Dimension und äußeres Maß. Math Annalen 79(1–2):157–179

    Article  Google Scholar 

  • Henon M (1976) A two-dimensional mapping with a strange attractor. Commun Math Phys 50:69–77

    Article  Google Scholar 

  • Hilborn RC (1994) Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press, Oxford, UK

    Google Scholar 

  • Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaplan DT, Glass L (1995) Understanding nonlinear dynamics. Springer, New York

    Book  Google Scholar 

  • Kaplan JL, Yorke JA (1979) Chaotic behavior of multidimensional difference equations. In: Peitgen HO, Walther HO (eds) Functional differential equations and approximations of fixed points, Lecture notes in mathematics, Springer-Verlag, Berlin, pp 204

    Google Scholar 

  • Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase space reconstruction using a geometric method. Phys Rev A 45:3403–3411

    Article  Google Scholar 

  • Kepler J (1609) Astronomia nova

    Google Scholar 

  • Kiel LD, Elliott E (1996) Chaos theory in the social sciences: foundations and applications. The University of Michigan Press, Ann Arbor, USA, 349 pp

    Google Scholar 

  • Kolmogorov AN (1954) On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian function. Dokl Akad Nauk SSR 98:527–530

    Google Scholar 

  • Lagrange JL (1772) Essai sur le Problème des Trois Corps, Prix de l’Académie Royale des Sciences de Paris, tome IX, in vol. 6 of Oeuvres (p 292)

    Google Scholar 

  • Levinson N (1943) On a non-linear differential equation of the second order. J Math Phys 22:181–187

    Article  Google Scholar 

  • Linsay PS (1981) Period doubling and chaotic behaviour in a driven anharmonic oscillator. Phys Rev Lett 47:1349–1352

    Article  Google Scholar 

  • Littlewood JE (1966) Unbounded solutions of ÿ + g(y) = p(t). J London Math Soc 41:491–496

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. W. H. Freedman and Company, New York

    Google Scholar 

  • May RM (1974) Stability and complexity in model ecosystems. Princeton University Press, Princeton, NJ

    Google Scholar 

  • May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467

    Article  Google Scholar 

  • Meissner H, Schmidt G (1986) A simple experiment for studying the transition from order to chaos. Am J Phys 54:800–804

    Article  Google Scholar 

  • Mishina T, Kohmoto T, Hashi T (1985) Simple electronic circuit for demonstration of chaotic phenomena. Am J Phys 53:332–334

    Article  Google Scholar 

  • Moser JK (1967) Convergent series expansions for quasi-periodic motions. Math Ann 169:136–176

    Article  Google Scholar 

  • Newton I (1687) Philosophiæ naturalis principia mathematica. Burndy Library, UK

    Google Scholar 

  • Nicolis G, Prigogine I (1989) Exploring complexity: an introduction. W. H. Freeman and Company, New York

    Google Scholar 

  • Ott E (1993) Chaos in dynamical systems. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716

    Article  Google Scholar 

  • Poincare H (1890) On the three-body problem and the equations of dynamics (Sur le Problem des trios crops ci les equations de dynamique). Acta Math 13:270

    Article  Google Scholar 

  • Poincaré H (1896) Sur les solutions périodiques et le principe de moindre action (On the three-body problem and the equations of dynamics. C R Acad Sci 123:915–918

    Google Scholar 

  • Pool R (1989) Where strange attractors lurk. Science 243:1292

    Article  Google Scholar 

  • Rényi A (1959) On the dimension and entropy of probability distributions. Acta Math Hungarica 10(1–2)

    Google Scholar 

  • Rényi A (1971) Probability theory. North Holland, Amsterdam

    Google Scholar 

  • Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57:397–398

    Article  Google Scholar 

  • Ruelle D (1989) Chaotic evolution and strange attractors: the statistical analysis of time series for deterministic nonlinear systems. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Ruelle D, Takens F (1971) On the nature of tubulence. Comm Math Phys 20:167–192

    Article  Google Scholar 

  • Saltzman B (1962) Finite amplitude free convection as an initial value problem–I. J Atmos Sci 19:329–341

    Article  Google Scholar 

  • Sangoyomi TB, Lall U, Abarbanel HDI (1996) Nonlinear dynamics of the Great Salt Lake: dimension estimation. Water Resour Res 32(1):149–159

    Article  Google Scholar 

  • Schaffer W (1987) Chaos in ecology and epidemiology. In: Degn H, Holden AV, Olsen LF (eds) Chaos in biological systems. Plenum Press, New York, pp 366–381

    Google Scholar 

  • Schaffer W, Ellner S, Kot M (1986) Effects of noise on some dynamical models in ecology. J Math Biol 24:479–523

    Article  Google Scholar 

  • Schuster HG (1988) Deterministic chaos: an introduction. Physik Verlag, Weinheim

    Google Scholar 

  • Sivakumar B (2004) Chaos theory in geophysics: past, present and future. Chaos Soliton Fract 19(2):441–462

    Article  Google Scholar 

  • Smale S (1960) More inequalities for a dynamical system. Bull Amer Math Soc 66:43–49

    Article  Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books, Cambridge

    Google Scholar 

  • Su Z, Rollins RW, Hunt ER (1987) Measurements of f(α) spectra of attractors at transitions to chaos in driven diode resonator systems. Phys Rev A 36:3515–3517

    Article  Google Scholar 

  • Swinney HL, Gollub JP (1978) Hydrodynamic instabilities and the transition to turbulence. Phys Today 31(8):41–49

    Article  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, lecture notes in mathematics 898, Springer, Berlin, pp 366–381

    Google Scholar 

  • Teitsworth SW, Westervelt RM (1984) Chaos and broad-band noise in extrinsic photoconductors. Phys Rev Lett 53(27):2587–2590

    Article  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  Google Scholar 

  • Tong H (1990) Non-linear time series analysis. Oxford University Press, Oxford, UK

    Google Scholar 

  • Tsonis AA (1992) Chaos: from theory to applications. Plenum Press, New York

    Book  Google Scholar 

  • Tufillario NB, Albano AM (1986) Chaotic dynamics of a bouncing ball. Am J Phys 54:939–944

    Article  Google Scholar 

  • van der Pol B (1927) On relaxation-oscillations. The London, Edinburgh and Dublin Phil Mag & J of Sci 2(7):978–992

    Google Scholar 

  • Williams GP (1997) Chaos theory tamed. Taylor & Francis Publishers, London, UK

    Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano A (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sivakumar, B. (2017). Fundamentals of Chaos Theory. In: Chaos in Hydrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2552-4_5

Download citation

Publish with us

Policies and ethics