Skip to main content

Uncertainties and Worst Case Scenarios

  • Chapter
  • First Online:
Structural Optimization with Uncertainties

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 162))

  • 1298 Accesses

Abstract

In this section we describe details of problem formulation in abstract form. Let the behavioral system of differential equations with boundary conditions, described the equilibrium of an elastic body, be of the operator form $$L(u,h,q,\xi,\omega ) = 0$$ and is written in the domain Ω in n-dimensional space with boundary Γ = Ω, where u, h, q are respectively the state variable, the design variable, the applied force and the functions ξ, ω characterize the material distribution along the body and the distribution of damages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. E. Bryson and Y. C. Ho. Applied Optimal Control. John Wiley & Sons, Inc., New York, 1975

    Google Scholar 

  2. E. J. Haug and J. Cea, eds., Optimization of Distributed Parameter Structures, Vol. 1 and Vol. 2, Sijthoff and Noordhoff, Alphen aan den Rijn, 1981

    Google Scholar 

  3. E. J. Haug, K. K. Choi, and V. Komkov. Design Sensitivity Analysis of Structural Systems, Academic Press, Orlando, FL, 1986

    MATH  Google Scholar 

  4. F. J. Baron and O. Pironneau. Multidisciplinary optimal design of a wing profile. In Structural Optimization 93, vol. 2. The World Congress on Optimal Design of Structural Systems (Rio de Janeiro), J. Herskovits, ed., COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, 61–68, 1993

    Google Scholar 

  5. M. C. Delfour and J.-P. Zolesio. Shapes and Geometries: Analysis, Differential Calculus, and Optimization, Advances in Design and Control 4, SIAM, Philadelphia, PA, 2001

    Google Scholar 

  6. G. A. Bliss. Lectures on the Calculus of Variations, University of Chicago Press (reprinted by Dover Co), Chicago, Ill. 1946

    Google Scholar 

  7. N. V. Banichuk. Application of perturbation method to optimal design of structures. In New Directions in Optimum Structural Design, E. Atrek, R. H. Gallagher, K. M. Ragsdell, and O. C. Zienkiewicz, eds., John Wiley & Sons Ltd, Chichester, 231–248, 1984

    Google Scholar 

  8. I. M. Gelfand and S. V. Fomin. Calculus of Variations. Prentice Hall Inc., Englewood Cliffs, NJ, 1963

    Google Scholar 

  9. V. Komkov, ed., Sensitivity of Functionals with Applications to Engineering Sciences, Lecture Notes in Mathematics 1086, Springer-Verlag, New York, 1988

    Google Scholar 

  10. R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2, Functional and Variational Methods, Springer-Verlag, Berlin, 1988

    Google Scholar 

  11. M. A. Lavrentyev and L. A. Lusternik. Course of the Calculus of Variations. Gostekhteorizdat, Moscow, 1950, in Russian

    Google Scholar 

  12. K. Miettinen. Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, MA, 1999

    MATH  Google Scholar 

  13. W. Prager and R. T. Shield. Optimal design of multi-purpose structures. International Journal of Solids and Structures, 4(4): 469–475, 1968

    Article  Google Scholar 

  14. J. B. Martin. Optimal Design of elastic structures for multipurpose loading, Journal of Optimization Theory and Applications, 6(1): 22–40, 1970

    Article  MATH  MathSciNet  Google Scholar 

  15. N. V. Banichuk and B. L. Karihaloo. Minimum-weight design of multipurpose cylindrical bars. International Journal of Solids and Structures, 12(4): 267–273, 1976

    Article  MATH  Google Scholar 

  16. B. L. Karihaloo. Optimal design of multi-purpose structures. Journal of Optimization Theory and Applications, 27(3): 449–461, 1979

    Article  MATH  MathSciNet  Google Scholar 

  17. B. L. Karihaloo. Optimal design of multi-purpose tie column of solid construction. International Journal of Solids and Structures, 15(2): 103–109, 1979

    Article  MathSciNet  Google Scholar 

  18. B. L. Karihaloo and R. D. Parbery. Optimal design of multi-purpose beam-columns. Journal of Optimization Theory and Applications, 27(3): 439–448, 1979

    Article  MATH  MathSciNet  Google Scholar 

  19. B. L. Karihaloo and R. D. Parbery. Optimal design of beam-columns subjected to concentrated moments. Engineering Optimization, 5(1): 59–65, 1980

    Article  Google Scholar 

  20. A. B. Kurzhanskii. Control and Observation under Conditions of Indeterminacy. Nauka, Moscow, 1977, in Russian

    Google Scholar 

  21. R. D. Parbery and B. L. Karihaloo. Minimum-weight design of hollow cylinders for given lower bounds on torisonal and flexural rigidities. International Journal of Solids and Structures, 13(12): 1271–1280, 1977

    Article  MATH  Google Scholar 

  22. R. D. Parbery and B. L. Karihaloo. Minimum-weight design of thin-walled cylinders subject to flexural and torsional stiffness constraints, Journal of Applied Mechanics, 47(1): 106–110, 1980

    Article  MATH  Google Scholar 

  23. H. Eschenauer, J. Koski, and A. Osyczka, eds., Multicriteria Design Optimization. Procedures and Applications. Springer-Verlag, Berlin, 1990

    MATH  Google Scholar 

  24. G. Polya and G. Szegö. Isoperimetric Inequalities in Mathematical Physics. Princeton University Press, Princeton, NJ, 1951

    MATH  Google Scholar 

  25. G. Polya. Torsional rigidity, principal frequency, electrostatic capacity and symmetrization. Quarterly of Applied Mathematics, 6(3): 267–277, 1948

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Banichuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Banichuk, N.V., Neittaanmäki, P. (2010). Uncertainties and Worst Case Scenarios. In: Structural Optimization with Uncertainties. Solid Mechanics and Its Applications, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2518-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2518-0_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2517-3

  • Online ISBN: 978-90-481-2518-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics