Skip to main content

Applications to River Flow Data

  • Chapter
  • First Online:
Chaos in Hydrology

Abstract

Chaos theory has found widespread applications in studies on river flow data. Indeed, river flow is the most studied data in the context of chaos studies in hydrology. Early applications mainly focused on identification and prediction of chaotic behavior in river flow dynamics. Later years witnessed studies on a wide range of problems associated with river flow, including scaling and disaggregation, missing data estimation, reconstruction of system equations, multivariable analysis, and spatial variability and classification. Many studies have also addressed the important issues in the applications of chaos theory to river flow data, including data size, data noise, and selection of parameters involved in chaos identification and prediction methods. This chapter presents a review of applications of chaos theory to river flow data. The studies are roughly grouped into three categories to represent the following aspects: identification and prediction, scaling and disaggregation, and spatial variability and classification. These applications are also illustrated through examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarbanel HDI (1996) Analysis of observed chaotic data. Springer, New York, USA

    Book  Google Scholar 

  • Casdagli M (1989) Nonlinear prediction of chaotic time series. Physica D 35:335–356

    Article  Google Scholar 

  • Dhanya CT, Nagesh Kumar D (2011) Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach. Water Resour Res 47:W06507. doi:10.1029/2010WR010173

    Article  Google Scholar 

  • Elshorbagy A, Panu US, Simonovic SP (2001) Analysis of cross-correlated chaotic streamflows. Hydrol Sci J 46(5):781–794

    Article  Google Scholar 

  • Elshorbagy A, Simonovic SP, Panu US (2002a) Estimation of missing streamflow data using principles of chaos theory. J Hydrol 255:123–133

    Article  Google Scholar 

  • Elshorbagy A, Simonovic SP, Panu US (2002b) Noise reduction in chaotic hydrologic time series: facts and doubts. J Hydrol 256:147–165

    Article  Google Scholar 

  • Farmer DJ, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983a) Measuring the strangeness of strange attractors. Physica D 9:189–208

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983b) Characterisation of strange attractors. Phys Rev Lett 50(5):346–349

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983c) Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591–2593

    Article  Google Scholar 

  • Holzfuss J, Mayer-Kress G (1986) An approach to error-estimation in the application of dimension algorithms. In: Mayer-Kress G (ed) Dimensions and entropies in chaotic systems. Springer, New York, pp 114–122

    Chapter  Google Scholar 

  • Islam MN, Sivakumar B (2002) Characterization and prediction of runoff dynamics: a nonlinear dynamical view. Adv Water Resour 25(2):179–190

    Article  Google Scholar 

  • Jayawardena AW, Gurung AB (2000) Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach. J Hydrol 228:242–264

    Article  Google Scholar 

  • Jayawardena AW, Lai F (1994) Analysis and prediction of chaos in rainfall and stream flow time series. J Hydrol 153:23–52

    Article  Google Scholar 

  • Jayawardena AW, Li WK, Xu P (2002) Neighborhood selection for local modeling and prediction of hydrological time series. J Hydrol 258:40–57

    Article  Google Scholar 

  • Kember G, Flower AC (1993) Forecasting river flow using nonlinear dynamics. Stoch Hydrol Hydraul 7:205–212

    Article  Google Scholar 

  • Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase space reconstruction using a geometric method. Phys Rev A 45:3403–3411

    Article  Google Scholar 

  • Khan S, Ganguly AR, Saigal S (2005) Detection and predictive modeling of chaos in finite hydrological time series. Nonlinear Processes Geophys 12:41–53

    Article  Google Scholar 

  • Khatibi R, Sivakumar B, Ghorbani MA, Kisi Ö, Kocak K, Zadeh DF (2012) Investigating chaos in river stage and discharge time series. J Hydrol 414–415:108–117

    Article  Google Scholar 

  • Kim HS, Eykholt R, Salas JD (1999) Nonlinear dynamics, delay times, and embedding windows. Physica D 127(1–2):48–60

    Article  Google Scholar 

  • Kim HS, Lee KH, Kyoung MS, Sivakumar B, Lee ET (2009) Measuring nonlinear dependence in hydrologic time series. Stoch Environ Res Risk Assess 23:907–916

    Article  Google Scholar 

  • Krasovskaia I, Gottschalk L, Kundzewicz ZW (1999) Dimensionality of Scandinavian river flow regimes. Hydrol Sci J 44(5):705–723

    Article  Google Scholar 

  • Laio F, Porporato A, Revelli R, Ridolfi L (2003) A comparison of nonlinear flood forecasting methods. Water Resour Res 39(5). doi:10.1029/2002WR001551

  • Laio F, Porporato A, Ridolfi L, Tamea S (2004) Detecting nonlinearity in time series driven by non-Gaussian noise: the case of river flows. Nonlinear Processes Geophys 11:463–470

    Article  Google Scholar 

  • Lall U, Sharma A (1996) A nearest neighbor bootstrap for time series resampling. Water Resour Res 32(3):679–693

    Article  Google Scholar 

  • Lambrakis N, Andreou AS, Polydoropoulos P, Georgopoulos E, Bountis T (2000) Nonlinear analysis and forecasting of a brackish karstic spring. Water Resour Res 36(4):875–884

    Article  Google Scholar 

  • Liaw CY, Islam MN, Phoon KK, Liong SY (2001) Comment on “Does the river run wild? Assessing chaos in hydrological systems”. Adv Water Resour 24(5):575–578

    Article  Google Scholar 

  • Lisi F, Villi V (2001) Chaotic forecasting of discharge time series: A case study. J Am Water Resour Assoc 37(2):271–279

    Article  Google Scholar 

  • Liu Q, Islam S, Rodriguez-Iturbe I, Le Y (1998) Phase-space analysis of daily streamflow: characterization and prediction. Adv Water Resour 21:463–475

    Article  Google Scholar 

  • Pasternack GB (1999) Does the river run wild? Assessing chaos in hydrological systems. Adv Water Resour 23(3):253–260

    Article  Google Scholar 

  • Pasternack GB (2001) Reply to “Comment on ‘Does the river run wild? Assessing chaos in hydrological systems’” by Pasternack. Adv Water Resour 24(5):578–580

    Google Scholar 

  • Phoon KK, Islam MN, Liaw CY, Liong SY (2002) A practical inverse approach for forecasting of nonlinear time series analysis. ASCE J Hydrol Eng 7(2):116–128

    Article  Google Scholar 

  • Porporato A, Ridolfi L (1996) Clues to the existence of deterministic chaos in river flow. Int J Mod Phys B 10:1821–1862

    Article  Google Scholar 

  • Porporato A, Ridolfi R (1997) Nonlinear analysis of river flow time sequences. Water Resour Res 33(6):1353–1367

    Article  Google Scholar 

  • Porporato A, Ridolfi R (2001) Multivariate nonlinear prediction of river flows. J Hydrol 248(1–4):109–122

    Article  Google Scholar 

  • Regonda S, Sivakumar B, Jain A (2004) Temporal scaling in river flow: can it be chaotic? Hydrol Sci J 49(3):373–385

    Article  Google Scholar 

  • Salas JD, Delleur JW, Yevjevich V, Lane WL (1995) Applied modeling of hydrologic time series. Water Resources Publications, Littleton, Colorado

    Google Scholar 

  • Salas JD, Kim HS, Eykholt R, Burlando P, Green TR (2005) Aggregation and sampling in deterministic chaos: implications for chaos identification in hydrological processes. Nonlinear Processes Geophys 12:557–567

    Article  Google Scholar 

  • Sharma A, Tarboton DG, Lall U (1997) Streamflow simulation: a nonparametric approach. Water Resour Res 33(2):291–308

    Article  Google Scholar 

  • She N, Basketfield D (2005) Streamflow dynamics at the Puget Sound, Washington: application of a surrogate data method. Nonlinear Processes Geophys 12:461–469

    Article  Google Scholar 

  • Sivakumar B (2000) Chaos theory in hydrology: important issues and interpretations. J Hydrol 227(1–4):1–20

    Article  Google Scholar 

  • Sivakumar B (2003) Forecasting monthly streamflow dynamics in the western United States: a nonlinear dynamical approach. Environ Model Softw 18(8–9):721–728

    Article  Google Scholar 

  • Sivakumar B (2004a) Chaos theory in geophysics: past, present andfuture. Chaos Soliton Fract 19(2):441–462

    Article  Google Scholar 

  • Sivakumar B (2004b) Dominant processes concept in hydrology: moving forward. Hydrol Processes 18(12):2349–2353

    Article  Google Scholar 

  • Sivakumar B (2005) Correlation dimension estimation of hydrologic series and data size requirement: myth and reality. Hydrol Sci J 50(4):591–604

    Article  Google Scholar 

  • Sivakumar B (2007) Nonlinear determinism in river flow: prediction as a possible indicator. Earth Surf Process Landf 32(7):969–979

    Article  Google Scholar 

  • Sivakumar B (2009) Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward. Stoch Environ Res Risk Assess 23:1027–1036

    Article  Google Scholar 

  • Sivakumar B, Jayawardena AW (2002) An investigation of the presence of low-dimensional chaotic behavior in the sediment transport phenomenon. Hydrol Sci J 47(3):405–416

    Article  Google Scholar 

  • Sivakumar B, Wallender WW (2005) Predictability of river flow and sediment transport in the Mississippi River basin: a nonlinear deterministic approach. Earth Surf Process Landf 30:665–677

    Article  Google Scholar 

  • Sivakumar B, Singh VP (2012) Hydrologic system complexity and nonlinear dynamic concepts for a catchment classification framework. Hydrol Earth Syst Sci 16:4119–4131

    Article  Google Scholar 

  • Sivakumar B, Phoon KK, Liong SY, Liaw CY (1999) A systematic approach to noise reduction in chaotic hydrological time series. J Hydrol 219(3–4):103–135

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Olsson J, Jinno K, Kawamura A (2000) Dynamics of monthly rainfall-runoff process at the Göta basin: a search for chaos. Hydrol Earth Syst Sci 4(3):407–417

    Article  Google Scholar 

  • Sivakumar B, Berndttson R, Olsson J, Jinno K (2001a) Evidence of chaos in the rainfall-runoff process. Hydrol Sci J 46(1):131–145

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Persson M (2001b) Monthly runoff prediction using phase-space reconstruction. Hydrol Sci J 46(3):377–387

    Article  Google Scholar 

  • Sivakumar B, Sorooshian S, Gupta HV, Gao X (2001c) A chaotic approach to rainfall disaggregation. Water Resour Res 37(1):61–72

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Olsson J, Jinno K (2002a) Reply to ‘which chaos in the rainfall-runoff process?’ by Schertzer et al. Hydrol Sci J 47(1):149–158

    Google Scholar 

  • Sivakumar B, Jayawardena AW, Fernando TMGH (2002b) River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J Hydrol 265(1–4):225–245

    Google Scholar 

  • Sivakumar B, Persson M, Berndtsson R, Uvo CB (2002c) Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series? Water Resour Res 38(2). doi:10.1029/2001WR000333

  • Sivakumar B, Wallender WW, Puente CE, Islam MN (2004) Streamflow disaggregation: a nonlinear deterministic approach. Nonlinear Processes Geophys 11:383–392

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Persson M, Uvo CB (2005) A multi-variable time series phase-space reconstruction approach to investigation of chaos in hydrological processes. Int J Civil Environ Engg 1(1):35–51

    Google Scholar 

  • Sivakumar B, Jayawardena AW, Li WK (2007) Hydrologic complexity and classification: a simple data reconstruction approach. Hydrol Process 21(20):2713–2728

    Article  Google Scholar 

  • Stehlik J (1999) Deterministic chaos in runoff series. J Hydrol Hydromech 47(4):271–287

    Google Scholar 

  • Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734–741

    Article  Google Scholar 

  • Tarboton DG, Sharma A, Lall U (1998) Disaggregation procedures for stochastic hydrology based on nonparametric density estimation. Water Resour Res 34(1):107–119

    Article  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  Google Scholar 

  • Tongal H, Demirel MC, Booij MJ (2013) Seasonality of low flows and dominant processes in the Rhine River. Stoch Environ Res Risk Assess 27:489–503

    Article  Google Scholar 

  • Vignesh R, Jothiprakash V, Sivakumar B (2015) Streamflow variability and classification using false nearest neighbor method. J Hydrol 531:706–715

    Article  Google Scholar 

  • Wang Q, Gan TY (1998) Biases of correlation dimension estimates of streamflow data in the Canadian prairies. Water Resour Res 34(9):2329–2339

    Article  Google Scholar 

  • Wilcox BP, Seyfried MS, Blackburn WH, Matison TH (1990) Chaotic characteristics of snowmelt runoff: a preliminary study. In: Symposium on watershed management. American Society of Civil Engineers, Durango, CO

    Google Scholar 

  • Wilcox BP, Seyfried MS, Matison TM (1991) Searching for chaotic dynamics in snowmelt runoff. Water Resour Res 27(6):1005–1010

    Article  Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano A (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317

    Article  Google Scholar 

  • Zhou Y, Ma Z, Wang L (2002) Chaotic dynamics of the flood series in the Huaihe River Basin for the last 500 years. J Hydrol 258:100–110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sivakumar, B. (2017). Applications to River Flow Data. In: Chaos in Hydrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2552-4_10

Download citation

Publish with us

Policies and ethics