Skip to main content

Uncertainties in Fracture Mechanics and Optimal Design Formulations

  • Chapter
  • First Online:
Structural Optimization with Uncertainties

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 162))

  • 1300 Accesses

Abstract

Most investigations in the theory of optimal design of structures under strength constraints have been performed within a framework of the deterministic approach. That is, it is assumed that there is regular internal structure of material and that complete information is provided with regard to loading processes and boundary conditions. Corresponding optimal design formulations were typical for structures from elastic-plastic materials [Ban83, Pic88, HNT86, HA79, Ban81, Arm83, Aro89, EO83, HN88, HN96, Nei91, Hau81, HC81, Cea81, OR95, Pra72, Roz76, RK88, JM83, MU81].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. N. V. Banichuk. Problems and Methods of Optimal Structural Design. Number 26 in Mathematical Concepts and Methods in Science and Engineering. Plenum Press, New York, 1983

    Google Scholar 

  2. A. Picuda. Optimality conditions for multiply loaded structures – integrated control and finite element method. In Structural Optimization, G. I. N. Rozvany and B. L. Karihaloo, eds., Kluwer Academic Publishers, Dordrecht, 233–239, 1988

    Google Scholar 

  3. J. Haslinger and P. Neittaanmäki, and T. Tiihonen. Shape optimization in contact problems based on penalization of the state inequality, Aplikace Matematiky, 31(1): 54–77, 1986

    MATH  MathSciNet  Google Scholar 

  4. E. J. Haug and J. S. Arora. Applied Optimal Design, John Wiley & Sons, New York, 1979

    Google Scholar 

  5. N. V. Banichuk. Optimization problems for elastic anisotropic bodies. Archives of Mechanics. 33: 347–363, 1981

    Google Scholar 

  6. J.-L. Armand. Non homogeneity and anisotropy in structural design. In Optimization Methods in Structural Design, H. Eschenauer and N. Olhoff, eds., Bibliographisches Institut, Mannheim, 256–263, 1983

    Google Scholar 

  7. J. S. Arora. Introduction to Optimum Design, McGraw – Hill Book Company, New York, 1989

    Google Scholar 

  8. H. Eschenauer and N. Olhoff, eds., Optimization Methods in Structural Design, Bibliographisches Institut, Mannheim, 1983

    MATH  Google Scholar 

  9. J. Haslinger and P. Neittaanmäki. Finite Element Approximation for Optimal Shape Design. Theory and Applications. John Wiley & Sons, Chichester, 1988

    MATH  Google Scholar 

  10. J. Haslinger and P. Neittaanmäki. Finite Element Approximation for Optimal Shape, Material and Topology Design. John Wiley & Sons, Chichester, 2nd edition, 1996

    MATH  Google Scholar 

  11. P. Neittaanmäki. Computer aided optimal structural design. Surveys on Mathematics for Industry, 1: 173–215, 1991

    MATH  MathSciNet  Google Scholar 

  12. E. J. Haug. A review of distributed parameter structural optimization literature. In Optimization of Distributed Parameter Structures, Vol. 1, E. J. Haug and J. Cea, eds., Sijthoff and Noordhoff, Alphen aan den Rijn, 3–74, 1981

    MathSciNet  Google Scholar 

  13. E. J. Haug and J. Cea, eds., Optimization of Distributed Parameter Structures, Vol. 1 and Vol. 2, Sijthoff and Noordhoff, Alphen aan den Rijn, 1981

    Google Scholar 

  14. J. Cea. Problems of shape optimal design. In Optimization of Distributed Parameter Structures, E. J. Haug and J. Cea, eds., Sijhoff and Noordhoff, Alphen aan den Rijn, 1005–1048, 1981

    Google Scholar 

  15. N. Olhoff and G. I. N. Rozvany, eds., First World Congress of Structural and Multidisciplinary Optimization (WCS MO - 1), Pergamon, Redwood Books, Trowbridge, Great Britain, 1995

    Google Scholar 

  16. W. Prager. Introduction to Structural Optimization, Springer-Verlag, Wien, 1972

    Google Scholar 

  17. G. I. N. Rozvany. Optimal Design of Flexural Systems, Pergamon, Oxford, 1976

    Google Scholar 

  18. G. I. N. Rozvany and B. L. Karihaloo, eds., Structural Optimization, Kluwer Academic Publishers, Dordrecht, 1988

    Google Scholar 

  19. S. Jendo and W. Marks. Nonlinear stochastic programming in optimum structural design. In Optimization Methods in Structural Design, H. Eschenauer and N. Olhoff, eds., Bibliographisches Institut, Monnheim, 327–333, 1983

    Google Scholar 

  20. V. P. Malkov and A. G. Ugodchikov. Optimization of Elastic Systems, Nauka, Moscow, 1981

    MATH  Google Scholar 

  21. N. V. Banichuk. Free boundaries optimization under fracture mechanics constraints. Universităţii “Ovidius” Constanţa. Analele Ştiinţifice. Seria Matematică, 5(1): 13–19, 1997

    Google Scholar 

  22. N. V. Banichuk. Optimal design of quasi-brittle elastic bodies with cracks. Mechanics Based Design of Structures and Machines, 26(4): 365–376, 1998

    Article  Google Scholar 

  23. N. V. Banichuk. Asymptotic approach to optimal structural design with brittle-fracture constraints (Part 1: Prototype problem). In Mechanics of Composite Materials and Structures, C. A. Mota Soares et al., eds., Kluwer Academic Publishers, Dordrecht, 465–475, 1999

    Google Scholar 

  24. N. V. Banichuk. Asymptotic approach to optimal structural design with brittle-fracture constraints (Part 2: Deterministic and stochastic problems). In Mechanics of Composite Materials and Structures, C. A. Mota Soares, et al., eds., Kluwer Academic Publishers, Dordrecht, 477–487, 1999

    Google Scholar 

  25. N. V. Banichuk, F.-J. Barthold, and M. Serra. Optimization of axisymmetric membrane shells against brittle fracture. Meccanica, 40(2): 135–145, 2005

    Article  MATH  Google Scholar 

  26. N. V. Banichuk, S. Yu. Ivanova, and E. V. Makeev. Some problems of optimizing shell shape and thickness distribution on the basis of a genetic algorithm. Mechanics of Solids, Allerton Press, 42(6): 956–964, 2007

    Google Scholar 

  27. N. V. Banichuk, S. Yu. Ivanova, E. V. Makeev, and A. V. Sinitsin. Optimal shape design of axisymmetric shells for crack initiation and propagation under cyclic loading. Mechanics Based Design of Structures and Machines, 33(2): 253–269, 2005

    Google Scholar 

  28. N. V. Banichuk, S. Yu. Ivanova, E. V. Makeev, and A. V. Sinitsin. Several problems of optimal design of shells with damage accumulation taken into account. In Problems of Strength and Plasticity (Izd-vo NNGU), N. Novgorod, 67: 46–59, 2005, in Russian

    Google Scholar 

  29. N. V. Banichuk, M. Mäkelä, and P. Neittaanmäki. Shape optimization for structures from quasi-brittle materials subjected to cyclic loads. In Identification, Control and Optimization of Engineering Structures, G. De Roeck and B. H. V. Topping, eds., CIVIL-COMP Press, Edinburg, 145–151, 2000

    Google Scholar 

  30. N. V. Banichuk, F. J. Barthold, A. I. Borovkov, V. A. Palmov, V. V. Saurin, and E. Stein. Shape optimization of laminated structures under strength constraints, caused by interlayered fracture. In Problems of Strength and Plasticity, Nizhni Novgorod University Press, Cambridge, 62: 19–30, 2000

    Google Scholar 

  31. G. Cheng and B. Fu. Shape optimization of continuum with crack. In Structural Optimization, G. I. N. Rozvany and B. L. Karihaloo, eds., Kluwer Academic Publishers, Dordrecht, 57–62, 1988

    Google Scholar 

  32. M. Papila and R. T. Haftka. Implementation of a crack propagation constraint within a structural optimization software. Structural and Multidisciplinary Optimization, 25(5–6): 327–338, 2003

    Article  Google Scholar 

  33. R. Vitali, R. T. Haftka, and B. V. Sankar. Multi-fidelity design of stiffened composite panel with a crack. Structural and Multidisciplinary Optimization, 23(5): 347–356, 2002

    Article  Google Scholar 

  34. N. B. Thomsen, J. Wang, and B. L. Karihaloo. Optimization – a tool in advanced material technology. Structural and Multidisciplinary Optimization, 8(1): 9–15, 1994

    Google Scholar 

  35. J. Wang and B. L. Karihaloo. Fracture mechanics and optimization – a useful tool for fibre-reinforced composite design. Composite Structures, 32(1–4): 453–466, 1995

    Article  Google Scholar 

  36. A. Borovkov, V. Palmov, N. Banichuk, E. Stein, V. Saurin, F. Barthold, and Yu. Misnik. Macrofailure criterion and optimization of composite structures with edge delamination. International Journal for Computational Civil and Structural Engineering, 1(1): 91–104, 2000

    Google Scholar 

  37. G. P. Cherepanov. Mechanics of Brittle Fracture. McGraw-Hill, New York, 1979

    MATH  Google Scholar 

  38. J. W. Hutchinson. A Course of Nonlinear Fracture Mechanics, Technical University of Denmark, Copenhagen, Lyngby, 1979

    Google Scholar 

  39. M. F. Kanninen and C. H. Popelar. Advanced Fracture Mechanics, Oxford University Press, New York, 1985

    MATH  Google Scholar 

  40. K. Hellan. Introduction to Fracture Mechanics, Mc Graw-Hill Inc., New York, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Banichuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Banichuk, N.V., Neittaanmäki, P. (2010). Uncertainties in Fracture Mechanics and Optimal Design Formulations. In: Structural Optimization with Uncertainties. Solid Mechanics and Its Applications, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2518-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2518-0_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2517-3

  • Online ISBN: 978-90-481-2518-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics