Skip to main content

Studies on Hydrologic Data Issues

  • Chapter
  • First Online:
  • 1238 Accesses

Abstract

Despite the tremendous growth in the applications of chaos theory in hydrology, there have been lingering criticisms. These criticisms have been based on the fundamental assumptions involved in the development of methods for identification and prediction of chaos (e.g. infinite and noise-free time series, lack of clear-cut guidelines on the selection of parameters involved) and/or the limitations of hydrologic data (e.g. short and noisy data, presence of zeros). A number of issues have been raised in this regard, but some have attracted far more attention than the others. This chapter presents a review of studies that have addressed such issues in chaos studies in hydrology. The review mainly focuses on four major issues: selection of an optimum delay time for phase space reconstruction, minimum data size for correlation dimension estimation, effects of data noise, and influence of the presence of zeros in data. Examples are also provided to illustrate how these issues have been addressed to gain more confidence in the applications of the methods and in the interpretation of the outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Berndtsson R, Jinno K, Kawamura A, Olsson J, Xu S (1994) Dynamical systems theory applied to long-term temperature and precipitation time series. Trends Hydrol 1:291–297

    Google Scholar 

  • Dhanya CT, Nagesh Kumar D (2011) Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach. Water Resour Res 47:W06507. doi:10.1029/2010WR010173

    Article  Google Scholar 

  • Diks C (1999) Nonlinear time series analysis, methods and applications. World Scientific, Singapore

    Book  Google Scholar 

  • Elshorbagy A, Simonovic SP, Panu US (2002a) Estimation of missing streamflow data using principles of chaos theory. J Hydrol 255:123–133

    Article  Google Scholar 

  • Elshorbagy A, Simonovic SP, Panu US (2002b) Noise reduction in chaotic hydrologic time series: facts and doubts. J Hydrol 256:147–165

    Article  Google Scholar 

  • Essex C (1991) Correlation dimension and data sample size. In: Schertzer D, Lovejoy S (eds) Non-linear variability in geophysics, scaling and fractals. Kluwer, Dordrecht, The Netherlands, pp 93–98

    Chapter  Google Scholar 

  • Fathima TA, Jothiprakash V (2016) Consequences of continuous zero values and constant values in time series modeling: understanding through chaotic approach. ASCE, J Hydrol Eng 05016012

    Google Scholar 

  • Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33(2):1134–1140

    Article  Google Scholar 

  • Gaume E, Sivakumar B, Kolasinski M, Hazoumé L (2006) Identification of chaos in rainfall disaggregation: application to a 5-minute point series. J Hydrol 328(1–2):56–64

    Article  Google Scholar 

  • Ghilardi P, Rosso R (1990) Comment on “Chaos in rainfall”. Water Resour Res 26(8):1837–1839

    Google Scholar 

  • Grassberger P, Hegger R, Kantz H, Schaffrath C (1993) On noise reduction methods for chaotic data. Chaos 3(2):127–141

    Article  Google Scholar 

  • Havstad JW, Ehlers CL (1989) Attractor dimension of nonstationary dynamical systems from small data sets. Phys Rev A 39(2):845–853

    Article  Google Scholar 

  • Henon M (1976) A two-dimensional mapping with a strange attractor. Commun Math Phys 50:69–77

    Article  Google Scholar 

  • Hill J, Hossain F, Sivakumar B (2008) Is correlation dimension a reliable proxy for the number of dominant influencing variables for modeling risk of arsenic contamination in groundwater? Stoch Environ Res Risk Assess 22(1):47–55

    Article  Google Scholar 

  • Holzfuss J, Mayer-Kress G (1986) An approach to error-estimation in the application of dimension algorithms. In: Mayer-Kress G (ed) Dimensions and entropies in chaotic systems. Springer, New York, pp 114–122

    Chapter  Google Scholar 

  • Islam MN, Sivakumar B (2002) Characterization and prediction of runoff dynamics: A nonlinear dynamical view. Adv Water Resour 25(2):179–190

    Article  Google Scholar 

  • Islam S, Bras RL, Rodriguez-Iturbe I (1993) A possible explanation for low correlation dimension estimates for the atmosphere. J Appl Meteor 32:203–208

    Article  Google Scholar 

  • Jayawardena AW, Gurung AB (2000) Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach. J Hydrol 228:242–264

    Article  Google Scholar 

  • Jayawardena AW, Lai F (1994) Analysis and prediction of chaos in rainfall and stream flow time series. J Hydrol 153:23–52

    Article  Google Scholar 

  • Jayawardena AW, Li WK, Xu P (2002) Neighborhood selection for local modeling and prediction of hydrological time series. J Hydrol 258:40–57

    Article  Google Scholar 

  • Jayawardena AW, Xu PC, Li WK (2008) A method of estimating the noise level in a chaotic time series. Chaos 18(2):023115. doi:10.1063/1.2903757

    Article  Google Scholar 

  • Jayawardena AW, Xu PC, Li WK (2010) Modified correlation entropy estimation for a noisy chaotic time series. Chaos 20:023104

    Article  Google Scholar 

  • Jinno K, Shiguo Xu, Berndtsson R, Kawamura A, Matsumoto M (1995) Prediction of sunspots using reconstructed chaotic system equations. J Geophys Res 100:14773–14781

    Article  Google Scholar 

  • Jothiprakash V, Fathima TA (2013) Chaotic analysis of daily rainfall series in Koyna reservoir catchment area, India. Stoch Environ Res Risk Assess 27:1371–1381

    Article  Google Scholar 

  • Kawamura A, McKerchar AI, Spigel RH, Jinno K (1998) Chaotic characteristics of the Southern Oscillation Index time series. J Hydrol 204:168–181

    Article  Google Scholar 

  • Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase space reconstruction using a geometric method. Phys Rev A 45:3403–3411

    Article  Google Scholar 

  • Khan S, Ganguly AR, Saigal S (2005) Detection and predictive modeling of chaos in finite hydrological time series. Nonlinear Processes Geophys 12:41–53

    Article  Google Scholar 

  • Kim HS, Eykholt R, Salas JD (1998) Delay time window and plateau onset of the correlation dimension for small data sets. Phys Rev E 58(5):5676–5682

    Article  Google Scholar 

  • Kim HS, Eykholt R, Salas JD (1999) Nonlinear dynamics, delay times, and embedding windows. Physica D 127(1–2):48–60

    Article  Google Scholar 

  • Kim HS, Lee KH, Kyoung MS, Sivakumar B, Lee ET (2009) Measuring nonlinear dependence in hydrologic time series. Stoch Environ Res Risk Assess 23:907–916

    Article  Google Scholar 

  • Koutsoyiannis D (2006) On the quest for chaotic attractors in hydrological processes. Hydrol Sci J 51(6):1065–1091

    Article  Google Scholar 

  • Koutsoyiannis D, Pachakis D (1996) Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series. J Geophys Res 101(D21):26441–26451

    Article  Google Scholar 

  • Laio F, Porporato A, Ridolfi L, Tamea S (2004) Detecting nonlinearity in time series driven by non-Gaussian noise: the case of river flows. Nonlinear Processes Geophys 11:463–470

    Article  Google Scholar 

  • Lall U, Sangoyomi T, Abarbanel HDI (1996) Nonlinear dynamics of the Great Salt Lake: Nonparametric short-term forecasting. Water Resour Res 32(4):975–985

    Article  Google Scholar 

  • Lambrakis N, Andreou AS, Polydoropoulos P, Georgopoulos E, Bountis T (2000) Nonlinear analysis and forecasting of a brackish karstic spring. Water Resour Res 36(4):875–884

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Lorenz EN (1991) Dimension of weather and climate attractors. Nature 353:241–244

    Article  Google Scholar 

  • Liaw CY, Islam MN, Phoon KK, Liong SY (2001) Comment on “Does the river run wild? Assessing chaos in hydrologic systems”. Adv Water Resour 24(5):575–578

    Article  Google Scholar 

  • Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197(4300):287–289

    Google Scholar 

  • Martinerie JM, Albano AM, Mees AI, Rapp PE (1992) Mutual information, strange attractors, and the optimal estimation of dimension. Phys Rev A 45:7058–7064

    Article  Google Scholar 

  • Nerenberg MAH, Essex C (1990) Correlation dimension and systematic geometric effects. Phys Rev A 42(12):7065–7074

    Article  Google Scholar 

  • Oltmans H, Verheijen PJT (1997) Influence of noise on power-law scaling functions and an algorithm for dimension estimations. Phys Rev E 56(1):1160–1170

    Article  Google Scholar 

  • Osborne AR, Provenzale A (1989) Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35:357–381

    Article  Google Scholar 

  • Pasternack GB (1999) Does the river run wild? Assessing chaos in hydrological systems. Adv Water Resour 23(3):253–260

    Article  Google Scholar 

  • Phoon KK, Islam MN, Liaw CY, Liong SY (2002) A practical inverse approach for forecasting of nonlinear time series analysis. ASCE J Hydrol Eng 7(2):116–128

    Article  Google Scholar 

  • Porporato A, Ridolfi R (1997) Nonlinear analysis of river flow time sequences. Water Resour Res 33(6):1353–1367

    Article  Google Scholar 

  • Regonda S, Sivakumar B, Jain A (2004) Temporal scaling in river flow: can it be chaotic? Hydrol Sci J 49(3):373–385

    Article  Google Scholar 

  • Rodriguez-Iturbe I, De Power FB, Sharifi MB, Georgakakos KP (1989) Chaos in rainfall. Water Resour Res 25(7):1667–1675

    Article  Google Scholar 

  • Sangoyomi TB, Lall U, Abarbanel HDI (1996) Nonlinear dynamics of the Great Salt Lake: Dimension estimation. Water Resour Res 32(1):149–159

    Article  Google Scholar 

  • Schertzer D, Tchiguirinskaia I, Lovejoy S, Hubert P, Bendjoudi H (2002) Which chaos in the rainfall-runoff process? A discussion on ‘Evidence of chaos in the rainfall-runoff process’ by Sivakumar et al. Hydrol Sci J 47(1):139–147

    Article  Google Scholar 

  • Schouten JC, Takens F, van den Bleek CM (1994) Estimation of the dimension of a noisy attractor. Phys Rev E 50(3):1851–1861

    Article  Google Scholar 

  • Schreiber T (1993a) Determination of the noise level of chaotic time series. Phys Rev E 48(1):R13–R16

    Article  Google Scholar 

  • Schreiber T (1993b) Extremely simple nonlinear noise reduction method. Phys Rev E 47(4):2401–2404

    Article  Google Scholar 

  • Schreiber T, Grassberger P (1991) A simple noise reduction method for real data. Phys Lett A 160:411–418

    Article  Google Scholar 

  • Schreiber T, Kantz H (1996) Observing and predicting chaotic signals: is 2%noise too much? In: Kravtsov YuA, Kadtke JB (eds), Predictability of complex dynamical systems, Springer Series in Synergetics, Springer, Berlin, pp 43–65

    Google Scholar 

  • Sevruk B (1996) Adjustment of tipping-bucket precipitation gage measurement. Atmos Res 42:237–246

    Article  Google Scholar 

  • Sivakumar B (2000) Chaos theory in hydrology: important issues and interpretations. J Hydrol 227(1–4):1–20

    Article  Google Scholar 

  • Sivakumar B (2001) Rainfall dynamics at different temporal scales: A chaotic perspective. Hydrol Earth Syst Sci 5(4):645–651

    Article  Google Scholar 

  • Sivakumar B (2005a) Correlation dimension estimation of hydrologic series and data size requirement: myth and reality. Hydrol Sci J 50(4):591–604

    Article  Google Scholar 

  • Sivakumar B (2005b) Chaos in rainfall: variability, temporal scale and zeros. J Hydroinform 7(3):175–184

    Google Scholar 

  • Sivakumar B, Liong SY, Liaw CY (1998) Evidence of chaotic behavior in Singapore rainfall. J Am Water Resour Assoc 34(2):301–310

    Article  Google Scholar 

  • Sivakumar B, Liong SY, Liaw CY, Phoon KK (1999a) Singapore rainfall behavior: chaotic? ASCE J Hydrol Eng 4(1):38–48

    Article  Google Scholar 

  • Sivakumar B, Phoon KK, Liong SY, Liaw CY (1999b) Comment on “Nonlinear analysis of river flow time sequences” by Amilcare Porporato and Luca Ridolfi. Water Resour Res 35(3):895–897

    Article  Google Scholar 

  • Sivakumar B, Phoon KK, Liong SY, Liaw CY (1999c) A systematic approach to noise reduction in chaotic hydrological time series. J Hydrol 219(3–4):103–135

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Olsson J, Jinno K, Kawamura A (2000) Dynamics of monthly rainfall-runoff process at the Göta basin: A search for chaos. Hydrol Earth Syst Sci 4(3):407–417

    Article  Google Scholar 

  • Sivakumar B, Berndttson R, Olsson J, Jinno K (2001a) Evidence of chaos in the rainfall-runoff process. Hydrol Sci J 46(1):131–145

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Persson M (2001b) Monthly runoff prediction using phase-space reconstruction. Hydrol Sci J 46(3):377–388

    Article  Google Scholar 

  • Sivakumar B, Sorooshian S, Gupta HV, Gao X (2001c) A chaotic approach to rainfall disaggregation. Water Resour Res 37(1):61–72

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Olsson J, Jinno K (2002a) Reply to ‘which chaos in the rainfall-runoff process?’ by Schertzer et al. Hydrol Sci J 47(1):149–158

    Article  Google Scholar 

  • Sivakumar B, Jayawardena AW, Fernando TMGH (2002b) River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J Hydrol 265(1–4):225–245

    Article  Google Scholar 

  • Sivakumar B, Persson M, Berndtsson R, Uvo CB (2002c) Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series? Water Resour Res 38(2), doi:10.1029/2001WR000333

  • Sivakumar B, Wallender WW, Horwath WR, Mitchell JP, Prentice SE, Joyce BA (2006) Nonlinear analysis of rainfall dynamics in California’s Sacramento Valley. Hydrol Process 20(8):1723–1736

    Article  Google Scholar 

  • Sivakumar B, Woldemeskel FM, Puente CE (2014) Nonlinear analysis of rainfall variability in Australia. Stoch Environ Res Risk Assess 28(1):17–27

    Article  Google Scholar 

  • Smith LA (1988) Intrinsic limits on dimension calculations. Phys Lett A 133(6):283–288

    Article  Google Scholar 

  • Theiler J (1986) Spurious dimension from correlation algorithms applied to limited time series data. Phys Rev A 34:2427–2432

    Article  Google Scholar 

  • Tongal H, Berndtsson R (2014) Phase-space reconstruction and self-exciting threshold modeling approach to forecast lake water levels. Stoch Environ Res Risk Assess 28(4):955–971

    Article  Google Scholar 

  • Tongal H, Demirel MC, Booij MJ (2013) Seasonality of low flows and dominant processes in the Rhine River. Stoch Environ Res Risk Assess 27:489–503

    Article  Google Scholar 

  • Tsonis AA (1992) Chaos: from theory to applications. Plenum Press, New York

    Book  Google Scholar 

  • Tsonis AA, Elsner JB, Georgakakos KP (1993) Estimating the dimension of weather and climate attractors: important issues about the procedure and interpretation. J Atmos Sci 50:2549–2555

    Article  Google Scholar 

  • Tsonis AA, Triantafyllou GN, Elsner JB, Holdzkom JJ II, Kirwan AD Jr (1994) An investigation on the ability of nonlinear methods to infer dynamics from observables. Bull Amer Meteor Soc 75:1623–1633

    Article  Google Scholar 

  • Vignesh R, Jothiprakash V, Sivakumar B (2015) Streamflow variability and classification using false nearest neighbor method. J Hydrol 531:706–715

    Article  Google Scholar 

  • Wang Q, Gan TY (1998) Biases of correlation dimension estimates of streamflow data in the Canadian prairies. Water Resour Res 34(9):2329–2339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sivakumar, B. (2017). Studies on Hydrologic Data Issues. In: Chaos in Hydrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2552-4_12

Download citation

Publish with us

Policies and ethics