Advertisement

Nutrient Solutions for Soilless Cultures

  • Cees Sonneveld
  • Wim Voogt
Chapter

Abstract

Nutrient solutions intended for plant growth are already used from the middle of the 19th century, when the importance of mineral elements for plant growth was made clear by Justus von Liebig. In advance, the nutrient solutions used to grow plants in so called “water cultures” had a simple composition and consisted of salts like KNO3, Ca(NO3)2, KHPO4, MgSO4, and a little Fe-compound (Hoagland and Arnon, 1950), thus, containing all the major elements and some Fe. The relative success with these solutions will be due to the not knowingly supplied micro nutrients from the impurities of the chemicals and fertilizers used to compose the solutions. It can be supposed that the impurities contained sufficient micronutrients, to prevent the crops grown from serious nutrient disorders. Knowledge about the necessity of micro nutrients for plant growth was mainly gathered in the first half of the 20th century (Marschner, 1997), when the purification of fertilizers and chemicals were improved. The first systematic description for the preparation of nutrient solutions was given by Hoagland and Arnon (1950) and since then in many publications reference is given to them, when one or another nutrient solution is used to grow plants in soilless cultivation systems.

Keywords

Nutrient Solution Nutrient Element Calcium Nitrate Primary Water Radiation Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bakker J C and Sonneveld C 1988. Calcium deficiency of glasshouse cucumbers as affected by environmental humidity and mineral nutrition. J. Hort. Sci. 63, 241–246.Google Scholar
  2. Balaguer J Almendro M B Gómez I Navarro Pedreño J and Mataix J 1998. Tomato growth and yield affected by nickel presented in the nutrient solution. Acta Hort. 58, 269–272.Google Scholar
  3. Barker A V and Mills H A 1980. Ammonium and nitrate nutrition of horticulture crops. Hort. Rev. 2, 395–423.Google Scholar
  4. Bélanger R R Bowen P A Ehret D L Menzies J G 1995. Soluble silicon, its role in crop and disease management of greenhouse crops. Plant Disease 79, 329–336.CrossRefGoogle Scholar
  5. Bennet A C 1974. Toxic effects of aqueous ammonia, copper, zinc, lead, boron and manganese on root growth. In: Carson E W (ed) The Plant Root and its Environment, University of Virginia, Charlottesville, 669–683.Google Scholar
  6. Dally H 1974. The cash advantage of growing tomatoes in peat modules. The Grower 82, 239–242.Google Scholar
  7. De Graaf R and Esmeijer M H 1998. Comparing calculated and measured water consumption in a study of the (minimal) transpiration of cucumbers grown in rockwool. Acta Hort. 458, 103–110.Google Scholar
  8. Gieling Th G 2001. Control of water supply and specific nutrient application in closed growing systems. Thesis Wageningen University, 176 pp.Google Scholar
  9. Graves 1983. The nutrient film technique. Hort. Rev. 5, 1–44.Google Scholar
  10. Hoagland D R and Arnon D I 1950. The water culture method for growing plants without soil. Agric. Exp. Sta. Berkely, Calif., Circular 347, 39 pp.Google Scholar
  11. Howell W and Bernhard R L 1961. Phosphorus response of soybean varieties. Crop Sci. 1, 311–313.CrossRefGoogle Scholar
  12. Iler R K 1979. The chemistry of silica. Wiley Interscience, New York.Google Scholar
  13. Kläring H P Schwarz D and Heissner A 1997. Control of nutrient solution concentration in tomato using models of photosynthesis and transpiration: a simulation study. Acta Hort. 450, 329–334.Google Scholar
  14. Lindsay W L Hodgson J F and Norvell W A 1967. The physico-chemical equilibrium of metal chelates in soils and their influence on the availability of micro nutrient cations. Intern. Soc. Soil Sci. (Scotland 1966) Trans. Comm. II and IV, 305–316.Google Scholar
  15. Lucas R E and Davis J F 1961. Relationship between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci. 92, 177–182.CrossRefGoogle Scholar
  16. Marschner H 1997. Mineral Nutrition of Plants, Second edition. Harcourt Brace & Company, Publishers, London.Google Scholar
  17. Miyake Y and E Takahashi 1983. Effect of silicon on the growth of solution cultured cucumber plant. Soil Sci. Plant Nutr. 29, 71–83.Google Scholar
  18. Peterson J C 1982. Effects of pH upon nutrient availability in a commercial soilless root medium utilized for floral crop production. Ohio Agric. Res. Dev. Center, Circular 268, 16–19.Google Scholar
  19. Rahman H Sabreen S Alam S and Kawai S 2005. Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J. Plant Nutr. 28, 393–404.CrossRefGoogle Scholar
  20. Roorda van Eijsinga J P N L and Haeff J N M 1964. Onttrekking van voedingselementen aan de grond door komkommers. Glasshouse Crops Research Station Naaldwijk The Netherlands, Annual Report 1964, 35–38.Google Scholar
  21. Savvas D and Lenz F 1995. Nährstoffaufnahme von Aubergine (Solanum melongena L.) in Hydrokultur. Gartenbauwissenschaft 60, 29–33.Google Scholar
  22. Sonneveld C Koornneef P and Van den Ende J 1966. De osmotische druk en het electrische geleidingsvermogen van enkele zoutoplossingen. Meded. Dir. Tuinb. 29, 471–474.Google Scholar
  23. Sonneveld C and Van den Ende J 1967. De samenstelling van de zouten in het oppervlaktewater in het Zuidhollands glasdistrict. Meded. Dir. Tuinb. 30, 411–416.Google Scholar
  24. Sonneveld C 1980. Growing cucumbers and tomatoes in rockwool. Proc. fifth Intern. Congr. Soilless Culture, Wageningen, 1980, 253–262.Google Scholar
  25. Sonneveld C 1981. Items for application of macro-elements in soilless cultures. Acta Hort. 126, 187–195.Google Scholar
  26. Sonneveld C and Voogt W 1990. Response of tomatoes (Lycopersicon esculentum) to an unequal distribution of nutrients in the root environment. Plant Soil 124, 251–256.CrossRefGoogle Scholar
  27. Sonneveld C and Straver N 1994. Nutrient solutions for Vegetables and Flowers grown in water or substrates. Research Station for Floriculture and Glasshouse Vegetables, Aalsmeer/Naaldwijk, The Netherlands, Series: Voedingsoplossingen Glastuinbouw, 8, 45 pp.Google Scholar
  28. Sonneveld C and Voogt W 1994. Het berekenen van voedingsoplossingen voor planteteelt zonder aarde. Proefstation voor Tuinbouw onder Glas, Series Voedingsoplossingen Glastuinbouw, 10 negende druk, 21 pp.Google Scholar
  29. Sonneveld C 1997. Mineralenopname bij teelten onder glas. Proefstation voor Bloemisterij en Glasgroente. Intern verslag 81, 35 pp.Google Scholar
  30. Sonneveld C Voogt W and Spaans L 1999. A universal algorithm for calculation of nutrient solutions. Acta Hort. 481, 331–339.Google Scholar
  31. Sonneveld C 2000. Effect of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. Thesis Wageningen University, Netherlands, 151 pp.Google Scholar
  32. Sonneveld C 2002. Composition of Nutrient solutions. In: Savvas D and Passam H (eds) Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, 179–210.Google Scholar
  33. States of Guernsey Horticultural Advisory Service 1974. Peat Culture. Bulletin A 3, 9 pp.Google Scholar
  34. Steiner A A 1968. Soilless culture. Proc. 6th Coll. Intern. Potash Inst. Florence/Italy. Intern. Potash Inst., Berne. Switzerland, 324–341.Google Scholar
  35. Steiner A A 1984. The universal nutrient solution. Proc. Sixth Intern. Congress on Soilless Culture, Lunteren 1984. Intern. Soc. Soilless Culture, Wageningen/Netherlands, 633–649.Google Scholar
  36. Van den Ende J 1968. Analysis of greenhouse soils by means of aqueous extracts. Proc. 6th Coll. Intern. Potash Inst. Florence, 246–255.Google Scholar
  37. Van Goor B J De Jager A and Voogt W 1988. Nutrient uptake by some horticultural crops during the growing period. Seventh Intern. Congress on Soilless Culture, Flevohof 1988, Proceedings, 163–176.Google Scholar
  38. Verwer F L J A W 1974. Teelt en opkweek in kunstmatige media. IMAG Wageningen, The Netherlands, Publication 2, 28 pp.Google Scholar
  39. Voogt 1988. The growth of beefsteak tomato as affected by K/Ca ratios in the nutrient solution. Acta Hort. 222, 155–165.Google Scholar
  40. Voogt W and Litjens H 1991. Teveel silicium geeft problemen. Groenten en Fruit/Glasgroenten 1(1), 28–31.Google Scholar
  41. Voogt W 1992. Silicium zinvol bij roos in steenwol. Vakblad voor de Bloemisterij 47(33), 28–29.Google Scholar
  42. Voogt W 1993. Nutrient uptake of year round tomato crops. Acta Hort. 339, 99–112.Google Scholar
  43. Voogt W and Sonneveld C 1997. Nutrient management in closed growing systems for greenhouse production. In: Goto E et al. (eds) Plant Production in Closed Ecosystems, 83–102. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  44. Voogt W and Sonneveld C 2001. Silicon in horticulture crops grown in soilless culture. In: Datnoff L E Snijder G H and Konadörfer G H (eds) Silicon in Agriculture. Elsevier Science B.V., 115–131.Google Scholar
  45. Voogt W 2002. Potassium management of vegetables under intensive growth conditions. In: Pasricha N S and Bansal S K (eds) Potassium for Sustainable Crop Production. Proc. Int. Symp. on role of potassium in nutrient management for sustainable crop production in India. Int. Potash Inst. Bern, 347–362.Google Scholar
  46. Voogt W and Sonneveld C 2004. Interactions between nitrate (NO3) and chloride (Cl) in nutrient solutions for substrate grown tomato. Acta Hort. 644, 359–368.Google Scholar
  47. Voogt W Kromwijk A and Lagas P 2005. De N and P opname van cymbidium. Wageningen uUniversity, Praktijkonderzoek Plant & Omgeving B.V. Business unit Glastuinbouw. Internal Report june 2005, 26 pp.Google Scholar
  48. Voogt W 2009. Lage pH positief, verhoging van NH4 kan beperkt helpen. Onder Glas 6(1), 62–63.Google Scholar
  49. Ward G M 1967. Growth and nutrient absorption in greenhouse tomato and cucumber. Amer. Soc. Hort. Sci. Proc. 90, 335–341.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cees Sonneveld
    • 1
  • Wim Voogt
    • 2
  1. 1.NijkerkNetherlands
  2. 2.Wageningen UR Greenhouse HorticultureBleiswijkNetherlands

Personalised recommendations