Chemical Effects of Disinfestation

  • Cees Sonneveld
  • Wim Voogt


In the greenhouse industry disinfestation is performed with soil as well with soilless cultures by various methods. The aim of this is the control of plant pathogens surviving in the root zone between successive crops. In soilless cultures it is carried out also with drainage water when it is reused in the growing system. The methods applied can be distinguished in chemical and physical methods and the choice which method will be applied depends on the pathogen and on the growing conditions. Chemical methods like fumigation with methyl bromide, the chemical method most recently applied on big scale is forbidden in most countries. However, when it legally can be used, it is not recommendable, because of the acute toxicity to people, the risk of environmental pollution and the Br residue in soil and substrate, which can be absorbed by plants to unacceptable levels. In this manner steam sterilisation survives as the method to sterilise soils and substrates.


Soluble Organic Matter Drainage Water Steam Treatment Greenhouse Soil Soilless Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acher A Heuer B Rubinskaya E and Fischer E 1997. Use of ultraviolet-disinfected nutrient solution in greenhouses. J. Hort. Sci. 72, 117–123.Google Scholar
  2. Barker A V and Mills H A 1980. Ammonium and nitrate nutrition of horticulture crops. Hort. Rev. 2, 395–423.Google Scholar
  3. Bollen G J 1969. De invloed van stomen op de biologische eigenschappen van de grond. Tuibouwmededelingen 32, 475–479.Google Scholar
  4. Bremner J M and Nelson D W 1968. Chemical decomposition of nitrite in soils. 9th Intern. Congress Soil Sci. Transactions, Adelaide, Australia II, 495–503.Google Scholar
  5. Broer S and Sonneveld C 1973. Mangaanvergiftiging bij roos (var. Ilona). Vakblad Bloemisterij 28(48), 10–11.Google Scholar
  6. Bromfield S M and Skerman V D B 1950. Biological oxidation of manganese in soils. Soil Sci. 69, 337–348.CrossRefGoogle Scholar
  7. Chapman H D 1966. Diagnostic criteria for plants and soils. University of California, Division of Agriculture Sciences, 793 pp.Google Scholar
  8. Davies J N and Owen O 1951. Soil Sterilization. I Ammonia and nitrate production in some glasshouse soils following steam sterilisation. J. Sci. Food Agric. 2, 268–279.CrossRefGoogle Scholar
  9. Daughtrey M L and Schippers P A 1980. Root death and associated problems. Acta Hort. 98, 283–291.Google Scholar
  10. Dawson J R Johnson R A H Adams P and last F T 1965. Influence of steam/air mixtures, when used for heating soil, on biological and chemical properties that affect seedling growth. Ann. Appl. Biol. 56, 243–251.CrossRefGoogle Scholar
  11. Dawson J R Kilby A A T Ebben M H and last F T 1967. The use of steam air mixtures for partially sterilizing soils infested with cucumber root pathogens. Ann. Appl. Biol. 60, 215–222.CrossRefGoogle Scholar
  12. De Groot A J 1963. Mangaantoestand van Nederlandse en Duitse Holocene sedimenten in verband met slibtransport en bodemgenese. Verslagen van Landbouwkundige Onderzoekingen, 69.7. Pudoc Wageningen, The Netherlands, 206 pp.Google Scholar
  13. De Kreij C 1995. Effect of humic substances in nutrient film technique on nutrient uptake. J. Plant Nutr. 18, 793–802.CrossRefGoogle Scholar
  14. Dennis D J 1968. Manganese toxicity in tomato seedlings. New Zealand J. Agric. 117, 118–119.Google Scholar
  15. Ewing G J and Bauer N 1966. An evaluation of nitrogen losses from the soil due to the reaction of ammonium ions with nitrous acid. Soil Sci. 102, 64–69.CrossRefGoogle Scholar
  16. Foy C D 1973. Manganese in plants. In: Lieben J (ed), Manganese. National Acdemy of Sciences, Washington, 51–76.Google Scholar
  17. Geering H R Hodgson J F and Sdano C 1969. Micro nutrient cation complexes in soil solution: IV. The chemical state of manganese in soil solution. Soil Sci. Soc. Amer. Proc. 33, 81–85.CrossRefGoogle Scholar
  18. Gerritsen F C 1937. Manganese deficiency of oats and its relation to soil bacteria. Ann. Bot. 1, 207–230.Google Scholar
  19. Gomi K and Oyaki T 1972. Studies on manganese nutrition of vegetable crops. I. Manganese deficiency and excess of vegetable crops. Bull. Faculty Agric. Miyazaki Univ. 19(2), 493–503.Google Scholar
  20. Himken S 1989. Erprobung der Wirksamkeit einess UV-Gerätes zur Entkeimung gärtnerischer Nährlösungen. Diplomarbeit Research Center Geisenheim Germany,79 pp.Google Scholar
  21. Ikeda H and Osawa T 1982. Effect of potassium and calcium levels and their accompanying anions in the nutrient solution on ammonium toxicity in vegetable crops. J. Japan. Soc. Hort. Sci. 51, 309–317.CrossRefGoogle Scholar
  22. Jager G Van der Boon J and Rauw G J G 1969. The influence of soil steaming on some properties of the soil and on the growth and heading of winter lettuce. I. Changes in chemical and physical properties. Neth. J. Agric. Sci. 17, 143–152.Google Scholar
  23. Jager G Van der Boon J and Rauw G J G 1970. The influence of soil steaming on some properties of the soil and on the growth and heading of winter lettuce. III. The influence of nitrogen form, manganese level and shading studied in sand culture experiments with trickle irrigation. Netn. J. Agric. Sci. 18, 149–157.Google Scholar
  24. Leeper G W 1947. The forms and reactions of manganese in the soil. Soil Sci. 63, 79–94.CrossRefGoogle Scholar
  25. Löhnis M P 1960. Effect of magnesium and calcium supply on the uptake of manganese by various crop plants. Plant Soil 12, 339–376.CrossRefGoogle Scholar
  26. Maynard D N Barker A V and Lachman W H 1966. Ammonium induced stem and leaf lesions of tomato plant. Proc. Amer. Soc. Hort. Sci. 88, 516–520.Google Scholar
  27. Mckenzie R M 1972. The manganese oxides in soil – A review. Z. Pflanzenernährung Bodenk. 131, 221–242.CrossRefGoogle Scholar
  28. Messing J H L 1964. Manganese toxicity. Rep. Glasshouse Crops Res. Inst. 1963, 63–64.Google Scholar
  29. Messing J H L 1965. The effects of lime and superphosphate on manganese toxicity in steam-sterilised soil. Plant Soil 23, 1–16.CrossRefGoogle Scholar
  30. Nilsson G 1967. Twee anjerproblemen. DCK Information 26, 1.Google Scholar
  31. Page E R 1962. Studies in soil and plant manganese. II The relationship of soil pH to manganese availability. Plant Soil 16, 247–257.CrossRefGoogle Scholar
  32. Page E R 1964. The extractable manganese in soil. J. Soil Sci. 15, 93–102.CrossRefGoogle Scholar
  33. Roorda van Eysinga J P N L Van Dijk P A and De Bes S S 1978. The available manganese content of soils in The Netherlands determined by various methods. Comm. Soil Sci. Plant Anal. 9, 141–151.CrossRefGoogle Scholar
  34. Runia, W Th 1995. A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hort. 382, 221–229.Google Scholar
  35. Runia W T and Boonstra S 2004. UV-oxidation technology for disinfection of recirculation water in protected cultivation. Acta Hort. 644, 549–555.Google Scholar
  36. Sherman G D 1957. Manganese and soil fertility. The 1957 yearbook of agriculture (soil) USDA, 135–139.Google Scholar
  37. Sonneveld C 1965. Onderzoek naar het verloop van grondanalysecijfers (1963–1964). Proefstation voor Tuinbouw onder Glas, Naaldwijk, The Netherlands. Internal Report, 7 pp.Google Scholar
  38. Sonneveld C 1965a. De invloed van grondontsmetting op de stikstofgift bij verschillende grondsoorten. Proefstation voor Tuinbouw onder Glas Naaldwijk, The Netherlands. Internal Report 16 pp.Google Scholar
  39. Sonneveld C 1967. De invloed van het verhitten van grond op de mangaan- en stikstofhuishouding. (laboratorium onderzoek 1966). Proefstation voor de Groenten- en Fruitteelt onder Glas te Naaldwijk, The Netherlands. Internal Report, 1967, 15 pp.Google Scholar
  40. Sonneveld C 1967a. De invloed van nitrietstikstof bij sla. Proefstation voor de Groenten- en Fruitteelt onder Glas te Naaldwijk, The Netherlands. Internal Report, 1967, 15 pp.Google Scholar
  41. Sonneveld C 1968. De mangaanhuishouding van de grond en de mangaanopname van sla. Meded. Dir.Tuinb. 31, 476–483.Google Scholar
  42. Sonneveld C 1969. De invloed van het stomen op de stikstofhuishouding van de grond. Tuinbouwmededelingen 32, 197–203.Google Scholar
  43. Sonneveld C 1969a. De invloed van het stomen van de grond op de stikstof- en de mangaanhuishouding (praktijkonderzoek 1967–1968). Proefstation voor de Groenten- en Fruitteelt onder Glas te Naaldwijk, The Netherlands. Internal Report 1969, 10 pp.Google Scholar
  44. Sonneveld C and Voogt S 1973. The effects of soil sterilisation with steam-air mixtures on the development of some glasshouse crops. Plant Soil 38, 415–423.CrossRefGoogle Scholar
  45. Sonneveld C 1975. Het verloop van het gehalte uitwisselbaar- en water oplosbaar mangaan in gestoomde grond. Proefstation voor de Groenten- en Fruitteelt onder Glas, Naaldwijk. Internal Report No 688/1975, 13 pp.Google Scholar
  46. Sonneveld C and Voogt S J 1975. The effect of steam sterilisation of soil on the manganese uptake by glasshouse crops. Acta Hort. 51, 311–319.Google Scholar
  47. Sonneveld C and Voogt S J 1975a. Studies on the manganese uptake of lettuce on steam-sterilised glasshouse soil. Plant Soil 42, 49–64.CrossRefGoogle Scholar
  48. Sonneveld C Voogt S J and Van Dijk P A 1977. Methods for the determination of toxic levels of manganese in glasshouse soils. Plant Soil 46, 487–497.CrossRefGoogle Scholar
  49. Sonneveld C 1979. Changes in chemical properties of soil caused by steam sterilisation. In: Mulder D (ed) Soil Desinfestation, Elsevier, Amsterdam, 39–50.Google Scholar
  50. Sonneveld C and De Bes S S 1984. Micro nutrient uptake of glasshouse cucumbers grown on rockwool. Comm. Soil Sci. Plant Anal. 15, 519–535.CrossRefGoogle Scholar
  51. Sonneveld C 1984. De invloed van organische stof toediening aan de voedingsoplossing bij komkommers. Proefstation voor Tuinbouw onder Glas te Naaldwijk The Netherlands. Internal Report 1984 no 10, 11 pp.Google Scholar
  52. Sonneveld C 1993. Chemische veranderingen in de grond door stomen. Plantenvoeding in de Glastuinbouw. Proefstation voor Tuinbouw onder Glas. Informatiereeks no 87, 112–121.Google Scholar
  53. Stangellini M E Stowell L J and Bates M L 1984. Control of root rot of spinach caused by Pythium aphanidermatum in a recirculating hydroponic system by ultraviolet irradiation. Plant Disease 68, 1075-1-76.Google Scholar
  54. Vanachter A Thys L Van Wambeke E and Van Assche C 1988. Possible use of ozon for disinfestation of plant nutrient solutions. Acta Hort. 221, 295–302.Google Scholar
  55. Van den Bos A L and Zevenhoven M 1986. Bromide injury in carnations. Glasshouse Crops Research Station Naaldwijk The Netherlands. Annual Report 1986, 12–13.Google Scholar
  56. Wohanka W 2002. Nutrient solution disinfection. In: Savvas D and Passum H (eds), Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, Greece, 345–372.Google Scholar
  57. Wohanka W Molitor H-D und Weislein D 2005. Verhinderung der Krankheitsausbreitung bei Ebb/Flutbewaässerung mittels Wasserdesinfektion aurch Chlordioxid. Schlussbericht Furschungsanstalt Geisenheim Germany, 80 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cees Sonneveld
    • 1
  • Wim Voogt
    • 2
  1. 1.NijkerkNetherlands
  2. 2.Wageningen UR Greenhouse HorticultureBleiswijkNetherlands

Personalised recommendations