Calcium Nutrition and Climatic Conditions

  • Cees Sonneveld
  • Wim Voogt


The climatic conditions are one of the most striking differences between the growing conditions of field crops and those of protected crops, especially in the moderate climate zones. The increased temperature and the humidity in greenhouses are the dominating factors responsible for the differences. The radiation and the CO2 level in greenhouses are lower, when not artificially adjusted Bakker (1991). Another striking difference between the cultivation under protected conditions in comparison with cultivation in the open field is the crop production under poor light conditions in moderate climate zones. Cultivation of most crops is impossible under field conditions in these climate zones in the period from late autumn until early spring, because of too low outside temperatures. However, under protected conditions crop production occurs year round in moderate zones, which includes production under winter conditions. Heating, and possible artificial lighting contribute to successful crop productions in winter, but the growing conditions differ strongly from those during summer. The low light intensity in combination with a high humidity and relatively high temperature stimulate the vegetative development of plants, which induces negative effects on the quality of the produce. This results in winter time to crops with a lush growth and high water contents (De Koning, 1994).


Chinese Cabbage Osmotic Potential Sweet Pepper Edge Part Root Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams P and Ho L C 1985. Tomatoes: two disorders but one cause. Grower 103(2), 17–25.Google Scholar
  2. Adams P 1988. Some affects of root temperature on the growth and calcium status of tomatoes. Acta Hort. 222, 167–172.Google Scholar
  3. Adams P 1990. Effect of salinity on the distribution of calcium in tomato (Lycopersicon esculentum) fruit and leaves. In: Van Beusichem M L (ed) Plant Nutrition Physiology and Applications. Kluwer Academic Publishers, Dordrecht, 473–476.Google Scholar
  4. Adams P and Holder R 1990. Moves on Humidity. Grower 113(2), supplement: Horticulture Now HN, 9–11.Google Scholar
  5. Adams P and Holder R 1992. Effects of humidity, Ca and salinity on the accumulation of dry matter and Ca by leaves and fruits of tomato (Lycopersicon esculentum). J. Hort. Sci. 67, 137–142.Google Scholar
  6. Adams P and Ho L C 1992. The susceptibility of modern tomato cultivars to blossom-end rot in relation to salinity. J. Hort. Sci. 67, 827–839.Google Scholar
  7. Adams P and Ho, L C 1993. Effects of environment on the uptake and distribution of calcium in tomato and the incidence of blossom-end rot. Plant Soil 154, 127–132.CrossRefGoogle Scholar
  8. Adams P and Ho L C 1995. Differential effects of salinity and humidity on growth and Ca status of tomato and cucumber grown in hydroponic culture. Acta Hort. 401, 357–363.Google Scholar
  9. Adams P 2002. Nutritional control in hydroponics. In: Savvas D and Passam H (eds). Hydroponic Production of Vegetable and Ornamentals. Embryo Publications, Athens, 211–261.Google Scholar
  10. Abed A H 1973. Einfluss von Salzkonzentration and Konzentrationsänderung in der Nährlösung auf Assimilation und Transpiration von Gurkenpflanzen. Dissertation Technischen Universität Hannover, 117 pp.Google Scholar
  11. Bakker J C 1985. Physiological disorders in cucumber under high humidity conditions and low ventilation rates in greenhouses. Acta Hort. 156, 257–264.Google Scholar
  12. Bakker J C and Sonneveld C 1988. Calcium deficiency of glasshouse cucumber as affected by environmental humidity and mineral nutrition. J. Hort. Sci. 63, 241–246.Google Scholar
  13. Bakker J C 1991. Analysis of humidity effects on growth and production of glasshouse fruit vegetables. Dissertation Landbouwuniversiteit Wageningen, 155 pp.Google Scholar
  14. Barta J D and Tibbitts T W 1991. Calcium localization in lettuce leaves with and without tipburn: Comparison of controlled-environment and field-grown plants. J. Amer. Soc. Hort. Sci. 116, 870–875.Google Scholar
  15. Bengtsson B and Jensén P 1983. Uptake and distribution of calcium, magnesium and potassium in cucumber of different age. Physiol. Plant. 57, 428–434.CrossRefGoogle Scholar
  16. Benoit F and Ceustermans N 2001. Impact of cooling on blossom-end rot in soilless paprika. Acta Hort. 548, 319–325.Google Scholar
  17. Berghoef J and Elzinga P 1982. Calciumchloride vermindert bladverbranding bij “Pirate”. Vakblad Bloemisterij 37(11), 32–33.Google Scholar
  18. Bierman P M Rosen C J and Wilkins H F 1990. Leaf edge burn and axillary shoot growth of vegetative poinsettia plants: influence of calcium, nitrogen form and molybdenum. J. Amer. Hort. Soc. 115, 73–78.Google Scholar
  19. Borkowski J 1984. Study on the calcium uptake dynamic by tomato fruits and blossom-end rot control. Acta Hort. 145, 222–229.Google Scholar
  20. Bradfield E G and Guttridge C G 1984. Effects of salt concentration and cation balance in soils on leaf tipburn and calcium content of strawberry leaves and fruits. Comm. Soil Sci. Plant Anal. 15, 681–693.CrossRefGoogle Scholar
  21. Carow B and Roeber R 1979. Calcium-Mangel verursacht Schäden an Hippeastrum. Deutscher Gartenbau 33, 2024–2025.Google Scholar
  22. Cerda A Bingham F T and Labanauskas C K 1979. Blossom-end rot of tomato fruit as influenced by osmotic potential and phosphorus concentration of nutrient solution media. J. Amer. Soc. Hort. Sci. 104, 236–239.Google Scholar
  23. Chang Y C and Miller W B 2005. The development of upper leaf necrosis in Lilium ‘Star Gazer’. J. Amer. Soc. Hort. Sci. 130, 759–766.Google Scholar
  24. Chiu T and Bould C 1976. Effects of shortage of calcium and other cations on Ca mobility, growth and nutritional disorders of tomato plants (Lycopersicon esculentum). J. Sci. Food Agric. 27, 969–977.CrossRefGoogle Scholar
  25. Collier G F Scaife M A and Huntington V C 1977. Nutritional aspects of physiological disorders. Nat. Veg. Res. Sta. Wellesburn, Ann. Report 1976, 43–44.Google Scholar
  26. Collier G F Huntington V C and Cox E F 1979. A possible role for chlorogenic acid in calcium-related disorders of vegetable crops with particular reference to lettuce tipburn. Comm. Soil Sci. Plant Anal. 10, 481–490.CrossRefGoogle Scholar
  27. Collier G F and Tibbitts T W 1982. Tipburn of lettuce. Hort. Rev. 4, 49–65.Google Scholar
  28. Collier C F and Tibbitts T W 1984. Effects of relative humidity and root temperature on calcium concentration and tipburn development in lettuce. J. Amer. Soc. Hort. Sci. 109, 128–131.Google Scholar
  29. De Koning A N M 1994. Development and dry matter distribution in Glasshouse tomato: a quantitative approach. Thesis, Wageningen University, 240 pp.Google Scholar
  30. De Kreij C 1990. Klappers veroorzaakt door gebrek aan calcium. Groenten en Fruit 46(9), 35.Google Scholar
  31. De Kreij C Janse J Van Goor B J and Van Doesburg J D J 1992. The incidence of calcium oxalate crystals in fruit walls of tomato (Lycopersicon esculentum Mill.) as affected by humidity, phosphate and calcium supply. J. Hort. Sci. 67, 45–50.Google Scholar
  32. De Kreij C 1993. Calcium transport het meest beïnvloed. In: Proefstation voor Tuinbouw onder Glas/Proefstation voor de Bloemisterij, Naaldwijk/Aalsmeer, The Netherlands. Luchtvochtigheid. Informatiereeks no 104, 36–37.Google Scholar
  33. De Kreij C 1996. Interactive effects of air humidity, calcium and phosphate on blossom-end rot, leaf deformation, production and nutrient contents of tomato. J. Plant Nutr. 19, 361–377.CrossRefGoogle Scholar
  34. Ehret D and Ho L C 1986. Translocation of calcium in relation to tomato fruit growth. Ann. Bot. 58, 679–688.Google Scholar
  35. Ehret D L and Ho L C 1986a. Effects of osmotic potential in nutrient solution on diurnal growth of tomato fruit. J. Exp. Bot. 37, 1294–1302.CrossRefGoogle Scholar
  36. English J E and Barker A V 1982. Water-soluble calcium in Ca-efficient and Ca-inefficient tomato strains. HortSci. 17, 929–931.Google Scholar
  37. English J E and Barker A V 1987. Ion interactions in calcium-efficient and calcium-inefficient tomato lines. J. Plant Nutr. 10, 857–869.CrossRefGoogle Scholar
  38. Frost D J and Kretchman D W 1989. Calcium deficiency reduces cucumber fruit and seed quality. J. Amer. Soc. Hort. Sci. 114, 552–556.Google Scholar
  39. Gasim A A and Hurd R G 1986. The root activity of fruiting tomato plant. Acta Hort 190, 267–265.Google Scholar
  40. Geraldson C M 1957. Factors affecting calcium nutrition of celery, tomato and pepper. Soil Sci. Soc. Amer. Proc. 21, 621–625.CrossRefGoogle Scholar
  41. Giordano L de B Gabelman W H and Gerloff G C 1982. Inheritance of differences in calcium utilization by tomatoes under low-calcium stress. J. Amer. Soc. Hort. Sci. 107, 664–669.Google Scholar
  42. Harbaugh B K and Woltz S S 1989. Fertilization practices and foliar-bract calcium sprays reduce incidence of marginal bract necrosis of poinsettia. Hort. Sci. 24, 465–468.Google Scholar
  43. Ho L C and Adams P 1989. Calcium deficiency – a matter of inadequate transport to rapidly growing organs. Plants Today 2, 202–207.Google Scholar
  44. Ho L C and Adams P 1989a. Effects of diurnal changes in the salinity of the nutrient solution on the accumulation of calcium by tomato fruit. Ann. Bot. 64, 373–382.Google Scholar
  45. Holder R and Kockshull K E 1988. The effect of humidity and nutrition on the development of calcium deficiency in tomato leaves. In: Cockshull K E (ed). The effect of high humidity on plant growth in energy-saving greenhouses. Comm. E. C. Brussels, Dir. Gen. Agric. Report no. CEC-EUR-11261, 53–60.Google Scholar
  46. Holder R and Cockshull K E 1990. Effects of humidity on the growth and yield of glasshouse tomatoes. J. Hort. Sci. 65, 31–39.Google Scholar
  47. Jean-Baptiste I Morard P and Bernadac A 1999. Effects of temporary calcium deficiency on the incidence of a nutritional disorder in melon. Acta Hort 481, 417–423.Google Scholar
  48. Krug H Wiebe H J and Jungk A 1972. Calciummangel an Blumenkohl unter konstanten Klimabedingungen. Z. Planzern. Bodenk. 133, Heft 3, 213–226.CrossRefGoogle Scholar
  49. Kruger N S 1966. Tip-burn of lettuce in relation to calcium nutrition. Queensland J. Agric. Sci. 23, 379–385.Google Scholar
  50. Lorenzo P Sánchez-Guerrero M C Medrano E Garcia M L Caparrós I and Geménez M 2003. External mobile shading. In: Dirección General de Investigación y Formación Agraria de la Junta de Andalucía Spain, Improvement of Water Use Efficiency in Protected Crops, 197–218.Google Scholar
  51. Maaswinkel R H M 1988. Geringe verdamping beperkt kans op verdroging. Groenten en Fruit 44(22), 39.Google Scholar
  52. Meinken E and Fischer P 1991. Brakteen-Randnecrosen bei poinsettien. Deutscher Gartenbau 43, 2684–2685.Google Scholar
  53. Millikan C R Bjarnason E N Osborn R K and Hanger B C 1971. Calcium concentration in tomato fruits in relation to the incidence of blossom-end rot. Austr. J. Exp. Agric. Anim. Husb. 11, 570–575.CrossRefGoogle Scholar
  54. Mix G P und Marschner H 1976. Einfluss exogener und endogener Factoren auf den Calciumgehalt von Paprika- und Bohnenfrüchten. Z. Pflanzenernaehr. Bodenk. 5, 551–563.Google Scholar
  55. Morley P S Hardgrave M Bradley M and Pilbeam D J 1993. Susceptibility of sweet pepper (Capsicum Annuum L.) cultivars to the calcium deficiency disorder “Blossom-end rot”. In: M A C Fragoso and Van Beusichem M L (eds). Optimization of Plant Nutrition. Kluwer Academic Publishers, Dordrecht, 561–567.Google Scholar
  56. Paiva E A S Prieto Martinez H E Dias Casali V W and Padilha L 1998. Occurrence of blossom-end rot in tomato as a function of calcium dose in the nutrient solution and air humidity. J. Plant Nutr. 21, 2663–2670.CrossRefGoogle Scholar
  57. Proeftuin Noord Limburg 1986. Neusrotbestrijding. Jaarverslag 1986, 46–50.Google Scholar
  58. Roorda van Eijsinga J P N L Rodenburg R and Van Uffelen L G 1973. Stip, een nieuw kwaliteitsprobleem bij paprikavruchten. Bedrijfsontwikkeling 4, 733–734.Google Scholar
  59. Savvas D and Lenz F, 1994. Influence of salinity on the incidence of the physiological disorder ‘internal fruit rot’ in hydroponical-grown eggplants. Angew. Bot. 68, 32–35.Google Scholar
  60. Shear C B 1975. Calcium-related disorders of fruits and vegetables. Hort. Sci. 10, 361–365.Google Scholar
  61. Shimida 1973. Excess injury of calcium and magnesium in the crops. Japan. Agric. Res. Q. 7, 173–177.Google Scholar
  62. Sonneveld C en Van Beusekom J 1975. Specifieke ion effecten bij tuinbouwgewassen. Proefstation voor de Groenten en Fruitteelt onder Glas, Naaldwijk, The Netherlands, Internal Report No 696, 32 pp.Google Scholar
  63. Sonneveld C and Voogt S J 1978. Effects of saline irrigation water on glasshouse cucumbers. Plant Soil 49, 595–606.CrossRefGoogle Scholar
  64. Sonneveld C and Mook E 1983. Lettuce tipburn as related to the cation contents of different plant parts. Plant Soil 57, 29–40.CrossRefGoogle Scholar
  65. Sonneveld 1993. Gewasonderzoek. In: Proefstation Voor Tuinbouw Onder Glas Te Naaldwijk, The Netherlands, Informatiereeks No 87, Plantenvoeding in de Glastuinbouw (3th ed.), 62–68.Google Scholar
  66. Sonneveld, C. and Straver, N., 1994. Nutrient solutions for Vegetables and Flowers grown in water or substrates. Research Station for Floriculture and Glasshouse Vegetables, Aalsmeer/Naaldwijk, The Netherlands, Series: Voedingsoplossingen Glastuinbouw, 8, 45 pp.Google Scholar
  67. Sonneveld C and Welles G W H 2005. Cation concentrations of plant tissues of fruit-vegetable crops as affected by the EC of the external nutrient solution and by humidity. Acta Hort. 697, 377–386.Google Scholar
  68. Spurr 1959. Anatomical aspects of blossom-end rot of tomatoes with a special reference to calcium nutrition. Hilgardia 28, 269–295.Google Scholar
  69. Strømme A Selmer-Olsen A R Gislerød H R and Moe R 1994. Cultivar differences in nutrient absorption and susceptibility to bract necrosis in poinsettia (Euphorbia pulcherrima Wild. ex Klotzsch. Gartenbauwissenschaft 59, 6–12.Google Scholar
  70. Taylor M D and Locascio S J 2004. Blossom-end rot: A calcium deficiency. J. Plant Nutr. 27, 123–139.CrossRefGoogle Scholar
  71. Termohlen G P and Van der Hoeven A P 1966. Tipburn symptoms in lettuce. Acta Hort. 4, 105–109.Google Scholar
  72. Van Berkel N 1981. Three physiological disorders in glasshouse cultivation. Acta Hort. 119, 77–90.Google Scholar
  73. Van Berkel N 1987. Bestrijding rand bij Chinese kool. Groenten Fruit 42(43), 28–29.Google Scholar
  74. Van der Valk G G M and en Bruin P N A 1987. Voldoende transpiratie voorkomt kiepen. Bloembollencultuur 98(47), 12–14.Google Scholar
  75. Voogt W 2003. Nutrient management in soil and soilless culture in The Netherlands: towards environmental goals. In: Proceedings 529 of the Dahlia Greidinger Symposium at Izmir, Turkey, The International Fertiliser Society, 2–27.Google Scholar
  76. Wiersum L K 1965. Invloed van groei en verdamping der vruchten op het optreden van neusrot bij tomaten. Med. Dir. Tuinb. 28, 264–267.Google Scholar
  77. Wiersum L K, 1979. Ca-content of the phloem sap in relation to Ca-status of the plant. Acta Bot. Neerl. 28, 221–224.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cees Sonneveld
    • 1
  • Wim Voogt
    • 2
  1. 1.NijkerkNetherlands
  2. 2.Wageningen UR Greenhouse HorticultureBleiswijkNetherlands

Personalised recommendations