Skip to main content

We describe a simple Ising-like statistical mechanical model for folding proteins based on the α-carbon contact map of the native structure. In this model residues can adopt two microscopic states corresponding to the native and non-native conformations. In order to exactly enumerate the large number of possible configurations, structure is considered to grow as continuous sequences of native residues, with no more than two sequences in each molecule. Inter-residue contacts can only form within each sequence and between residues of the two native sequences. As structure grows there is a tradeoff between the stabilizing effect of inter-residue contacts and the entropy losses from ordering residues in their native conformation and from forming a disordered loop to connect two continuous sequences. Folding kinetics are calculated from the dynamics on the free energy profile, as in Kramers' reaction rate theory. Although non-native interactions responsible for roughness in the energy landscape are not explicitly considered in the model, they are implicitly included by determining the absolute rates for motion on the free energy profile. With the exception of α-helical proteins, the kinetic progress curves exhibit single exponential time courses, consistent with two state behavior, as observed experimentally. The calculated folding rates are in remarkably good agreement with the measured values for the 25 two-state proteins investigated, with a correlation coefficient of 0.8. With its coarse-grained description of both the energy and entropy, and only three independently adjustable parameters, the model may be regarded as the simplest possible analytical model of protein folding capable of predicting experimental properties of specific proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alm, E. and D. Baker, Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proc. Natl. Acad. Sci. U. S. A., 1999. 96(20): 11305–11310.

    Article  ADS  Google Scholar 

  2. Baker, D., A surprising simplicity to protein folding. Nature, 2001. 405: 39–42.

    Article  ADS  Google Scholar 

  3. Munoz, V., P.A. Thompson, J. Hofrichter, and W.A. Eaton, Folding dynamics and mechanism of beta-hairpin formation. Nature, 1997. 390(6656): 196–199.

    Article  ADS  Google Scholar 

  4. Munoz, V., E.R. Henry, J. Hofrichter, and W.A. Eaton, A statistical mechanical model for beta-hairpin kinetics. Proc. Natl. Acad. Sci. U. S. A., 1998. 95(11): 5872–5879.

    Article  ADS  Google Scholar 

  5. Munoz, V. and W.A. Eaton, A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc. Natl. Acad. Sci. U. S. A., 1999. 96(20): 11311–11316.

    Article  ADS  Google Scholar 

  6. Munoz, V., What can we learn about protein folding from Ising-like models? Curr. Opin. Struct. Biol., 2001. 11(2): 212–216.

    Article  Google Scholar 

  7. Galzitskaya, O.V. and A.V. Finkelstein, A theoretical search for folding/unfolding nuclei in three- dimensional protein structures. Proc. Natl. Acad. Sci. U. S. A., 1999. 96(20): 11299–11304.

    Article  ADS  Google Scholar 

  8. Ivankov, D.N. and A.V. Finkelstein, Theoretical study of a landscape of protein folding-unfolding pathways. Folding rates at midtransition. Biochemistry, 2001. 40(33): 9957–9961.

    Article  Google Scholar 

  9. Socci, N.D., J.N. Onuchic, and P.G. Wolynes, Diffusive dynamics of the reaction coordinate for protein folding funnels. J. Chem. Phys., 1996. 104(15): 5860–5868.

    Article  ADS  Google Scholar 

  10. Bryngelson, J.D. and P.G. Wolynes, Spin-glasses and the statistical-mechanics of protein folding. Proc. Natl. Acad. Sci. U. S. A., 1987. 84(21): 7524–7528.

    Article  ADS  Google Scholar 

  11. Bryngelson, J.D. and P.G. Wolynes, Intermediates and barrier crossing in a random energy model (with applications to protein folding). J. Phys. Chem., 1989. 93(19): 6902–6915.

    Article  Google Scholar 

  12. Plaxco, K.W., K.T. Simons, and D. Baker, Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol., 1998. 277(4): 985–994.

    Article  Google Scholar 

  13. Plaxco, K.W., K.T. Simons, I. Ruczinski, and B. David, Topology, stability, sequence, and length: Defining the determinants of two-state protein folding kinetics. Biochemistry, 2000. 39(37): 11177–11183.

    Article  Google Scholar 

  14. Go, N., Theoretical studies of protein folding. Ann. Rev. Biophys. Bioeng., 1983. 12: 183–210.

    Article  ADS  Google Scholar 

  15. Zwanzig, R., A. Szabo, and B. Bagchi, Levinthal's paradox. Proc. Natl. Acad. Sci. U. S. A., 1992. 89(1): 20–22.

    Article  ADS  Google Scholar 

  16. Zwanzig, R., Simple model of protein-folding kinetics. Proc. Natl. Acad. Sci. U. S. A., 1995. 92(21): 9801–9804.

    Article  ADS  Google Scholar 

  17. Thompson, P.A., V. Munoz, G.S. Jas, E.R. Henry, W.A. Eaton, and J. Hofrichter, The helix-coil kinetics of a heteropeptide. J. Phys. Chem. B, 2000. 104(2): 378–389.

    Article  Google Scholar 

  18. Schellman, J.A., The factors affecting the stability of hydrogen-bonded polypeptide structures in solution. J. Phys. Chem., 1958. 62: 1485–1494.

    Article  Google Scholar 

  19. Bruscolini, P. and A. Pelizzola, Exact solution of the Munoz-Eaton model for protein folding. Phys. Rev. Lett., 2002. 88(25): art. no. 258101.

    Article  ADS  Google Scholar 

  20. Alm, E., A.V. Morozov, T. Kortemme, and D. Baker, Simple physical models connect theory and experiment in protein folding kinetics. J. Mol. Biol., 2002. 322(2): 463–476.

    Article  Google Scholar 

  21. Henry, E.R. and W.A. Eaton, Combinatorial modeling of protein folding kinetics: free energy profiles and rates. Chemical Physics, 2004. 307(2–3): 163–185.

    Article  ADS  Google Scholar 

  22. Bieri, O., J. Wirz, B. Hellrung, M. Schutkowski, M. Drewello, and T. Kiefhaber, The speed limit for protein folding measured by triplet-triplet energy transfer. Proc. Natl. Acad. Sci. U. S. A., 1999. 96(17): 9597–9601.

    Article  ADS  Google Scholar 

  23. Lapidus, L.J., W.A. Eaton, and J. Hofrichter, Measuring the rate of intramolecular contact formation in polypeptides. Proc. Natl. Acad. Sci. U. S. A., 2000. 97(13): 7220–7225.

    Article  ADS  Google Scholar 

  24. Lapidus, L.J., W.A. Eaton, and J. Hofrichter, Dynamics of intramolecular contact formation in polypeptides: Distance dependence of quenching rates in a room-temperature glass. Phys. Rev. Lett., 2001. 87(25): art. no. 258101.

    Google Scholar 

  25. Lapidus, L.J., P.J. Steinbach, W.A. Eaton, A. Szabo, and J. Hofrichter, Effects of chain stiffness on the dynamics of loop formation in polypeptides. Appendix: Testing a 1-dimensional diffusion model for peptide dynamics. J. Phys. Chem. B, 2002. 106(44): 11628–11640.

    Article  Google Scholar 

  26. Lapidus, L.J., W.A. Eaton, and J. Hofrichter, Measuring dynamic flexibility of the coil state of a helix- forming peptide. J. Mol. Biol., 2002. 319(1): 19–25.

    Article  Google Scholar 

  27. Buscaglia, M., B. Schuler, L.J. Lapidus, W.A. Eaton, and J. Hofrichter, Kinetics of intramolecular contact formation in a denatured protein. J. Mol. Biol., 2003. 332(1): 9–12.

    Article  Google Scholar 

  28. Huang, F. and W.M. Nau, A conformational flexibility scale for amino acids in peptides. Angew. Chem.-Int. Edit., 2003. 42(20): 2269–2272.

    Article  Google Scholar 

  29. Krieger, F., B. Fierz, O. Bieri, M. Drewello, and T. Kiefhaber, Dynamics of unfolded polypeptide chains as model for the earliest steps in protein folding. J. Mol. Biol., 2003. 332(1): 265–274.

    Article  Google Scholar 

  30. Buscaglia, M., L.J. Lapidus, W.A. Eaton, and J. Hofrichter, Effect of denaturants on loop dynamics in polypeptides. Biophys. J., 2006. 91(1): 276–288.

    Article  ADS  Google Scholar 

  31. Flory, P.J., Statistical Mechanics of Chain Molecules. 1969, New York: Wiley.

    Google Scholar 

  32. Camacho, C.J. and D. Thirumalai, Theoretical predictions of folding pathways by using the proximity rule, with applications to bovine pancreatic trypsin-inhibitor. Proc. Natl. Acad. Sci. U. S. A., 1995. 92(5): 1277–1281.

    Article  ADS  Google Scholar 

  33. Guo, Z.Y. and D. Thirumalai, Kinetics of protein-folding - nucleation mechanism, time scales, and pathways. Biopolymers, 1995. 36(1): 83–102.

    Article  Google Scholar 

  34. Myers, J.K. and T.G. Oas, Contribution of a buried hydrogen bond to lambda repressor folding kinetics. Biochemistry, 1999. 38(21): 6761–6768.

    Article  Google Scholar 

  35. Mayor, U., C.M. Johnson, V. Daggett, and A.R. Fersht, Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. U. S. A., 2000. 97(25): 13518–13522.

    Article  ADS  Google Scholar 

  36. Wang, T., Y.J. Zhu, and F. Gai, Folding of a three-helix bundle at the folding speed limit. J. Phys. Chem. B, 2004. 108(12): 3694–3697.

    Article  Google Scholar 

  37. Kragelund, B.B., P. Hojrup, M.S. Jensen, C.K. Schjerling, E. Juul, J. Knudsen, and F.M. Poulsen, Fast and one-step folding of closely and distantly related homologous proteins of a four-helix bundle family. J. Mol. Biol., 1996. 256(1): 187–200.

    Article  Google Scholar 

  38. Ferguson, N., A.P. Capaldi, R. James, C. Kleanthous, and S.E. Radford, Rapid folding with and without populated intermediates in the homologous four-helix proteins Im7 and Im9. J. Mol. Biol., 1999. 286(5): 1597–1608.

    Article  Google Scholar 

  39. Kubelka, J., W.A. Eaton, and J. Hofrichter, Experimental tests of villin subdomain folding simulations. J. Mol. Biol., 2003. 329: 625–630.

    Article  Google Scholar 

  40. Villegas, V., A. Azuaga, L. Catasus, D. Reverter, P.L. Mateo, F.X. Aviles, and L. Serrano, Evidence for a 2-state transition in the folding process of the activation domain of human procarboxypeptidase-A2. Biochemistry, 1995. 34(46): 15105–15110.

    Article  Google Scholar 

  41. Van Nuland, N.A.J., W. Meijberg, J. Warner, V. Forge, R.M. Scheek, G.T. Robillard, and C.M. Dobson, Slow cooperative folding of a small globular protein HPr. Biochemistry, 1998. 37(2): 622–637.

    Article  Google Scholar 

  42. Taddei, N., F. Chiti, P. Paoli, T. Fiaschi, M. Bucciantini, M. Stefani, C.M. Dobson, and G. Ramponi, Thermodynamics and kinetics of folding of common-type acylphosphatase: Comparison to the highly homologous muscle isoenzyme. Biochemistry, 1999. 38(7): 2135–2142.

    Article  Google Scholar 

  43. Jackson, S.E. and A.R. Fersht, Folding of chymotrypsin inhibitor-2.1. Evidence for a 2-state transition. Biochemistry, 1991. 30(43): 10428–10435.

    Article  Google Scholar 

  44. Kim, D.E., C. Fisher, and D. Baker, A breakdown of symmetry in the folding transition state of protein L. J. Mol. Biol., 2000. 298(5): 971–984.

    Article  Google Scholar 

  45. Otzen, D.E., O. Kristensen, M. Proctor, and M. Oliveberg, Structural changes in the transition state of protein folding: Alternative interpretations of curved chevron plots. Biochemistry, 1999. 38(20): 6499–6511.

    Article  Google Scholar 

  46. Guerois, R. and L. Serrano, The SH3-fold family: Experimental evidence and prediction of variations in the folding pathways. J. Mol. Biol., 2000. 304(5): 967–982.

    Article  Google Scholar 

  47. Guijarro, J.I., C.J. Morton, K.W. Plaxco, I.D. Campbell, and C.M. Dobson, Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spec-troscopy. J. Mol. Biol., 1998. 276(3): 657–667.

    Article  Google Scholar 

  48. Main, E.R.G., K.F. Fulton, and S.E. Jackson, Folding pathway of FKBP12 and characterisation of the transition state. J. Mol. Biol., 1999. 291(2): 429–444.

    Article  Google Scholar 

  49. Grantcharova, V.P. and D. Baker, Folding dynamics of the src SH3 domain. Biochemistry, 1997. 36(50): 15685–15692.

    Article  Google Scholar 

  50. Plaxco, K.W., J.I. Guijarro, C.J. Morton, M. Pitkeathly, I.D. Campbell, and C.M. Dobson, The folding kinetics and thermodynamics of the Fyn-SH3 domain. Biochemistry, 1998. 37(8): 2529–2537.

    Article  Google Scholar 

  51. Viguera, A.R., J.C. Martinez, V. V. Filimonov, P.L. Mateo, and L. Serrano, Thermodynamic and kinetic-analysis of the Sh3 domain of spectrin shows a 2-state folding transition. Biochemistry, 1994. 33(8): 2142–2150.

    Article  Google Scholar 

  52. Reid, K.L., H.M. Rodriguez, B.J. Hillier, and L.M. Gregoret, Stability and folding properties of a model beta-sheet protein, Escherichia coli CspA. Protein Sci., 1998. 7(2): 470–479.

    Article  Google Scholar 

  53. Schindler, T., M. Herrler, M.A. Marahiel, and F.X. Schmid, Extremely rapid protein-folding in the absence of intermediates. Nat. Struct. Biol., 1995. 2(8): 663–673.

    Article  Google Scholar 

  54. Clarke, J., E. Cota, S.B. Fowler, and S.J. Hamill, Folding studies of immunoglobulin-like beta-sandwich proteins suggest that they share a common folding pathway. Struct. Fold. Des., 1999. 7(9): 1145–1153.

    Article  Google Scholar 

  55. Plaxco, K.W., C. Spitzfaden, I.D. Campbell, and C.M. Dobson, A comparison of the folding kinetics and thermodynamics of two homologous fibronectin type III modules. J. Mol. Biol., 1997. 270(5): 763–770.

    Article  Google Scholar 

  56. Clarke, J., S.J. Hamill, and C.M. Johnson, Folding and stability of a fibronectin type III domain of human tenascin. J. Mol. Biol., 1997. 270(5): 771–778.

    Article  Google Scholar 

  57. Sali, A., E. Shakhnovich, and M. Karplus, How does a protein fold? Nature, 1994. 369(6477): 248–251.

    Article  ADS  Google Scholar 

  58. Klimov, D.K. and D. Thirumalai, Viscosity dependence of the folding rates of proteins. Phys. Rev. Lett., 1997. 79(2): 317–320.

    Article  ADS  Google Scholar 

  59. Shea, J.E. and C.L. Brooks, From folding theories to folding proteins: A review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem., 2001. 52: 499–535.

    Article  ADS  Google Scholar 

  60. Koradi, R., M. Billeter, and K. Wuthrich, MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics, 1996. 14: 51–55.

    Article  Google Scholar 

  61. Bryngelson, J.D., J.N. Onuchic, N.D. Socci, and P.G. Wolynes, Funnels, pathways, and the energy landscape of protein-folding — a synthesis. Proteins, 1995. 21(3): 167–195.

    Article  Google Scholar 

  62. Kubelka, J., J. Hofrichter, and W.A. Eaton, The protein folding “speed limit”. Curr. Opin. Struct. Biol., 2004. 14: 76–78.

    Article  Google Scholar 

  63. Berezhkovskii, A. and A. Szabo, One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions. J. Chem. Phys., 2005. 122(1): art. no. 014503.

    Google Scholar 

  64. Zagrovic, B., C.D. Snow, M.R. Shirts, and V.S. Pande, Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing. J. Mol. Biol., 2002. 323(5): 927–937.

    Article  Google Scholar 

  65. Schuler, B., E.A. Lipman, and W.A. Eaton, Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature, 2002. 419(6908): 743–747.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henry, E.R., Eaton, W.A. (2009). A Simple Model for Protein Folding. In: Puglisi, J.D. (eds) Biophysics and the Challenges of Emerging Threats. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2368-1_1

Download citation

Publish with us

Policies and ethics