Skip to main content

Ribosome: an Ancient Cellular Nano-Machine for Genetic Code Translation

  • Conference paper
Book cover Biophysics and the Challenges of Emerging Threats

The ribosome is a ribozyme whose active site, the peptidyl trans-ferase center (PTC), is situated within a highly conserved universal symmetrical region that connects all ribosomal functional centers involved in amino-acid polymerization. The linkage between this elaborate architecture and A-site tRNA position revealed that the A- > P-site passage of the tRNA terminus in the peptidyl-transferase center is performed by a rotatory motion, synchronized with the overall tRNA/mRNA sideways movement. Guided by the PTC the rotatory motion leads to stereochemistry suitable for peptide bond formation as well as for substrate mediated catalysis, consistent with quantum mechanical calculations illuminating the transition state mechanism for peptide bond formation and indicating that the peptide bond is being formed during the rotatory motion.

Analysis of substrate binding modes to inactive and active ribosomes illuminated the significant of PTC mobility and supported the hypothesis that the ancient ribosome produced single peptides bonds and non-coded chains, utilizing nucleotide conjugated amino acids. Genetic control of the reaction evolved after polypeptides capable of enzymatic function were created, and an ancient stable RNA fold was converted into tRNA molecules. As the symmetry relates only the backbone fold and nucleotides orientations, but not nucleotide sequence, it emphasizes the superiority of functional requirement over sequence conservation, and indicates that the PTC has evolved by gene fusion, presumably by taking advantage of similar RNA fold structures.

The increase in antibiotic resistance among pathogenic bacterial strains poses a significant health threat. Therefore, improvement of existing antibiotics and the design of advance drugs are urgently needed. Ribosomes provide binding sited for many antibiotic families, utilizing their inherent functional flexibility, which triggers induced fit mechanism by remote interactions, and facilitates antibiotics synergism as well as reshaping less suitable binding pockets, leading to clinical usefulness even for antibiotics that bind to conserved functional regions. Exploitation of the diverse properties of antibiotics binding and benefiting from the detailed structural information that keeps emerging, should result in significant antibiotics improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agmon, I., Bashan, A., Zarivach, R., and Yonath, A. (2005). Symmetry at the active site of the ribosome: structural and functional implications. Biol Chem 386, 833–844.

    Article  Google Scholar 

  • Agmon, I., Bashan, A., and Yonath, A. (2006). On ribosome conservation and evolution. Isr J Ecol Evol 52, 359–379.

    Article  Google Scholar 

  • Agrawal, R. K., Heagle, A. B., Penczek, P., Grassucci, R. A., and Frank, J. (1999). EF-G- dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nat Struct Biol 6, 643–647.

    Article  Google Scholar 

  • Amit, M., Berisio, R., Baram, D., Harms, J., Bashan, A., and Yonath, A. (2005). A crevice adjoining the ribosome tunnel: hints for cotranslational folding. FEBS Lett 579, 3207–3213.

    Article  Google Scholar 

  • Anderson, R. M., Kwon, M., and Strobel, S. A. (2007). Toward ribosomal RNA catalytic activity in the absence of protein. J Mol Evol 64, 472–483.

    Article  Google Scholar 

  • Auerbach, T., Bashan, A., and Yonath, A. (2004). Ribosomal antibiotics: structural basis for resistance, synergism and selectivity. Trends Biotechnol 22, 570–576.

    Article  Google Scholar 

  • Auerbach, T., Mermershtain, I., Bashan, A., Davidovich, C., Rozenberg, H., Sherman, D. H., and Yonath, A. (2009). Structural basis for the antibacterial activity of the 12-membered-ring mono-sugar macrolide methymycin. Biotechnologia, 84, 24–35.

    Google Scholar 

  • Auerbach-Nevo, T., Zarivach, R., Peretz, M., and Yonath, A. (2005). Reproducible growth of well diffracting ribosomal crystals. Acta Crystallogr D Biol Crystallogr 61, 713–719.

    Article  Google Scholar 

  • Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920.

    Article  ADS  Google Scholar 

  • Baram, D., and Yonath, A. (2005). From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects. FEBS Lett 579, 948–954.

    Article  Google Scholar 

  • Baram, D., Pyetan, E., Sittner, A., Auerbach-Nevo, T., Bashan, A., and Yonath, A. (2005). Structure of trigger factor binding domain in biologically homologous complex with eubac-terial ribosome reveals its chaperone action. Proc Natl Acad Sci U S A 102, 12017–12022.

    Article  ADS  Google Scholar 

  • Barta, A., Dorner, S., and Polacek, N. (2001). Mechanism of ribosomal peptide bond formation. Science 291, 203.

    Article  Google Scholar 

  • Bashan, A., Agmon, I., Zarivach, R., Schluenzen, F., Harms, J., Berisio, R., Bartels, H., Franceschi, F., Auerbach, T., Hansen, H. A. S., et al. (2003). Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol Cell 11, 91–102.

    Article  Google Scholar 

  • Bashan, A., and Yonath, A. (2005). Ribosome crystallography: catalysis and evolution of peptide- bond formation, nascent chain elongation and its co-translational folding. Biochem Soc Trans 33, 488–492.

    Article  Google Scholar 

  • Bashan, A., and Yonath, A. (2008a). The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility. J Mol Struct 890 289–294.

    Article  ADS  Google Scholar 

  • Bashan, A., and Yonath, A. (2008b). Correlating ribosome function with high-resolution structures. Trends Microbiol 16, 326–335.

    Article  Google Scholar 

  • Bayfield, M. A., Dahlberg, A. E., Schulmeister, U., Dorner, S., and Barta, A. (2001). A confor- mational change in the ribosomal peptidyl transferase center upon active/inactive transition. Proc Natl Acad Sci U S A 98, 10096–10101.

    Article  ADS  Google Scholar 

  • Beringer, M., Adio, S., Wintermeyer, W., and Rodnina, M. (2003). The G2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation. RNA 9, 919–922.

    Article  Google Scholar 

  • Beringer, M., Bruell, C., Xiong, L., Pfister, P., Bieling, P., Katunin, V. I., Mankin, A. S., Bottger, E. C., and Rodnina, M. V. (2005). Essential mechanisms in the catalysis of peptide bond formation on the ribosome. J Biol Chem 280, 36065–36072.

    Article  Google Scholar 

  • Beringer, M., and Rodnina, M. V. (2007). Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs. Biol Chem 388, 687–691.

    Article  Google Scholar 

  • Beringer, M., and Rodnina, M. V. (2007). The ribosomal peptidyl transferase. Mol Cell 26, 311–321.

    Article  Google Scholar 

  • Berisio, R., Schluenzen, F., Harms, J., Bashan, A., Auerbach, T., Baram, D., and Yonath, A. (2003a). Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat Struct Biol 10, 366–370.

    Article  Google Scholar 

  • Berisio, R., Harms, J., Schluenzen, F., Zarivach, R., Hansen, H. A., Fucini, P., and Yonath, A. (2003b). Structural insight into the antibiotic action of telithromycin against resistant mutants. J Bacteriol 185, 4276–4279.

    Article  Google Scholar 

  • Berisio, R., Corti, N., Pfister, P., Yonath, A., and Bottger, E. C. (2006). 23S rRNA 2058A->G alteration mediates ketolide resistance in combination with deletion in L22. Antimicrob Agents Chemother 50, 3816–3823.

    Article  Google Scholar 

  • Bieling, P., Beringer, M., Adio, S., and Rodnina, M. V. (2006). Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nat Struct Mol Biol 13, 424–428.

    Article  Google Scholar 

  • Blaha, G., Gurel, G., Schroeder, S. J., Moore, P. B., and Steitz, T. A. (2008). Mutations outside the anisomycin-binding site can make ribosomes drug-resistant. J Mol Biol 379, 505–519.

    Article  Google Scholar 

  • Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S., and Puglisi, J. D. (2004). tRNA selec- tion and kinetic proofreading in translation. Nat Struct Mol Biol 11, 1008–1014.

    Article  Google Scholar 

  • Bommakanti, A. S., Lindahl, L., and Zengel, J. M. (2008). Mutation from guanine to adenine in 25S rRNA at the position equivalent to E. coli A2058 does not confer erythromycin sensitivity in Sacchromyces cerevisae. RNA 14, 460–464.

    Article  Google Scholar 

  • Bottger, E. C. (2006). The ribosome as a drug target. Trends Biotechnol 24, 145–147.

    Google Scholar 

  • Bottger, E. C. (2007). Antimicrobial agents targeting the ribosome: the issue of selectivity and toxicity — lessons to be learned. Cell Mol Life Sci 64, 791–795.

    Article  Google Scholar 

  • Bowen, W. S., Van Dyke, N., Murgola, E. J., Lodmell, J. S., and Hill, W. E. (2005). Interaction of thiostrepton and elongation factor-G with the ribosomal protein L11-binding domain. J Biol Chem 280, 2934–2943.

    Article  Google Scholar 

  • Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetracy-cline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 1143–1154.

    Article  Google Scholar 

  • Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Wimberly, B. T., and Ramakrishnan, V. (2002). Crystal structure of the 30S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16S RNA. J Mol Biol 316, 725–768.

    Article  Google Scholar 

  • Brunelle, J. L., Youngman, E. M., Sharma, D., and Green, R. (2006). The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12, 33–39.

    Article  Google Scholar 

  • Brunelle, J. L., Shaw, J. J., Youngman, E. M., and Green, R. (2008). Peptide release on the ribos-ome depends critically on the 2′ OH of the peptidyl-tRNA substrate. RNA 14, 1526–1531.

    Article  Google Scholar 

  • Carter, A. P., Clemons, W. M., Brodersen, D. E., MorganQQQWarren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348.

    Article  ADS  Google Scholar 

  • Carter, A. P., Clemons, W. M., Jr., Brodersen, D. E., MorganQQQWarren, R. J., Hartsch, T., Wimberly, B. T., and Ramakrishnan, V. (2001). Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291, 498–501.

    Article  ADS  Google Scholar 

  • Clemons, W. M., Jr., Brodersen, D. E., McCutcheon, J. P., May, J. L., Carter, A. P., MorganQQQWarren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2001). Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. J Mol Biol 310, 827–843.

    Article  Google Scholar 

  • Cochella, L., and Green, R. (2004). Wobble during decoding: more than thirdQQQposition proQQQ miscuity. Nat Struct Mol Biol 11, 1160–1162.

    Article  Google Scholar 

  • Cooperman, B. S., Wooten, T., Romero, D. P., and Traut, R. R. (1995). Histidine 229 in proQQQ tein L2 is apparently essential for 50S peptidyl transferase activity. Biochem Cell Biol 73, 1087–1094.

    Article  Google Scholar 

  • Crowley, K. S., Reinhart, G. D., and Johnson, A. E. (1993). The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115.

    Article  Google Scholar 

  • CruzQQQVera, L. R., Gong, M., and Yanofsky, C. (2006). Changes produced by bound trypQQQtophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide. Proc Natl Acad Sci U S A 103, 3598–3603.

    Article  ADS  Google Scholar 

  • Davidovich, C., Bashan, A., AuerbachQQQNevo, T., Yaggie, R. D., Gontarek, R. R., and Yonath, A. (2007). InducedQQQfit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Proc Natl Acad Sci U S A 104, 4291–4296.

    Article  ADS  Google Scholar 

  • Davidovich, C., Bashan A., and Yonath, A. (2008) Structural basis for cross resistance to ribosomal PTC antibiotics, Proc Natl Acad Sci U S A, 105, 20665–20670.

    Article  ADS  Google Scholar 

  • Davydova, N., Streltsov, V., Wilce, M., Liljas, A., and Garber, M. (2002). L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. J Mol Biol 322, 635–644.

    Article  Google Scholar 

  • Deane, C. M., Dong, M., Huard, F. P., Lance, B. K., and Wood, G. R. (2007). Cotranslational protein folding – fact or fiction? Bioinformatics 23, i142–148.

    Article  Google Scholar 

  • Diaconu, M., Kothe, U., Schlunzen, F., Fischer, N., Harms, J. M., Tonevitsky, A. G., Stark, H., Rodnina, M. V., and Wahl, M. C. (2005). Structural basis for the function of the ribosomal L7/12 Stalk in factor binding and GTPase activation. Cell 121, 991–1004.

    Article  Google Scholar 

  • Dunham, C. M., Selmer, M., Phelps, S. S., Kelley, A. C., Suzuki, T., Joseph, S., and Ramakrishnan, V. (2007). Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit. RNA 13, 817–823.

    Article  Google Scholar 

  • Evans, R. N., Blaha, G., Bailey, S., and Steitz, T. A. (2008). The structure of LepA, the ribosQQQomal back translocase. Proc Natl Acad Sci U S A 105, 4673–4678.

    Article  ADS  Google Scholar 

  • Fabbretti, A., Pon, C. L., Hennelly, S. P., Hill, W. E., Lodmell, J. S., and Gualerzi, C. O. (2007). The realQQQtime path of translation factor IF3 onto and off the ribosome. Mol Cell 25, 285–296.

    Article  Google Scholar 

  • Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E., and Ban, N. (2004). Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590–596.

    Article  ADS  Google Scholar 

  • Frank, J., Zhu, J., Penczek, P., Li, Y., Srivastava, S., Verschoor, A., Radermacher, M., Grassucci, R., Lata, R. K., and Agrawal, R. K. (1995). A model of protein synthesis based on cryoQQQelectron microscopy of the E. coli ribosome. Nature 376, 441–444.

    Article  ADS  Google Scholar 

  • Frank, J., Penczek, P., Agrawal, R. K., Grassucci, R. A., and Heagle, A. B. (2000). ThreeQQQ dimensional cryoelectron microscopy of ribosomes. Methods Enzymol 317, 276–291.

    Article  Google Scholar 

  • Fujiwara, T., Ito, K., Yamami, T., and Nakamura, Y. (2004). Ribosome recycling factor disasQQQ sembles the postQQQtermination ribosomal complex independent of the ribosomal transloQQQcase activity of elongation factor G. Mol Microbiol 53, 517–528.

    Article  Google Scholar 

  • Gabashvili, I. S., Gregory, S. T., Valle, M., Grassucci, R., Worbs, M., Wahl, M. C., Dahlberg, A. E., and Frank, J. (2001). The polypeptide tunnel system in the ribosome and its gating in erythroQQQmycin resistance mutants of L4 and L22. Mol Cell 8, 181–188.

    Article  Google Scholar 

  • Gao, H., Sengupta, J., Valle, M., Korostelev, A., Eswar, N., Stagg, S. M., Van Roey, P., Agrawal, R. K., Harvey, S. C., Sali, A., et al. (2003). Study of the structural dynamics of the E. coli 70S ribosome using realQQQspace refinement. Cell 113, 789–801.

    Article  Google Scholar 

  • Gao, N., Zavialov, A. V., Li, W., Sengupta, J., Valle, M., Gursky, R. P., Ehrenberg, M., and Frank, J. (2005). Mechanism for the disassembly of the posttermination complex inferred from cryoQQQEM studies. Mol Cell 18, 663–674.

    Article  Google Scholar 

  • Garrett, R. A., and Wittmann, H. G. (1973a). Structure and function of the ribosome. Endeavour 32, 8–14.

    Article  Google Scholar 

  • Garrett, R. A., and Wittmann, H. G. (1973b). Structure of bacterial ribosomes. Adv Protein Chem 27, 277–347.

    Article  Google Scholar 

  • Gilbert, R. J., Fucini, P., Connell, S., Fuller, S. D., Nierhaus, K. H., Robinson, C. V., Dobson, C. M., and Stuart, D. I. (2004). ThreeQQQdimensional structures of translating ribosomes by CryoQQQEM. Mol Cell 14, 57–66.

    Article  Google Scholar 

  • Gindulyte, A., Bashan, A., Agmon, I., Massa, L., Yonath, A., and Karle, J. (2006). The transition state for formation of the peptide bond in the ribosome. Proc Natl Acad Sci U S A 103, 13327–13332.

    Article  ADS  Google Scholar 

  • Gluehmann, M., Zarivach, R., Bashan, A., Harms, J., Schluenzen, F., Bartels, H., Agmon, I., Rosenblum, G., Pioletti, M., Auerbach, T., et al. (2001). Ribosomal crystallography: from poorly diffracting microcrystals to highQQQresolution structures. Methods 25, 292–302.

    Article  Google Scholar 

  • Gong, F., and Yanofsky, C. (2002). Instruction of translating ribosome by nascent Peptide. Science 297, 1864–1867.

    Article  ADS  Google Scholar 

  • Gregory, S. T., and Dahlberg, A. E. (1999). Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J Mol Biol 289, 827–834.

    Article  Google Scholar 

  • Gromadski, K. B., and Rodnina, M. V. (2004). Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome. Nat Struct Mol Biol 11, 316–322.

    Article  Google Scholar 

  • Hansen, H. A., Volkmann, N., Piefke, J., Glotz, C., Weinstein, S., Makowski, I., Meyer, S., Wittmann, H. G., and Yonath, A. (1990). Crystals of complexes mimicking protein bioQQQ synthesis are suitable for crystallographic studies. Biochim Biophys Acta 1050, 1–7.

    Google Scholar 

  • Hansen, J. L., Ippolito, J. A., Ban, N., Nissen, P., Moore, P. B., and Steitz, T. A. (2002a). The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 10, 117–128.

    Article  Google Scholar 

  • Hansen, J. L., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2002b). Structural insights into peptide bond formation. Proc Natl Acad Sci U S A 99, 11670–11675.

    Article  ADS  Google Scholar 

  • Hansen, J. L., Moore, P. B., and Steitz, T. A. (2003). Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J Mol Biol 330, 1061–1075.

    Article  Google Scholar 

  • Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001). High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688.

    Article  Google Scholar 

  • Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Bartels, H., Agmon, I., and Yonath, A. (2002). Protein structure: experimental and theoretical aspects. FEBS Lett 525, 176.

    Article  Google Scholar 

  • Harms, J., Schluenzen, F., Fucini, P., Bartels, H., and Yonath, A. (2004). Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the strep-togramins dalfopristin and quinupristin. BMC Biol 2, 4;1–10.

    Google Scholar 

  • Helgstrand, M., Mandava, C. S., Mulder, F. A., Liljas, A., Sanyal, S., and Akke, M. (2007). The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. J Mol Biol 365, 468–479.

    Article  Google Scholar 

  • Hope, H., Frolow, F., von Bohlen, K., Makowski, I., Kratky, C., Halfon, Y., Danz, H., Webster, P., Bartels, K. S., Wittmann, H. G., and et al. (1989). Cryocrystallography of ribosomal particles. Acta Crystallogr B 45, 190–199.

    Article  Google Scholar 

  • Ippolito, J. A., Kanyo, Z. F., Wang, D., Franceschi, F. J., Moore, P. B., Steitz, T. A., and Duffy, E. M. (2008). Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem 51, 3353–3356.

    Article  Google Scholar 

  • Johansson, M., Bouakaz, E., Lovmar, M., and Ehrenberg, M. (2008). The kinetics of ribos-omal peptidyl transfer revisited. Mol Cell 30, 589–598.

    Article  Google Scholar 

  • Johnson, A. E. (2004). Functional ramifications of FRET-detected nascent chain folding far inside the membrane-bound ribosome. Biochem Soc Trans 32, 668–672.

    Article  Google Scholar 

  • Kaiser, C. M., Chang, H. C., Agashe, V. R., Lakshmipathy, S. K., Etchells, S. A., Hayer-Hartl, M., Hartl, F. U., and Barral, J. M. (2006). Real-time observation of trigger factor function on translating ribosomes. Nature 444, 455–460.

    Article  ADS  Google Scholar 

  • Katunin, V. I., Savelsbergh, A., Rodnina, M. V., and Wintermeyer, W. (2002). Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. Biochemistry 41, 12806–12812.

    Article  Google Scholar 

  • Kavran, J. M., and Steitz, T. A. (2007). Structure of the base of the L7/L12 stalk of the Haloarcula marismortui large ribosomal subunit: Analysis of L11 Movements. J Mol Biol 371, 1047–1059.

    Article  Google Scholar 

  • Klein, D. J., Moore, P. B., and Steitz, T. A. (2004). The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J Mol Biol 340, 141–177.

    Article  Google Scholar 

  • Konevega, A. L., Fischer, N., Semenkov, Y. P., Stark, H., Wintermeyer, W., and Rodnina, M. V. (2007). Spontaneous reverse movement of mRNA-bound tRNA through the ribosome. Nat Struct Mol Biol 14, 318–324.

    Article  Google Scholar 

  • Korostelev, A., Trakhanov, S., Laurberg, M., and Noller, H. F. (2006). Crystal Structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077.

    Article  Google Scholar 

  • Lai, C. J., and Weisblum, B. (1971). Altered methylation of ribosomal RNA in an erythromy- cin-resistant strain of Staphylococcus aureus. Proc Natl Acad Sci U S A 68, 856–860.

    Article  ADS  Google Scholar 

  • Lang, K., Erlacher, M., Wilson, D. N., Micura, R., and Polacek, N. (2008). The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis. Chem Biol 15, 485–492.

    Article  Google Scholar 

  • Lawrence, M., Lindahl, L., and Zengel, J. M. (2008). Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel. J Bacteriol 190, 5862–5869.

    Article  Google Scholar 

  • Lolk, L., Pohlsgaard, J., Jepsen, A. S., Hansen, L. H., Nielsen, H., Steffansen, S. I., Sparving, L., Nielsen, A. B., Vester, B., and Nielsen, P. (2008). A click chemistry approach to pleuromu-tilin conjugates with nucleosides or acyclic nucleoside derivatives and their binding to the bacterial ribosome. J Med Chem 51, 4957–4967.

    Article  Google Scholar 

  • Maguire, B. A., Beniaminov, A. D., Ramu, H., Mankin, A. S., and Zimmermann, R. A. (2005). A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome. Mol Cell 20, 427–435.

    Article  Google Scholar 

  • Maier, T., Ferbitz, L., Deuerling, E., and Ban, N. (2005). A cradle for new proteins: trigger factor at the ribosome. Curr Opin Struct Biol 15, 204–212.

    Article  Google Scholar 

  • Malkin, L. I., and Rich, A. (1967). Partial resistance of nascent polypeptide chains to proteo-lytic digestion due to ribosomal shielding. J Mol Biol 26, 329–346.

    Article  Google Scholar 

  • Mankin, A. S. (2001). Ribosomal antibiotics. Mol Biologia 35, 509–520.

    Article  Google Scholar 

  • Mankin, A. S. (2006). Nascent peptide in the “birth canal” of the ribosome. Trends Biochem Sci 31, 11–13.

    Article  Google Scholar 

  • Mankin, A. S. (2008). Macrolide myths. Curr Opin Microbiol 11, 414–421.

    Article  Google Scholar 

  • Marintchev, A., and Wagner, G. (2004). Translation initiation: structures, mechanisms and evolution. Q Rev Biophys 37, 197–284.

    Article  Google Scholar 

  • Martinez-Hackert, E., and Hendrickson, W. A. (2007). Structures of and interactions between domains of trigger factor from Thermotoga maritima. Acta Crystallogr D Biol Crystallogr 63, 536–547.

    Article  Google Scholar 

  • Mears, J.A., Cannone, J.J., Stagg, S.M., Gutell, R.R., Agrawal, R.K. and Harvey, S.C (2002). Modeling a minimal ribosome based on comparative sequence analysis. J Mol Biol. 321, 215–234.

    Article  Google Scholar 

  • Milligan, R. A., and Unwin, P. N. (1986). Location of exit channel for nascent protein in 80S ribosome. Nature 319, 693–695

    Article  ADS  Google Scholar 

  • Mitra, K., Schaffitzel, C., Fabiola, F., Chapman, M. S., Ban, N., and Frank, J. (2006). Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements. Mol Cell 22, 533–543.

    Article  Google Scholar 

  • Moore, P. B. (1988). The ribosome returns. Nature 331, 223–227.

    Article  ADS  Google Scholar 

  • Moore, P. B., and Steitz, T. A. (2002). The involvement of RNA in ribosome function. Nature 418, 229–235.

    Article  ADS  Google Scholar 

  • Moore, P. B., and Steitz, T. A. (2003). After the ribosome structures: How does peptidyl trans- ferase work? RNA 9, 155–159.

    Article  Google Scholar 

  • Moore, P. B., and Steitz, T. A. (2005). The ribosome revealed. Trends Biochem Sci 30, 281–283.

    Article  Google Scholar 

  • Moore, S. D., and Sauer, R. T. (2008). Revisiting the mechanism of macrolide-antibiotic resistance mediated by ribosomal protein L22. Proc Natl Acad Sci U S A 105, 18261–18266.

    Article  ADS  Google Scholar 

  • Murphy, F. V., and Ramakrishnan, V. (2004). Structure of a purine-purine wobble base pair in the decoding center of the ribosome. Nat Struct Mol Biol 11, 1251–1252.

    Article  Google Scholar 

  • Murphy, F. V., Ramakrishnan, V., Malkiewicz, A., and Agris, P. F. (2004). The role of modifica- tions in codon discrimination by tRNA(Lys)(UUU). Nat Struct Mol Biol 11, 1186–1191.

    Article  Google Scholar 

  • Nagano, K., Takagi, H., and Harel, M. (1991). The side-by-side model of two tRNA molecules allowing the alpha-helical conformation of the nascent polypeptide during the ribosomal transpeptidation. Biochimie 73, 947–960.

    Article  Google Scholar 

  • Nakatogawa, H., and Ito, K. (2002). The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636.

    Article  Google Scholar 

  • Nakatogawa, H., and Ito, K. (2004). Intra ribosomal regulation of expression and fate of proteins. ChemBioChem 5, 48–51.

    Article  Google Scholar 

  • Nilsson, J., and Nissen, P. (2005). Elongation factors on the ribosome. Curr Opin Struct Biol 15, 349–354.

    Article  Google Scholar 

  • Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930.

    Article  ADS  Google Scholar 

  • Noller, H. F., Hoffarth, V., and Zimniak, L. (1992). Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256, 1416–1419.

    Article  ADS  Google Scholar 

  • Ogle, J. M., Brodersen, D. E., Clemons, W. M., Jr., Tarry, M. J., Carter, A. P., and Ramakrishnan, V. (2001). Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902.

    Article  ADS  Google Scholar 

  • Ogle, J. M., Carter, A. P., and Ramakrishnan, V. (2003). Insights into the decoding mechanism from recent ribosome structures. Trends Biochem Sci 28, 259–266.

    Article  Google Scholar 

  • Ogle, J. M., Murphy, F. V., Tarry, M. J., and Ramakrishnan, V. (2002). Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732.

    Article  Google Scholar 

  • Ogle, J. M., and Ramakrishnan, V. (2005). Structural insights into translational fidelity. Annu Rev Biochem 74, 129–177.

    Article  Google Scholar 

  • Palade, G. E. (1955). A small particulate component of the cytoplasm. J Biophys Biochem Cytol 1, 59–68.

    Article  Google Scholar 

  • Passmore, L. A., Schmeing, T. M., Maag, D., Applefield, D. J., Acker, M. G., Algire, M. A., Lorsch, J. R., and Ramakrishnan, V. (2007). The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 26, 41–50.

    Article  Google Scholar 

  • Petrone, P. M., Snow, C. D., Lucent, D., and Pande, V. S. (2008). Side-chain recognition and gating in the ribosome exit tunnel. Proc Natl Acad Sci U S A 105, 16549–16554.

    Article  ADS  Google Scholar 

  • Petry, S., Brodersen, D. E., Murphy, F. V. t., Dunham, C. M., Selmer, M., Tarry, M. J., Kelley, A. C., and Ramakrishnan, V. (2005). Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1255–1266.

    Article  Google Scholar 

  • Petry, S., Weixlbaumer, A., and Ramakrishnan, V. (2008). The termination of translation. Curr Opin Struct Biol 18, 70–77.

    Article  Google Scholar 

  • Pfister, P., Corti, N., Hobbie, S., Bruell, C., Zarivach, R., Yonath, A., and Bottger, E. C. (2005). 23S rRNA base pair 2057–2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A – >G. Proc Natl Acad Sci U S A 102, 5180–5185.

    Article  ADS  Google Scholar 

  • Pioletti, M., Schluenzen, F., Harms, J., Zarivach, R., Gluehmann, M., Avila, H., Bashan, A., Bartels, H., Auerbach, T., Jacobi, C., et al. (2001). Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. Embo J 20, 1829–1839.

    Article  Google Scholar 

  • Poehlsgaard, J., and Douthwaite, S. (2005). The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 3, 870–881.

    Article  Google Scholar 

  • Polacek, N., Gaynor, M., Yassin, A., and Mankin, A. S. (2001). Ribosomal peptidyl trans- ferase can withstand mutations at the putative catalytic nucleotide. Nature 411, 498–501.

    Article  ADS  Google Scholar 

  • Polacek, N., Gomez, M. J., Ito, K., Xiong, L., Nakamura, Y., and Mankin, A. (2003). The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol Cell 11, 103–112.

    Article  Google Scholar 

  • Polacek, N., and Mankin, A. S. (2005). The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit Rev Biochem Mol Biol 40, 285–311.

    Article  Google Scholar 

  • Pyetan, E., Baram, D., Auerbach-Nevo, T., and Yonath, A. (2007). Chemical parameters influencing fine-tuning in the binding of macrolide antibiotics to the ribosomal tunnel. Pure Appl Chem 79, 955–968.

    Article  Google Scholar 

  • Ramakrishnan (2002). Ribosome structure and the mechanism of translation. Cell 108, 557–572.

    Article  Google Scholar 

  • Ramakrishnan, V., and Moore, P. B. (2001). Atomic structures at last: the ribosome in 2000. Curr Opin Struct Biol 11, 144–154.

    Article  Google Scholar 

  • Rodnina, M. V., Beringer, M., and Wintermeyer, W. (2007). How ribosomes make peptide bonds. Trends Biochem Sci 32, 20–26.

    Article  Google Scholar 

  • Rodnina, M. V., and Wintermeyer, W. (2003). Peptide bond formation on the ribosome: structure and mechanism. Curr Opin Struct Biol 13, 334–340.

    Article  Google Scholar 

  • Rutkowska, A., Mayer, M. P., Hoffmann, A., Merz, F., Zachmann-Brand, B., Schaffitzel, C., Ban, N., Deuerling, E., and Bukau, B. (2008). Dynamics of trigger factor interaction with translating ribosomes. J Biol Chem 283, 4124–4132.

    Article  Google Scholar 

  • Ryabova, L. A., Selivanova, O. M., Baranov, V. I., Vasiliev, V. D., and Spirin, A. S. (1988). Does the channel for nascent peptide exist inside the ribosome? Immune electron microscopy study. FEBS Lett 226, 255–260.

    Article  Google Scholar 

  • Sabatini, D. D., and Blobel, G. (1970). Controlled proteolysis of nascent polypeptides in rat liver cell fractions. II. Location of the polypeptides in rough microsomes. J Cell Biol 45, 146–157.

    Article  Google Scholar 

  • Saguy, M., Gillet, R., Metzinger, L., and Felden, B. (2005). tmRNA and associated ligands: a puzzling relationship. Biochimie 87, 897–903.

    Article  Google Scholar 

  • Sato, N. S., Hirabayashi, N., Agmon, I., Yonath, A., and Suzuki, T. (2006). Comprehensive genetic selection revealed essential bases in the peptidyl-transferase center. Proc Natl Acad Sci U S A 103, 15386–15391.

    Article  ADS  Google Scholar 

  • Schaffitzel, C., and Ban, N. (2007). Generation of ribosome nascent chain complexes for structural and functional studies. J Struct Biol 158, 463–471.

    Article  Google Scholar 

  • Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., and Yonath, A. (2000). Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102, 615–623.

    Article  Google Scholar 

  • Schluenzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Yonath, A., and Franceschi, F. (2001). Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821.

    Article  ADS  Google Scholar 

  • Schluenzen, F., Harms, J. M., Franceschi, F., Hansen, H. A., Bartels, H., Zarivach, R., and Yonath, A. (2003). Structural basis for the antibiotic activity of ketolides and azalides. Structure 11, 329–338.

    Article  Google Scholar 

  • Schluenzen, F., Pyetan, E., Fucini, P., Yonath, A., and Harms, J. (2004). Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol Microbiol 54, 1287–1294.

    Article  Google Scholar 

  • Schluenzen, F., Wilson, D. N., Tian, P., Harms, J. M., McInnes, S. J., Hansen, H. A., Albrecht, R., Buerger, J., Wilbanks, S. M., and Fucini, P. (2005). The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure (Camb) 13, 1685–1694.

    Article  Google Scholar 

  • Schmeing, T. M., Huang, K. S., Kitchen, D. E., Strobel, S. A., and Steitz, T. A. (2005a). Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell 20, 437–448.

    Article  Google Scholar 

  • Schmeing, T. M., Huang, K. S., Strobel, S. A., and Steitz, T. A. (2005b). An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438, 520–524.

    Article  ADS  Google Scholar 

  • Schroeder, S. J., Blaha, G., Tirado-Rives, J., Steitz, T. A., and Moore, P. B. (2007). The structures of antibiotics bound to the E site region of the 50 S ribosomal subunit of Haloarcula marismortui: 13-deoxytedanolide and girodazole. J Mol Biol 367, 1471–1479.

    Article  Google Scholar 

  • Schuwirth, B. S., Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J. M., and Cate, J. H. D. (2005). Structures of the Bacterial Ribosome at 3.5 A Resolution. Science 310, 827–834.

    Article  ADS  Google Scholar 

  • Selmer, M., Dunham, C. M., Murphy Iv, F. V., Weixlbaumer, A., Petry, S., Kelley, A. C., Weir, J. R., and Ramakrishnan, V. (2006). Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942.

    Article  ADS  Google Scholar 

  • Sharma, P. K., Xiang, Y., Kato, M., and Warshel, A. (2005). What are the roles of substrate- assisted catalysis and proximity effects in peptide bond formation by the ribosome? Biochemistry 44, 11307–11314.

    Article  Google Scholar 

  • Shaw, J. J., and Green, R. (2007). Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Mol Cell 28, 458–467.

    Article  Google Scholar 

  • Sievers, A., Beringer, M., Rodnina, M. V., and Wolfenden, R. (2004). The ribosome as an entropy trap. Proc Natl Acad Sci U S A 101, 7897–7901.

    Article  ADS  Google Scholar 

  • Simonovic, M., and Steitz, T. A. (2008). Peptidyl-CCA deacylation on the ribosome promoted by induced fit and the O3′l group of A76 of the unacylated A-site tRNA. RNA 14, 2372–2378.

    Article  Google Scholar 

  • Sobolevsky, Y., and Trifonov, E. N. (2005). Conserved sequences of prokaryotic proteomes and their compositional age. J Mol Evol 61, 591–596.

    Article  Google Scholar 

  • Stark, H., Mueller, F., Orlova, E. V., Schatz, M., Dube, P., Erdemir, T., Zemlin, F., Brimacombe, R., and van Heel, M. (1995). The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. Structure 3, 815–821.

    Article  Google Scholar 

  • Stark, H., Rodnina, M. V., Wieden, H. J., van Heel, M., and Wintermeyer, W. (2000). Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100, 301–309.

    Article  Google Scholar 

  • Steitz, T. A. (2008). A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9, 242–253.

    Article  Google Scholar 

  • Steitz, T. A., and Moore, P. B. (2003). RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28, 411–418.

    Article  Google Scholar 

  • Tenson, T., and Mankin, A. (2006). Antibiotics and the ribosome. Mol Microbiol 59, 1664– 1677.

    Article  Google Scholar 

  • Thompson, J., and Dahlberg, A. E. (2004). Testing the conservation of the translational machinery over evolution in diverse environments: assaying Thermus thermophilus ribos-omes and initiation factors in a coupled transcription-translation system from Escherichia coli. Nucleic Acids Res 32, 5954–5961.

    Article  Google Scholar 

  • Thompson, J., Kim, D. F., O'Connor, M., Lieberman, K. R., Bayfield, M. A., Gregory, S. T., Green, R., Noller, H. F., and Dahlberg, A. E. (2001). Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Proc Natl Acad Sci U S A 98, 9002–9007.

    Article  ADS  Google Scholar 

  • Thygesen, J., Weinstein, S., Franceschi, F., and Yonath, A. (1996). The suitability of multi-metal clusters for phasing in crystallography of large macromolecular assemblies. Structure 4, 513–518.

    Article  Google Scholar 

  • Trobro, S., and Aqvist, J. (2006). Analysis of predictions for the catalytic mechanism of ribos- omal peptidyl transfer. Biochemistry 45, 7049–7056.

    Article  Google Scholar 

  • Tu, D., Blaha, G., Moore, P. B., and Steitz, T. A. (2005). Structures of MLSBK Antibiotics Bound to Mutated Large Ribosomal Subunits Provide a Structural Explanation for Resistance. Cell 121, 257–270.

    Article  Google Scholar 

  • Uemura, S., Dorywalska, M., Lee, T. H., Kim, H. D., Puglisi, J. D., and Chu, S. (2007). Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome. Nature 446, 454–457.

    Article  ADS  Google Scholar 

  • Valle, M., Gillet, R., Kaur, S., Henne, A., Ramakrishnan, V., and Frank, J. (2003a). Visualizing tmRNA entry into a stalled ribosome. Science 300, 127–130.

    Article  ADS  Google Scholar 

  • Valle, M., Zavialov, A., Sengupta, J., Rawat, U., Ehrenberg, M., and Frank, J. (2003b). Locking and unlocking of ribosomal motions. Cell 114, 123–134.

    Article  Google Scholar 

  • Vazquez-Laslop, N., Thum, C., and Mankin, A. S. (2008). Molecular mechanism of drug-dependent ribosome stalling. Mol Cell 30, 190–202.

    Article  Google Scholar 

  • von Bohlen, K., Makowski, I., Hansen, H. A., Bartels, H., Berkovitch-Yellin, Z., Zaytzev- Bashan, A., Meyer, S., Paulke, C., Franceschi, F., and Yonath, A. (1991). Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 A resolution. J Mol Biol 222, 11–15.

    Article  Google Scholar 

  • Voss, N. R., Gerstein, M., Steitz, T. A., and Moore, P. B. (2006). The geometry of the ribos- omal polypeptide exit tunnel. J Mol Biol 360, 893–906.

    Article  Google Scholar 

  • Walter, P., and Johnson, A. E. (1994). Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10, 87–119.

    Article  Google Scholar 

  • Watson, J. D. (1963). Involvement of RNA in the synthesis of proteins. Science 140, 17–26.

    Article  ADS  Google Scholar 

  • Weinger, J. S., Parnell, K. M., Dorner, S., Green, R., and Strobel, S. A. (2004). Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol 11, 1101–1106.

    Article  Google Scholar 

  • Weinger, J. S., and Strobel, S. A. (2006). Participation of the tRNA A76 Hydroxyl Groups throughout Translation. Biochemistry 45, 5939–5948.

    Article  Google Scholar 

  • Weixlbaumer, A., Murphy, F. V. t., Dziergowska, A., Malkiewicz, A., Vendeix, F. A., Agris, P. F., and Ramakrishnan, V. (2007). Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat Struct Mol Biol 14, 498–502.

    Article  Google Scholar 

  • Weixlbaumer, A., Jin, H., Neubauer, C., Voorhees, R. M., Petry, S., Kelley, A. C., and Ramakrishnan, V. (2008). Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956.

    Article  ADS  Google Scholar 

  • Wekselman, I., Davidovich, C., Agmon, I., Zimmerman, E., Rosenberg, H., Bashan, A., Berisio, R., and Yonath, A. (2008). Ribosome's mode of function: myths and facts. J Pept Sci. 15, 122–130.

    Article  Google Scholar 

  • Wilden, B., Savelsbergh, A., Rodnina, M. V., and Wintermeyer, W. (2006). Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribos-ome. Proc Natl Acad Sci U S A 103, 13670–13675.

    Article  ADS  Google Scholar 

  • Wilson, D. N., Harms, J. M., Nierhaus, K. H., Schlunzen, F., and Fucini, P. (2005a). Species-specific antibiotic-ribosome interactions: implications for drug development. Biol Chem 386, 1239–1252.

    Article  Google Scholar 

  • Wilson, D. N., Schluenzen, F., Harms, J. M., Yoshida, T., Ohkubo, T., Albrecht, R., Buerger, J., Kobayashi, Y., and Fucini, P. (2005b). X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. Embo J 24, 251–260.

    Article  Google Scholar 

  • Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature 407, 327–339.

    Article  ADS  Google Scholar 

  • Wohlgemuth, I., Beringer, M., and Rodnina, M. V. (2006). Rapid peptide bond formation on isolated 50S ribosomal subunits. EMBO Rep 7, 699–703.

    Article  Google Scholar 

  • Woolhead, C. A., McCormick, P. J., and Johnson, A. E. (2004). Nascent membrane and secre- tory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736.

    Article  Google Scholar 

  • Woolhead, C. A., Johnson, A. E., and Bernstein, H. D. (2006). Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol Cell 22, 587–598.

    Article  Google Scholar 

  • Xiong, L., Polacek, N., Sander, P., Bottger, E. C., and Mankin, A. (2001). pKa of adenine 2451 in the ribosomal peptidyl transferase center remains elusive. RNA 7, 1365–1369.

    Google Scholar 

  • Yassin, A., Fredrick, K., and Mankin, A. S. (2005). Deleterious mutations in small subunit ribosomal RNA identify functional sites and potential targets for antibiotics. Proc Natl Acad Sci U S A 102, 16620–16625.

    Article  ADS  Google Scholar 

  • Yonath, A., Leonard, K. R., and Wittmann, H. G. (1987). A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236, 813–816.

    Article  ADS  Google Scholar 

  • Yonath, A., Muessig, J., Tesche, B., Lorenz, S., Erdmann, V. A., and Wittmann, H. G. (1980). Crystallization of the large ribosomal subunit from B. stearothermophilus. Biochem Int 1, 315–428.

    Google Scholar 

  • Yonath, A. (2002). High-resolution structures of large ribosomal subunits from mesophilic eubac-teria and halophilic archaea at various functional states. Curr Protein Peptide Sci 3, 67–78.

    Article  Google Scholar 

  • Yonath, A. (2003a). Ribosomal tolerance and peptide bond formation. Biol Chem 384, 1411–1419.

    Article  Google Scholar 

  • Yonath, A. (2003b). Structural insight into functional aspects of ribosomal RNA targeting. ChemBioChem 4, 1008–1017.

    Article  Google Scholar 

  • Yonath, A., and Bashan, A. (2004). Ribosomal crystallography: initiation, peptide bond for- mation, and amino acid polymerization are hampered by antibiotics. Annu Rev Microbiol 58, 233–251.

    Article  Google Scholar 

  • Yonath, A. (2005a). Antibiotics targeting ribosomes: resistance, selectivity, synergism, and cellular regulation. Annu Rev Biochem 74, 649–679.

    Article  Google Scholar 

  • Yonath, A. (2005b). Ribosomal crystallography: peptide bond formation, chaperone assist- ance and antibiotics activity. Mol Cells 20, 1–16.

    Article  Google Scholar 

  • Yonath, A. (2006). Molecular biology: triggering positive competition. Nature 444, 435–436.

    Article  ADS  Google Scholar 

  • Youngman, E. M., Cochella, L., Brunelle, J. L., He, S., and Green, R. (2006). Two distinct conformations of the conserved RNA-rich decoding center of the small ribosomal subunit are recognized by tRNAs and release factors. Cold Spring Harb Symp Quant Biol 71, 545–549.

    Article  Google Scholar 

  • Youngman, E. M., He, S. L., Nikstad, L. J., and Green, R. (2007). Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol Cell 28, 533–543.

    Article  Google Scholar 

  • Youngman, E. M., McDonald, M. E., and Green, R. (2008). Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev Microbiol 62, 353–373.

    Article  Google Scholar 

  • Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H., and Noller, H. F. (2001). Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896.

    Article  ADS  Google Scholar 

  • Yusupova, G., Jenner, L., Rees, B., Moras, D., and Yusupov, M. (2006). Structural basis for messenger RNA movement on the ribosome. Nature 444, 391–394.

    Article  ADS  Google Scholar 

  • Zaman, S., Fitzpatrick, M., Lindahl, L., and Zengel, J. (2007). Novel mutations in ribos-omal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli. Mol Microbiol 66, 1039–1050.

    Article  Google Scholar 

  • Zarivach, R., Bashan, A., Berisio, R., Harms, J., Auerbach, T., Schluenzen, F., Bartels, H., Baram, D., Pyetan, E., Sittner, A., et al. (2004). Functional aspects of ribosomal architecture: symmetry, chirality and regulation. J Phys Org Chem 17, 901–912.

    Article  Google Scholar 

  • Zavialov, A. V., Hauryliuk, V. V., and Ehrenberg, M. (2005). Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs. J Biol 4, 9.

    Article  Google Scholar 

  • Zimmerman, E., and Yonath, A. (2009). Biological Implications of the Ribosome's Stunning Stereochemistry. ChemBioChem 10, 63–72.

    Article  Google Scholar 

  • Ziv, G., Haran, G., and Thirumalai, D. (2005). Ribosome exit tunnel can entropically stabilize {alpha}-helices. Proc Natl Acad Sci U S A 102, 18956–18961.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yonath, A. (2009). Ribosome: an Ancient Cellular Nano-Machine for Genetic Code Translation. In: Puglisi, J.D. (eds) Biophysics and the Challenges of Emerging Threats. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2368-1_8

Download citation

Publish with us

Policies and ethics