Fertilizers and Soil Improvers

  • Cees Sonneveld
  • Wim Voogt


In greenhouse industry fertilizers as well as soil improvers are widely used. Fertilizers are mainly applied to optimize the physical-chemical conditions of the root environment and are used for growing in soils in situ as well as for growing in substrates. Soil improvers are materials solely added to soils in situ primarily to maintain or improve its physical properties, but it also can improve its chemical and biological properties. Thus the difference between fertilizers and soil improvers is somewhat diffuse.


Organic Matter Content Soil Improver Substrate Culture Drip Irrigation System Fraction Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amlinger F Pollak M and Favoino E 2004.Heavy metals and organic compounds from wastes used as organic fertilisers. Annex 2, Compost quality definition – Legislation and standards. Env.A.2./ETU.2001.0024, 21 pp.Google Scholar
  2. Aylward G H and Findlay T J V 1974. SI Chemical Data. Second edition. John Wiley and Sons, New York.Google Scholar
  3. Bokhorst J 2005a. Compost. In:. Bodem & Bemesting Biokas. Louis Bolk Institute, Driebergen, 16–17.Google Scholar
  4. Bokhorst J 2005b. Dierlijke mest. In:. Bodem & Bemesting Biokas. Louis Bolk Institute, Driebergen, 18–19.Google Scholar
  5. Bos E J F Keijzer R A W Van Schie W L Verhagen J B G M and Zevenhoven M A 2002. Potgronden en substraten RHP. Stichting RHP, Naaldwijk, The NetherlandsGoogle Scholar
  6. CEN 2000. European committee for standardisation CEN/TC 223. Soil improvers and growing media – Determination of a quantity. EN 12580, 14 pp.Google Scholar
  7. CEN 2004. Draft discussion document for the ad hoc meeting on biowastes and sludges. 15–16 January 4004, Brussels, CEN/TC 223, N426, 22 pp.Google Scholar
  8. CEN 2007. European committee for standardisation CEN/TC 223. Soil improvers and growing media – Determination of a quantity for materials with a particle size greater than 60 mm. EN 15238, 14 pp.Google Scholar
  9. EC Regulation 1991. Regulation No. 2092/91/EEC 1991: Counsel regulation on organic production of agriculture products and indications referring thereto on agricultural products and foodstuffs. Last Amendment Counsel Regulation No. 1804/99/EEC, 19 07 1999, L222/1.Google Scholar
  10. Hilgard E W 1919. Soils in the Humid and Arid Regions. Macmillan & Co, New York, 593 pp.Google Scholar
  11. Janssen B H 1984. A simple method for calculation decomposition and accumulation of ‘young’ soil organic matter. Plant Soil 76, 297–304.CrossRefGoogle Scholar
  12. Kipp J Wever G and De Kreij C 2000. International Substrate Manual – Analysis, Characteristics and Recommendations. Elsevier International Business Information, Doetinchem, The Netherlands, 94 pp.Google Scholar
  13. Klute A 1986. Methods for soil analysis. Part 1. Physical and mineralogical methods, second edition. Agronomy Monograph No 9 (Part 1). Am. Soc. Agron., Maidison, WI, 1188p.Google Scholar
  14. Kortleven J 1970. Volumengewicht, porionvolumen en humusgehalte. Instituut voor Bodemvruchtbaarheid, Haren, The Netherlands. Rapport no 45.Google Scholar
  15. LNV (undated). Zuiveringsslib, compost en zwarte grond; kwaliteit en gebruik in de landbouw. Ministerie van Landbouw, Natuurbeheer en Visserij, Den Haag, 27 pp.Google Scholar
  16. Lucas R E and Davis J F 1961. Relationship between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci. 92, 177–182.CrossRefGoogle Scholar
  17. Marcelis L F M Voogt W Visser P H B Postma J Heinen M De Werd R and Straatsma G 2003. Organische stof management in biologische kasteelt. Wageningen University Research, Rapport 70, 50 pp.Google Scholar
  18. Marschner H Römheld V and Cakmak I 1987. Root-induced changes of nutrient availability in the rhizospere. J. Plant Nutr. 10, 1175–1184.CrossRefGoogle Scholar
  19. Marschner H 1995. Mineral Nutrition of Higher Plants. Academic Press, London.Google Scholar
  20. Oertly J J 1980. Controlled-release fertilizers. Fertilizer Res. 1, 103–123.CrossRefGoogle Scholar
  21. Prasad M Simmons P and Maher M J 2004. Release characteristics of organic fertilizers. Acta Hort. 644, 163–170.Google Scholar
  22. Proefstation 1954. Proefstation voor de Groenten en Fruitteelt onder Glas te Naaldwijk, The Netherlands. Jaarverslag 1954, 28–29.Google Scholar
  23. Raviv M Wallach R Silber A and Bar-Tal A 2002. Substrate and their analysis. In: Savvas D and Passam H (eds), Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, 25–101.Google Scholar
  24. RHP (2008). Personal Information of RHP Foundation, ‘s Gravenzande, The Netherlands.Google Scholar
  25. Roorda van Eijsinga J P N L 1971. Determination of the phosphate status of soils in the Naaldwijk area for growing lettuce in glasshouses. Agriculture Research Reports 753. Centre Agric. Publish. Doc. Wageningen, 25 pp.Google Scholar
  26. Roorda van Eysinga J P N L 1974. De opname van fluor door de wortel en de gevolgen daarvan voor diverse gewassen, in het bijzonder freesia. Theesis, Centrum voor Landbouwpublicaties en Landbouwdocumentatie, Wageningen, 83 pp.Google Scholar
  27. Sluijsmans C M J and Kolenbrander G J 1977. The significance of animal manure as a source of nitrogen in soils. In: Proc. Intern. Seminar on Soil Environment and Fertility Management in Intensive Agriculture, Tokyo, 403–411.Google Scholar
  28. Solbra K 1979. Composting of bark 1. Different bark qualities and their uses in plant production. Meded, Norsk Inst. Skogforskning 34, 285–323.Google Scholar
  29. Sonneveld C 1990. Estimating quantities of water-soluble nutrients in soil using a specific 1:2 volume extract. Commun. Soil Sci. Plant Anal. 21, 1257–1265.CrossRefGoogle Scholar
  30. Sonneveld C Van den Ende J and De Bes S S 1990. Estimating the chemical composition of soil solutions by obtaining saturation extracts or specific 1:2 by volume extracts. Plant Soil 122, 169–175.CrossRefGoogle Scholar
  31. Van den Ende J 1988a. Water contents of glasshouse soils at field capacity and at saturation. 1. Relationships between water contents. Neth. J. Agric. Sci. 36, 265–274.Google Scholar
  32. Van den Ende J 1988b. Water contents of glasshouse soils at field capacity and at saturation. 2. Estimating water contents from organic-matter and clay contents or loss-on-ignition. Neth. J. Agric. Sci. 36, 275–282.Google Scholar
  33. Verloo M G 1980. Peat as a natural complexing agent for trace elements. Acta Hort. 99, 51–56.Google Scholar
  34. Van der Wees A 1993. Meststoffen. Proefstation voor Tuinbouw onder Glas, Naaldwijk, The Netherlands. Plantenvoeding in de Glastuinbouw, Informatiereeks no 87, 13–25.Google Scholar
  35. Voogt W and Sonneveld C 2001. Silicon in horticulture crops grown in soilless culture. In: Datnoff, L E, Snijder, G H and Korndörfer G H (eds), Silicon in Agriculture. Elsevier Science B.V., Amsterdam, 115–131.CrossRefGoogle Scholar
  36. Voogt W and Sonneveld C 2004. Interactions between nitrate (NO3) and chloride (Cl) in nutrient solutions for substrate grown tomato. Acta Hort. 644, 359–368.Google Scholar
  37. Voogt W 2008. Personal data bank of Wageningen University, The Netherlands.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cees Sonneveld
    • 1
  • Wim Voogt
    • 2
  1. 1.NijkerkNetherlands
  2. 2.Wageningen UR Greenhouse HorticultureBleiswijkNetherlands

Personalised recommendations