Skip to main content

Metrics for Ozone and Climate: Three-Dimensional Modeling Studies of Ozone Depletion Potentials and Indirect Global Warming Potentials

  • Conference paper
Twenty Years of Ozone Decline

The concepts of ozone depletion potentials (ODPs) and global warming potentials (GWPs) have been extensively used in policy consideration and scientific studies of ozone and climate issues. Most recent candidate-replacement compounds have atmospheric lifetimes shorter than 1 year in order to limit their environmental effects. Especially for chemicals with extremely short lifetimes, on the order of several to tens of days, the stratospheric halogen loading and ozone loss from such gases strongly depend on the location of emissions. Using a state-of-the-art three-dimensional global chemistry-transport model (CTM) of the troposphere and the stratosphere, we have calculated the potential effects of very short-lived substances (VSLS) such as n-propyl bromide (nPB), iodotrifluoromethane (CF3I), and methyl iodine (CH3I) on atmospheric ozone. The model-derived lifetimes and ODPs of these halogenated compounds for mid-latitude emissions and of CF3I for tropical emissions are presented in this chapter. On the other hand, ozone depletion due to emission of bromochlorofluorocarbons, or Halons, leads to cooling of the climate system in the opposite direction to direct warming contribution of the Halons as greenhouse gases. This cooling is a key indirect effect of Halons on radiative forcing or climate. Using atmospheric models, CTMs and a radiative transfer model, we have explicitly calculated the indirect GWPs of Halon-1211 and -1301 for a 100-year time horizon. The calculated indirect effects of Halon-1211 are much smaller than those published in earlier studies. Nevertheless, our new model-based assessment of the indirect GWPs of the two major Halons confirms the importance of indirect effects on climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson, R. (1994). Gas-phase chemistry of organic compounds. Journal of Physical and Chemical Reference Data Monographs, 1994, 2, 1–216.

    Google Scholar 

  • Bell, N., Hsu, L., Jacob, D. J., Schultz, M. G., Blake, D. R., Butler, J. H., et al. (2002). Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global models. Journal of Geophysical Research, 107, 4340, doi: 10.1029/2001JD001151.

    Article  CAS  Google Scholar 

  • Bridgeman, C. H., Pyle, J. A., & Shallcross, D. E. (2000). A three-dimensional model calcula- tion of the ozone depletion potential of 1-bromopropane (1-C3H7Br). Journal of Geophysical Research, 105(26), 493–426, 502.

    Google Scholar 

  • Briegleb, B. P. (1992a). Delta-Eddington approximation for solar radiation in the NCAR community climate model. Journal of Geophysical Research, 97, 7603–7612.

    Google Scholar 

  • Briegleb, B. P. (1992b). Longwave band model for thermal radiation in climate studies. Journal of Geophysical Research, 97, 11475–11485.

    Google Scholar 

  • Bösch, H., Camy-Peyret, C., Chipperfield, M. P., Fitzenberger, R., Harder, H., Platt, U., et al. (2003). Upper limits of stratospheric IO and OIO inferred from center-to-limb-darkening- corrected balloon-borne solar occultation visible spectra: Implications for total gaseous iodine and stratospheric ozone. Journal of Geophysical Research, 108(D15), 4455. doi: 10.1029/2002JD003078.

    Article  CAS  Google Scholar 

  • Burkholder, J. B., Gilles, M. K., Gierczak, T., & Ravishankara, A. R. (2002). The atmospheric degradation of 1-bromopropane (CH3CH2CH2Br): The photochemistry of bromoacetone. Geophysical Research Letters, 29, 1822. doi: 10.1029/2002GL014712.

    Article  Google Scholar 

  • Cohan, D. S., Sturrock, G. A., Biazar, A. P., & Fraser, P. J. (2003). Atmospheric methyl iodide at Cape Grim, Tasmania, from AGAGE Observations. Journal of Atmospheric Chemistry, 44(2), 131–150.

    Article  CAS  Google Scholar 

  • Connell, P. S., Kinnison, D. E., Bergmann, D. J., Patten, K. O., Wuebbles, D. J., Daniel, R. G., et al. (1996). Environmental aspects of halon replacements: Considerations for advanced agents and the ozone depletion potential of CF3I. Proceedings of the Conference on the Halon Options Technical Working Conference (HOTWC), in Albuquerque, NM.

    Google Scholar 

  • Daniel, J. S., Solomon, S., & Albritton, D. L. (1995). On the evaluation of halocarbon radiative forcing and dlobal warming potentials. Journal of Geophysical Research, 100,(D1) 1271–1285.

    Article  CAS  Google Scholar 

  • Fisher, D. A., Hales, C. H., Filkin, D. L., Ko, M. K. W., Sze, N., Connell, P. S., et al. (1990). Model calculations of the relative effects of CFCs and their replacements on stratospheric ozone. Nature, 344, 508–512. doi: 10.1038/344508a0.

    Article  CAS  Google Scholar 

  • Fisher, D. A., Hales, C. H., Wang, W. C., Ko, M. K. W., & Sze, N. D. (1990). Model calculations of the relative effects of CFCs and their replacements on global warming. Nature, 344, 513–516. doi: 10.1038/344513a0.

    Article  CAS  Google Scholar 

  • Forster, P. M., Burkholder, J. B., Clerbaux, C., Coheur, P. F., Dutta, M., Gohar, L. K., et al. (2004). Resolving uncertainties in the radiative forcing of HFC-134a. Journal of Quantitative Spectroscopy and Radiative Transfer, doi: 10.1016/j.jqsrt.2004.08.038.

    Google Scholar 

  • Gilles, M. K., Burkholder, J. B., Gierczak, T., Marshall, P., & Ravishankara, A. R. (2002). Rate coefficient and product branching measurements for the reaction OH + Bromopropane from 230 to 360 K. Journal of Physical Chemistry A, 106, 5358–5366, doi: 10.1021/jp014736+.

    Article  CAS  Google Scholar 

  • Guillas, S., Tiao, G., Wuebbles, D. J., & Zubrow, A. (2006). Statistical diagnostic and correction of a chemistry-transport model for the prediction of total column ozone. Atmospheric Chemistry Physics, 6, 525–537.

    CAS  Google Scholar 

  • Horowitz, L., Walters, S., Mauzerall, D., Emmons, L., Rasch, P., Granier, C., et al. (2003). A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research, 108(D24), 4784, doi: 10.1029/2002JD002853.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1990). Climate change, The IPCC scientific assessment. In J. T. Houghton, G. J. Jenkins, and J. J. Ephraums (Eds.), (Chapter 2, Radiative Forcing on Climate, Shine, K. P., R. G. Derwent, D. J. Wuebbles, J.-J. Morcrette, lead authors). New York: Cambridge University Press.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001). Climate change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu (Eds.), Cambridge/New York Cambridge University Press.

    Google Scholar 

  • Intergovernmental Panel on Climate Change and Technology and Economic Assessment Panel (IPCC/TEAP) (2005). IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons. New York: Cambridge University Press, 478pp.

    Google Scholar 

  • Jain, A. K., Briegleb, B. P., Minschwaner, K., & Wuebbles, D. J. (2000). Radiative forcings and global warming potentials of 39 greenhouse gases. Journal of Geophysical Research, 105, 20773–20790.

    Article  CAS  Google Scholar 

  • Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., et al. (2007). Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. Journal of Geophysical Research, 112, doi: 10.1029/2006JD007879.

    Google Scholar 

  • Kwok, E. S. C., & Atkinson, R. (1995). Estimating hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update. Atmospheric Environment, 29, 1685–1695.

    Article  CAS  Google Scholar 

  • Lacis, A. A., Wuebbles, D. J., & Logan, J. A. (1990). Radiative forcing of climate by changes in the vertical distribution of ozone. Journal of Geophysical Research, 95(D7), 9971–9981.

    Article  Google Scholar 

  • Li, Y., Patten, K. O., Youn, D., & Wuebbles, D. J. (2006). Potential impacts of CF3I on ozone as a replacement for CF3Br in aircraft applications. Atmospheric Chemistry Physics, 6, 4559–4568.

    CAS  Google Scholar 

  • Miller, A. J., Cai, A., Tiao, G., Wuebbles, D. J., Flynn, L. E., Yang, S. K., et al. (2006). Examination of Ozonesonde data for trends and trend changes incorporating solar and Arctic Oscillation signals. Journal of Geophysical Research, 111, D13305, doi: 10.1029/2005JD006684.

    Article  CAS  Google Scholar 

  • Martínez-Avilés, M. (2008). On the atmospheric degradation of very short lived brominated compounds and their reservoir Species. Ph.D. thesis: Purdue University at West Lafayette.

    Google Scholar 

  • Naik, V., Jain, A. K., Patten, K. O., & Wuebbles, D. J. (2000). Consistent sets of atmospheric lifetimes and radiative forcings on climate for CFC replacements: HCFCs and HFCs. Journal of Geophysical Research, 105, 6903–6914.

    Article  CAS  Google Scholar 

  • Naik, V., Mauzerall, D., Horowitz, L., Schwarzkopf, D., Ramaswamy, V., & Oppenheimer, M. (2005). Net radiative forcing due to changes in regional emissions of tropospheric ozone precursors. Journal of Geophysical Research, 110, doi: 10.1029/2005JD005908.

    Google Scholar 

  • Nelson, D. D. Jr., Wormhoudt, J. C., Zahniser, M. S., Kolb, C. E., Ko, M. K. W., & Weisenstein, D. K. (1997). OH reaction kinetics and atmospheric impact of 1-bromopropane. Journal of Physical Chemistry A, 101, 4987–4990.

    Article  CAS  Google Scholar 

  • Newman, P. A., Nash, E. R., Kawa, S. R., Montzka, S. A., & Schauffler, S. M. (2006). When will the Antarctic ozone hole recover? Geophysical Research Letters, 33, L12814, doi: 10.1029/2005GL025232.

    Article  CAS  Google Scholar 

  • Newman, P. A., Daniel, J. S., Waugh, D. W., & Nash, E. R. (2007). A new formulation of equivalent effective stratospheric chlorine (EESC). Atmospheric Chemistry and Physics, 7, 4537–4552.

    Article  CAS  Google Scholar 

  • Olsen, S. C., Hannegan, B. J., Zhu, X., & Prather, M. J. (2000). Evaluating ozone depletion from very short-lived halocarbons. Geophyscial Research Letters, 27, 1475–1478.

    Article  CAS  Google Scholar 

  • Pan, L. L., Wei, J. C., Kinnison, D. E., Garcia, R. R., Wuebbles, D. J., & Brasseur, G. P. (2007). A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region. Journal of Geophysical Research, 112, D09316, doi: 10.1029/2006JD007792.

    Article  CAS  Google Scholar 

  • Ramaswamy, V., Schwarzkopf, M. D., & Shine, K. P. (1992). Radiative forcing of climate from halocarbon induced global stratospheric ozone loss. Nature, 355, 810–812.

    Article  CAS  Google Scholar 

  • Reinsel, G. R., Miller, A. J., Flynn, L. E., Nagatani, R. M., Tiao, G. C., Weatherhead, E. C., et al. (2005). Trend analysis of total ozone data for turnaround and dynamical contributions. Journal of Geophysical Research, 110, doi: 10.1029/2004JD004662.

    Google Scholar 

  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Huie, R. E., Orkin, V. L., et al. (2003). Chemical kinetics and photochemical data for use in atmospheric studies. California: NASA/JPL Publication 02–25. Pasadena, 334.

    Google Scholar 

  • Sassi, F., Boville, B. A., Kinnison, D. E., & Garcia, R. R. (2005). The effects of interactive ozone chemistry on simulations of the middle atmosphere. Geophysical Research, Letters, 32, LO7811, doi: 10.1029/2004GL022131.

    Article  CAS  Google Scholar 

  • Solomon, S., Mills, M., Heidt, L. E., Pollock, W. H., & Tuck, A. F. (1992). On the evaluation of ozone depletion potentials. Journal of Geophysical Research, 97, 824–842.

    Google Scholar 

  • Solomon, S., Burkholder, J. B., Ravishankara, A. R., & Garcia, R. R. (1994). Ozone depletion and global warming potentials of CF3I. Journal of Geophysical Research, 99(D10), 20929–20935.

    Article  Google Scholar 

  • Stamnes, K., Tsay, S. C., Wiscombe, W., & Jayaweera, K. (1988). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27, 2502–2509.

    Article  CAS  Google Scholar 

  • Velders, G. J. M., Anderson, S. O., Daniel, J. S., Fahey, D. W., & McFarland, M. (2007). The importance of the Montreal Protocol in protecting climate. Proceedings of the National Academy of Sciences, 104, 4814–4819.

    Article  CAS  Google Scholar 

  • Vogt, R., Sander, R., Von Glasow, R., & Crutzen, P. (1999). Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: A model study. Journal of Atmospheric Chemistry, 32, 375–395.

    Article  CAS  Google Scholar 

  • Wallington, T. J., Hurley, M. D., Xia, J., Wuebbles, D. J., Sillman, S., Ito, A., et al. (2006). Formation of C7F15COOH (PFOA) during the atmospheric oxidation of 8:2 fluorotelomer alcohol (n-C8F17CH2CH2OH). Environmental Science and Technology, 40, 924–930.

    Article  CAS  Google Scholar 

  • Wei, C. F., Kotamarthi, V. R., Ogunsola, O. J., Horowitz, L. W., Walters, S., et al. (2003). Seasonal variability of ozone mixing ratios and budgets in the tropical southern Pacific: A GCTM perspective. Journal of Geophysical Research, 107, 8235, doi: 10.1029/2001JD000772.

    Google Scholar 

  • World Meteorological Organization (WMO) (1995). Scientific Assessment of Ozone Depletion: 1994, Global Ozone, Research and Monitoring Project — Report 37, Switzerland: Geneva.

    Google Scholar 

  • World Meteorological Organization (WMO) (1999). Scientific Assessment of Ozone Depletion: 1998, Global Ozone, Research and Monitoring Project — Report 44, Switzerland: Geneva.

    Google Scholar 

  • World Meteorological Organization (WMO) (2003). Scientific Assessment of Ozone Depletion: 2002, Global Ozone, Research and Monitoring Project — Report 47, Switzerland: Geneva.

    Google Scholar 

  • World Meteorological Organization (WMO) (2007). Scientific Assessment of Ozone Depletion: 2006, Global Ozone, Research and Monitoring Project — Report 50, Switzerland: Geneva.

    Google Scholar 

  • Wuebbles, D. J. (1981). The relative efficiency of a number of halocarbons for destroying stratospheric ozone, Lawrence Livermore National Laboratory report UCID-18924.

    Google Scholar 

  • Wuebbles, D. J. (1983). Chlorocarbon emission scenarios: Potential impact on stratospheric ozone. Journal of Geophysical Research, 88, 1433–1443.

    Article  CAS  Google Scholar 

  • Wuebbles, D. J., & Hayhoe, K. (2002). Atmospheric methane and global change. Earth Science Reviews, 57, 177–210.

    Article  CAS  Google Scholar 

  • Wuebbles, D. J., Patten, K. O., Johnson, M. T., & Kotamarthi, R. (2001). The new methodology for Ozone Depletion Potentials of short-lived compounds: n-propyl bromide as an example. Journal of Geophysical Research, 106, 14,551–14,571.

    Article  CAS  Google Scholar 

  • Youn, D., Choi, W., Lee, H., & Wuebbles, D. J. (2006). Interhemispheric differences in changes of long-lived tracers in the middle stratosphere over the last decade. Geophysical Research Letters, 33, L03807, doi: 10.1029/2005GL024274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Wuebbles, D.J., Youn, D., Patten, K., Wang, D., Martínez-Avilés, M. (2009). Metrics for Ozone and Climate: Three-Dimensional Modeling Studies of Ozone Depletion Potentials and Indirect Global Warming Potentials. In: Zerefos, C., Contopoulos, G., Skalkeas, G. (eds) Twenty Years of Ozone Decline. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2469-5_23

Download citation

Publish with us

Policies and ethics