Nutrient Management in Substrate Systems

  • Cees Sonneveld
  • Wim Voogt


Speaking about nutrient solutions in soilless cultivation, different solutions can be discerned. Originally, in soilless culture only one nutrient solution was taken into account, being the solution in the containers in which the plants were grown. Such solutions were intensively moved by air bubbling and thus, the composition of the solution in the whole root environment was equal. The root environment was restricted to the container in which the plants were grown and thus, the whole root system of the plant was surrounded by the same nutrient solution. However, this is not the case for hydroponics and substrate systems under practical growing conditions, where great differences occur in time and place within the root environment. The main reason for these differences of salt concentrations between spots within the root environment are the inequality of water supply and water uptake by the crop as discussed in Section 6.3, at the one hand and the lack of movement of the solution within the root environment to equalize them on the other. In Chapter 8 some examples were shown of the inequality of the distribution of nutrients and salts within the root environment of substrate grown plants and the consequences of it on plant development.


Nutrient Solution Drainage Water Drip Irrigation Nutrient Management Substrate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams P and El-Gizawy A M 1986. Effect of salinity and watering level on the calcium content of tomato fruit. Acta Hort. 190, 253–259.Google Scholar
  2. Adams P and Ho L C 1993. Effects of the environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil 154, 127–132.CrossRefGoogle Scholar
  3. Bakker S Welles G W H Janse J De Kreij C and Buitelaar K 1989. The effect of air humidity in combination with the composition of the nutrient solution on yield, the incidence of blossom end rot and keeping quality of aubergine in an autumn crop. Glasshouse crops Research Station Naaldwijk, The Netherlands, Annual Report 1989, 42.Google Scholar
  4. Barker A V and Mills H A 1980. Ammonium and nitrate nutrition of horticultural crops. Hort. Rev. 2, 395–423.Google Scholar
  5. Boertje G A 1982. Spoorelementen bij tomaten op veen. Tuinderij 62(13), 46–49.Google Scholar
  6. Bromfield S M 1978. The effect of manganese oxidising bacteria and pH on the availability of manganous ions and manganese oxides to oats in nutrient solutions. Plant Soil 49, 23–39.CrossRefGoogle Scholar
  7. Clement C R Hopper M J and Jones L H P 1978. The uptake of nitrate by Lolium perenne from flowing nutrient solution. J. Exp. Bot. 29, 453–464.CrossRefGoogle Scholar
  8. Conover C A and Poole R T 1986. Nitrogen source effects on growth and tissue content of selected foliage plants. HortSci. 21, 1008–1009.Google Scholar
  9. De Kreij C and Van den Berg 1990. Effect of electrical conductivity of the nutrient solution and fertilization regime on spike production and quality of Cymbidium. Scientia Hort. 44, 293–300.CrossRefGoogle Scholar
  10. De Kreij C Janse J Van Goor B J and Van Doesburg J D J 1992. The incidence of calcium oxalate crystals in fruit walls of tomato (Lycopersicon esculentum Mill.) as affected by humidity, phosphate and calcium supply. J. Hort. Sci. 67, 45–50.Google Scholar
  11. De Kreij C Martignon G and Van Elderen C W 1993. Comparison of water, DTPA, and nitric acid as extractants to assess the availability of copper in peat substrates. Comm. Soil Sci. Plant Anal. 24, 227–236.CrossRefGoogle Scholar
  12. De Kreij C 1996. Interactive effects of air humidity, calcium and phosphate on blossom-end rot, leaf deformation, productivity and nutrient contents of tomato. J. Plant Nutr. 19, 361–377.CrossRefGoogle Scholar
  13. De Kreij C Voogt W Van den Bos A L and Baas R 1997. Voedingsoplossingen voor de teelt van tomaat in gesloten teeltsystemen. Proefstation voor Tuinbouw onder Glas te Naaldwijk, The Netherlands, Brochure VG 2, 21 pp.Google Scholar
  14. De Kreij C Voogt W Van den Bos A L and Baas R 1999. Bemestingsadviesbasis Substraten. Proefstation voor Bloemisterij en Glasgroente Naaldwijk The Netherlands, 145 pp.Google Scholar
  15. Feigin A Ginzburg C Ackerman A and Gilead S 1984. Response of roses growing in volcanic rock substrate to different NH4/NO3 ratios in the nutrient solution. In: Proc. 6th Internat. Congr. Soilless Culture, Lunteren, 1984 ISOSC, Wageningen, The Netherlands, 207–214.Google Scholar
  16. Feigin A Ginzburg C Gilead S and Ackerman A 1986. Effect of NH4/NO3 ratio in nutrient solution on growth and yield of greenhouse roses. Acta Hort. 189, 127–135.Google Scholar
  17. Garcia-Mina J Cantera RG Zamarreno A 2003. Interaction of different iron chelates with an alkaline and calcareous soil: a complementary methodology to evaluate the performance of iron compounds in the correction of iron chlorosis. J. Pl. Nutr. 26, 1943–1954.CrossRefGoogle Scholar
  18. Graves C J 1983. The nutrient film technique. Hort. Rev. 5: 1–44.Google Scholar
  19. Ho L C and Adams P 1989. Calcium deficiency – a matter of inadequate transport to rapidly growing organs. Plants Today 2, 202–207.Google Scholar
  20. Ho L C and Adams P 1994. Regulation of partitioning of dry matter and calcium in relation to fruit growth and salinity. Ann. Bot. 539–545.Google Scholar
  21. Howell W and Bernhard R L 1961. Phosphorus response of soybean varieties. Crop Sci. 1, 311–313.CrossRefGoogle Scholar
  22. Ingestad T 1970. A definition of optimum nutrient requirements in birch seedling I. Physiol. Plant. 23, 1127–1138.CrossRefGoogle Scholar
  23. Ingestad T 1972. Mineral nutrition requirements of cucumber seedlings. Plant Physiol. 52, 332–338.CrossRefGoogle Scholar
  24. Ikeda H and Osawa T 1980. Comparison of adaptability to nitrogen source among vegetable crops. II. Growth response and accumulation of ammonium and nitrate nitrogen by leafy vegetables cultured in nutrient solution containing nitrate, ammonium and nitrite as nitrogen source. J. Japan. Soc. Hort. Sci. 48, 435–442Google Scholar
  25. Ikeda H and Osawa T 1983. Effects of ratios of NO3 to NH4 and concentrations of N source in the nutrient solution on growth and leaf N constituents of vegetable crops and solution pH. J. Japan. Soc. Hort. Sci. 52, 159–166.CrossRefGoogle Scholar
  26. Jensen M H and Collins W L 1985. Hydroponic vegetable production. Hort. Rev. 7, 483–558.Google Scholar
  27. Lindsay W L Hodgson J F and Norvell W A 1967. The physico-chemical equilibrium of metal chelates in soils and their influence on the availability of micro nutrient cations. Intern. Soc. Soil Sci. (Scotland 1966) Trans. Comm. II and IV, 305–316.Google Scholar
  28. Lindsay W L and Norvell W A 1969. Equilibrium relationships of Zn2+, Fe3+, Ca2+, and H+ with EDTA and DTPA in soils. Soil Sci. Soc. Amer. Proc. 33, 62–68.CrossRefGoogle Scholar
  29. Lucas R E and Davis J F 1961. Relationship between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci. 92, 177–182.CrossRefGoogle Scholar
  30. Maloupa E 2002. Hydroponic systems. In: Savvas D and Passam H (eds) Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, 143–176.Google Scholar
  31. Marti H R and Mills H A 1991. Nutrient uptake and yield of sweet peppers as affected by stage of development and N form. J. Planr Nutr. 14, 1165–1175.CrossRefGoogle Scholar
  32. Masui M Nukaya A and Ishida A 1982. Effects of nitrogen form on growth of muskmelons. J. Japan. Soc. Hort. Sci. 50, 475–480.Google Scholar
  33. Massey D and Winsor G W 1980. Some response of tomato to nitrogen in recirculation solutions. Acta Hort. 98, 127–137.Google Scholar
  34. McNeal B L Oster J D and Hatcher J T 1979. Calculation of the electrical conductivity from solution composition data as an aid to in situ estimation of soil salinity. Soil Sci. 110, 405–414.CrossRefGoogle Scholar
  35. Mengel K and Kirkby E A 1987. Principles of plant nutrition. Int. Potash Inst. Bern, 4th edition 687 pp.Google Scholar
  36. Reichwein AM 2007. Model calculations micro element stability in relation to chelate type and environmental conditions, using MINEQL+. (personal communication)Google Scholar
  37. Roelofs Th and Van Emmerik P 1992. Teelt op veen vraagt extra aandacht voor element koper. Vakblad Bloemisterij 47(29), 55.Google Scholar
  38. Robson A D and Pitman M G 1983. Interactions between nutrients in higher plants. In: Läuchli A and Bieleski R L (eds), Inorganis Plant Nutrition, Encyclopedia of Plant Physiol. (New series) 15a, Springer-Verlag, Berlin, 147–180.Google Scholar
  39. Runia W 1995. A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hort. 382, 221–229.Google Scholar
  40. Sakamoto Y Watanabe S Okano K 2001. Growth and Quality of chrysanthemum (Dendranthema grandiflora) grown in wet sheet culture and deep flow technique. Acta Hort. 548, 459–467.Google Scholar
  41. Savvas D and Lenz F 1994. Influence of salinity on the incidence of the physiological disorder “internal rot” in hydroponical-grown eggplants. Angew. Bot. 68, 32–35.Google Scholar
  42. Savvas D Ntatsi G Passam H C 2008. Plant nutrition and physiological disorders in greenhouse grown tomato, sweet pepper and eggplant. Europ. J. Plant Sci. Biotechn. 2, 45–61.Google Scholar
  43. Sidiqi M Y Kronzucker H J Britto D T and Glass A D M 1998. Growth of a tomato crop at reduced nutrient concentrations as a strategy to limit eutrophication. J. Plant Nutr. 21, 1879–1895.CrossRefGoogle Scholar
  44. Sonneveld C Koornneef P and Van den Ende J 1966. De osmotische druk en het electrische geleidingsvermogen van enkele zoutoplossingen. Meded. Dir. Tuinb. 29, 471–474.Google Scholar
  45. Sonneveld C and Voogt S J 1980. The application of manganese in nutrient solutions for tomato grown in a recirculating system. Acta Hort. 98, 171–178.Google Scholar
  46. Sonneveld C and De Bes S S 1984. Micro nutrient uptake of glasshouse cucumbers grown on rockwool. Comm. Soil Sci. Plant Anal. 15, 519–535.CrossRefGoogle Scholar
  47. Sonneveld C and Voogt W 1985. Growth and cation absorption of some fruit-vegetable crops grown on rockwool as affected by different cation ratios in the nutrient solution. J. Plant Nutr. 8, 585–602.CrossRefGoogle Scholar
  48. Sonneveld C De Bes S S and Voogt W 1986. Zinc uptake and distribution in tomatoes grown in rockwool. Soilless Culture 2 no 2, 49–60.Google Scholar
  49. Sonneveld C 1988. Kali-Calciumverhoudingen bij meloen in steenwol. Proefstation voor Tuinbouw onder Glas Naaldwijk, Intern Rapport no 18, 13 pp.Google Scholar
  50. Sonneveld C 1991. Rockwool as a substrate for greenhouse crops. In: Bajaj Y P S (ed) Biotechnology in Agriculture and Forestry 17, High-Tech and Micro-propagation I, Springer-Verlag, Berlin, 285–312.Google Scholar
  51. Sonneveld C and Van der Burg A M M 1991. Sodium chloride salinity in fruit vegetable crops in soilless culture. Neth. J. Agric. Sci. 39, 115–122.Google Scholar
  52. Sonneveld C Van den Bos A L Van der Burg A M M and Voogt W 1991. Fertigation in the greenhouse industry in The Netherlands. In: Fertigation/Chemigation, FAO, Rome 1991, 186–193.Google Scholar
  53. Sonneveld C 1993. An overview of nutrition in hydrponics. In: Hanger B and Laffer B, Hydroponics and the Environment, Proc. Australian Hydroponic Conference Monash University Melbourne, Australia 1993, 21–36.Google Scholar
  54. Sonneveld C and Straver N 1994. Nutrient solutions for Vegetables and Flowers grown in water or substrates. Research Station for Floriculture and Glasshouse Vegetables, Aalsmeer/Naaldwijk, The Netherlands, Series: Voedingsoplossingen Glastuinbouw 8, 45 pp.Google Scholar
  55. Sonneveld C and Van Elderen C W 1994. Chemical analysis of peaty growing media by means of water extraction. Comm. Soil Sci. Plant Anal. 25, 3199–3208.CrossRefGoogle Scholar
  56. Sonneveld C and Voogt W 1994. Effects of calcium and ammonium on the appearance of secondary shoot chlorosis in rockwool grown cucumbers. Proc. Sino Intern. Coll. Soilless Culture, Hangzou 1994, 88–94.Google Scholar
  57. Sonneveld C and Van den Bos A L 1995. Effects of nutrient levels on growth and quality of radish (Raphanus sativis L.) grown on different substrates. J. Plant Nutr. 18, 501–513.CrossRefGoogle Scholar
  58. Sonneveld C and Voogt W 1997. Effects of pH value and Mn application on yield and nutrient absorption with rockwool grown gerbera. Acta Hort. 450, 139–147.Google Scholar
  59. Sonneveld C and De Kreij C 1999. Response of cucumber (Cucumis sativis L.) to an unequal distribution of salts in the root environment. Plant Soil 209, 47–56.CrossRefGoogle Scholar
  60. Sonneveld C Baas R Nijssen H M C and De Hoog J 1999. Salt tolerance of flower crops grown in soilless culture. J. Plant Nutr. 22, 1033–1048.CrossRefGoogle Scholar
  61. Sonneveld C 2000. Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. Thesis Wageningen University, Netherlands, 151 pp.Google Scholar
  62. Sonneveld C and Voogt W 2001. Chemical analysis in substrate systems and hydroponics – use and interpretation. Acta Hort. 548, 247–259.Google Scholar
  63. Sonneveld C 2002. Composition of Nutrient solutions. In: Savvas D and Passam H (ed) Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, 179–210.Google Scholar
  64. Sonneveld C Van den Bos A L and Voogt W 2004, Modelling osmotic salinity effects on yield characteristics of substrate grown greenhouse crops. J. Plant Nutrition 27, 1931–1951.CrossRefGoogle Scholar
  65. Sonneveld C 2004. Nutrient solutions in substrate culture – composition and use. I Congreso Internacional de Horticultura Intensiva. 2 y 3 deciembre 2004, Centro de la Fundación Ruralcaja Valencia, 82–88.Google Scholar
  66. Sonneveld C and Welles G W H 2005. Cation concentrations of plant tissues of fruit-vegetable crops as affected by the EC of the external nutrient solution and by humidity. Acta Hort. 697, 377–386.Google Scholar
  67. Sonneveld C and Voogt W 2008. Nutrient concentrations of plant tissues of greenhouse crops as affected by the EC of the external nutrient solution. Acta Hort. 779, 313–320.Google Scholar
  68. Sonneveld C and Voogt W 2009. Determination of micro nutrients in substrates by water extraction and interpretation of analytical data. Acta Hort. 819, 87–98.Google Scholar
  69. Van den Bos A L, 1995. EC in relatie tot het type substraat bij de teelt van sla in een gesloten teeltsysteem. Proefstation voor Bloemisterij en Glasgroente Naaldwijk The Netherlands, Intern verslag 4, 22 pp.Google Scholar
  70. Van den Bos A L, 1997. Stikstofaanbod en NO3-gehalte bij koolrabi. Proefstation voor Bloemisterij en Glasgroente Naaldwijk The Netherlands, Intern verslag 90, 25 pp.Google Scholar
  71. Van Os P C 1991. Lage EC geeft goede kwaliteit en hoge productie. Vakblad Bloemisterij 46(25), 52–53.Google Scholar
  72. Van Os E C Gieling Th H and Ruijs M N A 2002. Equipment for hydroponic installations. In: Savvas D and Passam H (eds) Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, 103–141.Google Scholar
  73. Verhagen J B G M 1992. Ervaringen met de teelt van chrysant op veensubstraat in een gesloten teeltsysteem. Proefstation voor Tuinbouw onder Glas Naaldwijk, The Netherlands, Intern Verslag 67, 16 pp.Google Scholar
  74. Verloo M G 1980. Peat as natural complexing agent for trace elements. Acta Hort. 99, 51–56.Google Scholar
  75. Voogt W Blok C Smulders P and De Visch D 1989. Grote pH verschillen in de steenwolmat. Groenten en Fruit 44(49), 38–39.Google Scholar
  76. Voogt W 1994. pH belangrijke factor productieverhoging bij roos. Vakblad Bloemisterij 49(43), 32–33.Google Scholar
  77. Voogt W 1995. Effect of the pH on rockwool grown carnation (Dianthus Caryophyllus) Acta Hort. 401, 327–336.Google Scholar
  78. Voogt W 1996. Komkommer: lage pH positief, effect NH4 beperkt. Groenten en Fruit/Glasgroenten 6(15), 16–17.Google Scholar
  79. Voogt W and Sonneveld C 1997. Nutrient management in closed growing systems for greenhouse production. In: E. Goto et al. (eds) Plant Production in Closed Ecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands, 83–102.Google Scholar
  80. Voogt W and Paternotte P 1997. Tomaat : lage pH veroorzaakt wortelverkurking. Groenten en Fruit Vakdeel Glasgroenten 7(49), 12–13.Google Scholar
  81. Voogt W 2002. Potassium management of vegetables under intensive growth conditions. In: Pasricha N S and Basal S K (eds) Potassium for sustainable crop production. Proc. Int. Symp. on role of potassium in Nutrient Management for sustainable crop production in India. Int. Potash Inst. Bern. 347–362.Google Scholar
  82. Voogt W and Sonneveld C 2004. Interactions between nitrate (NO3) and chloride (Cl) in nutrient solutions for substrate grown tomato. Acta Hort. 644, 359–368.Google Scholar
  83. Voogt W Garcia N Straver N Van den Burg N 2006. Onderzoek naar de mogelijkheden om rozen te telen met een permanent dan wel tijdelijk lagere N concentratie in het wortelmilieu om de N emissie te verminderen. Wageningen UR Glastuinbouw, Rapport 4161607, 38 pp.Google Scholar
  84. Voogt W and Sonneveld C 2009. The effect of Fe-chelate type and pH on the development of roses. Acta Hort. 819, 411–417.Google Scholar
  85. Wild A Jones L H P and Macduff J H 1987. Uptake of mineral nutrients and crop growth: the use of flowing nutrient solutions. Adv. Agron. 41, 171–219.CrossRefGoogle Scholar
  86. Zozorna P Caselles J and Carpena O 1987. Response of pepper plants to NO3:NH4 ratio and light intensity. J. Plant Nutr. 10, 773–782.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cees Sonneveld
    • 1
  • Wim Voogt
    • 2
  1. 1.NijkerkNetherlands
  2. 2.Wageningen UR Greenhouse HorticultureBleiswijkNetherlands

Personalised recommendations