The Basic Reproduction Number of Infectious Diseases: Computation and Estimation Using Compartmental Epidemic Models

  • Gerardo Chowell
  • Fred Brauer

The basic reproduction number (R0) is a central quantity in epidemiology as it measures the transmission potential of infectious diseases. In this chapter we review the basic theory of the spread of infectious diseases using simple compartmental models based on ordinary differential equations including the simple Kermack-McKendrick epidemic model, SIR (susceptible-infectious-removed) models with demographics, the SIS (susceptible-infectious-susceptible) model, backward bifurcations, endemic equilibria, and the analytical derivation of R0 using the next-generation approach. This theory is followed by simple methodology for the estimation of R0 with its corresponding uncertainty from epidemic time series data. The 1918–1919 influenza pandemic in Winnipeg, Canada, and the 1968 influenza pandemic in US cities are used for illustration.

Keywords

Influenza Pandemic Epidemiology Basic reproduction number Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morbidity and Mortality Weekly Reports (MMWR). 121 US cities mortality surveillance (1968–1971) [http://www.cdc.gov/mmwr/]
  2. 2.
    Anderson RM and May RM (1982) Directly transmitted infectious diseases: Control by vaccination. Science 215:1053–1060.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Anderson RM and May RM (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford.Google Scholar
  4. 4.
    Andreasen V, Viboud C and Simonsen L (2008) Epidemiologic characterization of the summer wave of the 1918 influenza pandemic in Copenhagen: Implications for pandemic control strategies. J. Infect. Dis. 197:270–278.CrossRefGoogle Scholar
  5. 5.
    Arino J, Brauer F, van den Driessche P, Watmough J and Wu J (2007) A final size relation for epidemic models. Math. Biosc. Eng. 4:159–176.MATHGoogle Scholar
  6. 6.
    Becker NG (1989) Analysis of Infectious Disease Data. Chapman and Hall, New York.Google Scholar
  7. 7.
    Berman A and Plemmons RJ (1994) Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics 9, SIAM, Philadelphia.Google Scholar
  8. 8.
    Bickel P and Doksum KA (1977) Mathematical Statistics. Holden-Day, Oakland, California.MATHGoogle Scholar
  9. 9.
    Blower SM and Mclean AR (1994) Prophylactic vaccines, risk behavior change, and the probability of eradicating HIV in San Francisco. Science 265: 1451.CrossRefGoogle Scholar
  10. 10.
    Brauer F and Castillo-Chavez C (2000) Mathematical Models in Population Biology and Epidemiology. Springer-Verlag, New York.Google Scholar
  11. 11.
    Brauer F (2004) Backward bifurcations in simple vaccination models. J. Math. Anal. Appl. 298:418–431.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Brauer F (2005) The Kermack-McKendrick model revisited. Math. Biosc. 198: 119–131.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Brauer F (2008) Compartmental models in epidemiology. In: Brauer F, van den Driessche P, and Wu J (eds) Mathematical Epidemiology, Lecture Notes in Mathematics, Mathematical Biosciences Subseries 1945 Springer-Verlag, Berlin-Heidelberg: 19–79.Google Scholar
  14. 14.
    Cadham MFT (1919) The use of a vaccine in the recent epidemic of influenza. Can. Med. Assoc. J. 9:519–527.Google Scholar
  15. 15.
    Castillo-Chavez C and Thieme HR (1993) Asymptotically autonomous epidemic models. In: Arino O, Axelrod D, Kimmel M, Langlais M (eds) Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1, Theory of Epidemics,, Wuerz, Winnipeg: 33–50.Google Scholar
  16. 16.
    Castillo-Chavez C, Feng Z and Huang W (2002) On the computation of R0 and its role on global stability, in: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, IMA Volume 125. Springer-Veralg, Berlin pp. 229-250.Google Scholar
  17. 17.
    Carrat F, Vergu E, Ferguson NM, et al. (2008) Time lines of infection and disease in human influenza: A review of volunteer challenge studies. Am. J. Epidemiol. 167(7): 775–785.CrossRefGoogle Scholar
  18. 18.
    Cauchemez S, Boelle PY, Thomas G and Valleron AJ (2006) Estimating in real time the efficacy of measures to control emerging communicable diseases. Am. J. Epidemiol. 164:591–597.CrossRefGoogle Scholar
  19. 19.
    Chowell G, Ammon CE, Hengartner NW and Hyman JM (2006) Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. J. Theor. Biol. 241:193–204.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Chowell G, Nishiura H and Bettencourt LM (2007) Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J. R. Soc. Interface 4:155–166.CrossRefGoogle Scholar
  21. 21.
    Chowell G, Miller MA and Viboud C (2008) Seasonal influenza in the United States, France, and Australia: Transmission and prospects for control. Epidemiol. Infect. 136:852–64.Google Scholar
  22. 22.
    Chowell G, Ammon CE, Hengartner NW and Hyman JM (2007) Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Math. Biosci. Eng. 4:457–470.MATHGoogle Scholar
  23. 23.
    Chowell G, Bettencourt LMA, Johnson N, Alonso WJ and Viboud C (2008) The 1918–1919 influenza pandemic in England and Wales: Spatial patterns in transmissibility and mortality impact. Proc. R. Soc. B 275:501–509.CrossRefGoogle Scholar
  24. 24.
    Chowell G, Bettencourt LMA, Johnson NPAS, Alonso WJ and Viboud C (2008) The 1918–1919 influenza pandemic in England and Wales: Spatial patterns in transmissibility and mortality impact. Proc. Biol. Sci. 275:501–9.CrossRefGoogle Scholar
  25. 25.
    Chowell G and Nishiura H (2008) Quantifying the transmission potential of pandemic influenza. Phys. Life Rev. 5, 50–77.CrossRefGoogle Scholar
  26. 26.
    Cunha BA (2004) Influenza: Historical aspects of epidemics and pandemics. Infect. Dis. Clin. North Am. 18:141–155.CrossRefGoogle Scholar
  27. 27.
    Davidian M and Giltinan DM (1995) Nonlinear Models for Repeated Measurement data. Monographs on Statistics and Applied Probability 62. Chapman and Hall, New York.Google Scholar
  28. 28.
    De Jong MC, Diekmann O and Heesterbeek JA (1994) The computation of R0 for discrete-time epidemic models with dynamic heterogeneity. Math. Biosci.119:97–114.MATHCrossRefGoogle Scholar
  29. 29.
    Diekmann O, Heesterbeek JAP and Metz JAJ (1990) On the definition and the computation of the basic reproductive ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28:365–382.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Diekmann O and Heesterbeek JAP (2000) Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. John Wiley and Sons, New York.Google Scholar
  31. 31.
    Dietz K (1988) Mathematical models for transmission and control of malaria. in: Malaria, Principles and Practice of Malariology, eds W.H. Wernsdorfer and I. McGregor. Churchill Livingstone, Edinburgh. pp.1091–1133.Google Scholar
  32. 32.
    Dietz K (1993) The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 2:23–41.CrossRefGoogle Scholar
  33. 33.
    Dushoff J, Huang W and Castillo-Chavez C (1998) Backwards bifurcations and catastrophe in simple models of total diseases. J. Math. Biol. 36:227–248.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Efron B and Tibshirani RJ (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci.1:54–75.CrossRefMathSciNetGoogle Scholar
  35. 35.
    Ferguson NM, Donnelly CA and Anderson RM (2001) Transmission intensity and impact of control policies on the foot and mouth epidemc in Great Britain. Nature 413:542–548.CrossRefGoogle Scholar
  36. 36.
    Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S and Burke DS (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437:209–214.CrossRefGoogle Scholar
  37. 37.
    Fine PE (1993) Herd immunity: History, theory, practice. Epidemiol. Rev. 15:265–302.Google Scholar
  38. 38.
    Gani R, Hughes H, Fleming DM, Griffin T, Medlock J and Leach S (2005) Potential impact of antiviral drug use during influenza pandemic. Emerg. Infect. Dis.11:1355–1362.Google Scholar
  39. 39.
    Hadeler KP and Castillo-Chavez C (1995) A core group model for disease transmission. Math Biosc. 128:41–55.MATHCrossRefGoogle Scholar
  40. 40.
    Hadeler KP and van den Driessche P (1997) Backward bifurcation in epidemic control. Math. Biosc. 146:15–35.MATHCrossRefGoogle Scholar
  41. 41.
    Halloran ME, Haber M, Longini IM and Struchiner CJ (1991) Direct and indirect effects in vaccine efficacy and effectiveness. Am. J. Epidemiol.133:323–331.Google Scholar
  42. 42.
    Heesterbeek JAP (2002) A brief history of R0 and a recipe for its calculation. Acta Biotheor. 50:189–204.CrossRefGoogle Scholar
  43. 43.
    Heffernan JM, Smith RJ and Wahl LM (2005) Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2:281–293.CrossRefGoogle Scholar
  44. 44.
    Heffernan JM and Wahl LM (2006) Improving estimates of the basic reproductive ratio: using both the mean and the dispersal of transition times. Theor. Popul. Biol.70:135–145.MATHCrossRefGoogle Scholar
  45. 45.
    Hethcote HW, Stech HW and van den Driessche P (1981) Periodicity and stability in epidemic models: a survey. In: Busenberg S and Cooke KL (eds.) Differential Equations and Applications in Ecology, Epidemics and Population Problems, Springer-Verlag, Berlin-Heidelberg: 65–82.Google Scholar
  46. 46.
    Hethcote HW and Levin SA (1989) Periodicity in epidemic models. In : Levin SA, Hallam TG, Gross LG (eds) Applied Mathematical Ecology. Biomathematics 18, Springer-Verlag,Berlin-Heidelberg-New York: 193–211.Google Scholar
  47. 47.
    Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev. 42:599–653.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Hyman JM and Li J (2000) An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations. Math. Biosci.167:65–86.MATHCrossRefGoogle Scholar
  49. 49.
    Johnson NP and Mueller J (2002) Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med.76:105–115.CrossRefGoogle Scholar
  50. 50.
    Jones EW (2005) Co-operarion in all human endeavour: Quarantine and immigrant disease vectors in the 1918–1919 influenza pandemic in winnipeg. Can. Bull. Med. Hist. 22:57–82.Google Scholar
  51. 51.
    Keeling MJ and Grenfell BT (2000) Individual-based perspectives on R(0). J. Theor. Biol. 203:51–61.CrossRefGoogle Scholar
  52. 52.
    Keeling MJ and Eames KT (2005) Networks and epidemic models. J. R. Soc. Interface 2:295–307.CrossRefGoogle Scholar
  53. 53.
    Kendall DG (1956) Deterministic and stochastic epidemics in closed populations. in: Third Berkeley Symposium on Mathematical Statistics and Probability 4, ed P. Newman. University of California Press, New York. pp. 149–165.Google Scholar
  54. 54.
    Kermack WO and McKendrick AG (1927) Contributions to the mathematical theory of epidemics – I. Proc. R. Soc. A115:700–721 (reprinted in Bulletin of Mathematical Biology 53 (1991) 33–55).Google Scholar
  55. 55.
    Kermack WO and McKendrick AG (1932) Contributions to the mathematical theory of epidemics, part. II. Proc. Roy. Soc. London 138:55–83.MATHCrossRefGoogle Scholar
  56. 56.
    Kermack WO and McKendrick AG (1933) Contributions to the mathematical theory of epidemics, part. III. Proc. Roy. Soc. London 141:94–112.MATHCrossRefGoogle Scholar
  57. 57.
    Kribs-Zaleta CM and Velasco-Hernandez JX (2000) A simple vaccination model with multiple endemic states. Math Biosc. 164:183–201.MATHCrossRefGoogle Scholar
  58. 58.
    Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, Gopalakrishna G, Chew SK, Tan CC, Samore MH, Fisman D and Murray M (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science 300:1966–1970CrossRefGoogle Scholar
  59. 59.
    Lloyd AL (2001) Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc. R. Soc. London B 268:985–993.CrossRefGoogle Scholar
  60. 60.
    Lloyd AL (2001) Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics. Theor. Popul. Biol. 60:59–71.CrossRefGoogle Scholar
  61. 61.
    Ma J and Earn DJ (2006) Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol.68:679–702.CrossRefMathSciNetGoogle Scholar
  62. 62.
    MacKellar L (2007) Pandemic influenza: A review. Popul. Dev. Rev. 33:429–451.CrossRefGoogle Scholar
  63. 63.
    Markel H, Lipman HB, Navarro JA, Sloan A, Michalsen JR, Stern AM and Cetron MS (2007) Nonpharmaceutical interventions implemented by US cities during the 1918–1919 influenza pandemic. JAMA 298:644–654.CrossRefGoogle Scholar
  64. 64.
    Markus L (1956) Asymptotically autonomous differential systems. In: Lefschetz S (ed) Contributions to the Theory of Nonlinear Oscillations III. Annals of Mathematics Studies 36, Princeton University Press, Princeton, N.J.: 17–29.Google Scholar
  65. 65.
    Massad E, Burattini MN, Coutinho FA and Lopez LF (2007) The 1918 influenza A epidemic in the city of Sao Paulo, Brazil. Med. Hypotheses 68:442–445.CrossRefGoogle Scholar
  66. 66.
    Mills CE, Robins JM and Lipsitch M (2004) Transmissibility of 1918 pandemic influenza. Nature 432:904–906.CrossRefGoogle Scholar
  67. 67.
    Murray CJ, Lopez AD, Chin B, Feehan D and Hill KH (2006) Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918–1920 pandemic: A quantitative analysis. Lancet 368:2211–2218.CrossRefGoogle Scholar
  68. 68.
    Nishiura H, Dietz K and Eichner M (2006) The earliest notes on the reproduction number in relation to herd immunity: Theophil Lotz and smallpox vaccination. J. Theor. Biol. 241:964–967.Google Scholar
  69. 69.
    Nishiura H (2006) Mathematical and statistical analyses of the spread of dengue.Dengue Bull.30:51–67.Google Scholar
  70. 70.
    Nishiura H (2007) Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918 to 1919. Theor. Biol. Med. Model. 4:20.CrossRefGoogle Scholar
  71. 71.
    Nishiura H and Inaba H (2007) Discussion: Emergence of the concept of the basic reproduction number from mathematical demography. J. Theor. Biol.244:357–364.CrossRefGoogle Scholar
  72. 72.
    Patterson KD and Pyle GF (1991) The geography and mortality of the 1918 influenza pandemic. Bull. Hist. Med. 65:4–21.Google Scholar
  73. 73.
    Roberts MG and Heesterbeek JA (2007) Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection. J. Math. Biol. 55:803–816.MATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    Ross R (1911) The Prevention of Malaria. John Murray, London.Google Scholar
  75. 75.
    Rvachev LA, Longini IM (1985) A mathematical model for the global spread of influenza. Math. Biosci. 75:322.MathSciNetGoogle Scholar
  76. 76.
    Sattenspiel L and Herring DA (2003) Simulating the effect of quarantine on the spread of the 1918–1919 flu in central Canada. Bull. Math. Biol. 65:1–26.CrossRefGoogle Scholar
  77. 77.
    Sertsou G, Wilson N, Baker M, Nelson P and Roberts MG (2006) Key transmission parameters of an institutional outbreak during the 1918 influenza pandemic estimated by mathematical modelling. Theor. Biol. Med. Model. 3:38.CrossRefGoogle Scholar
  78. 78.
    Smith CE (1964) Factors in the transmission of virus infections from animal to man. Sci. Basis Med. Annu. Rev. 125–150.Google Scholar
  79. 79.
    Sydenstricker E (1921) Variations in case fatality during the influenza epidemic of 1918. Public Health Rep. 36:2201–2211.Google Scholar
  80. 80.
    Thieme HR and Castillo-Chavez C (1989) How may infection-age dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math. 53:1447–1479.CrossRefMathSciNetGoogle Scholar
  81. 81.
    Thieme HR (1994) Asymptotically autonomous differential equations in the plane. Rocky Mountain J. Math. 24:351–380.MATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    van den Driessche P and Watmough J (2002) Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math. Biosc. 180:29–48.MATHCrossRefGoogle Scholar
  83. 83.
    Viboud C, Tam T, Fleming D, Handel A, Miller MA and Simonsen L (2006) Transmissibility and mortality impact of epidemic and pandemic influenza, with emphasis on the unusually deadly 1951 epidemic. Vaccine 24:6701–6707.CrossRefGoogle Scholar
  84. 84.
    Vynnycky E, Trindall A and Mangtani P (2007) Estimates of the reproduction numbers of Spanish influenza using morbidity data. Int. J. Epidemiol.36:881–889.CrossRefGoogle Scholar
  85. 85.
    Wallinga J and Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol.160:509–516.CrossRefGoogle Scholar
  86. 86.
    Wallinga J, Lipsitch M (2007) How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. Roy. Soc. B 274:599–604.CrossRefGoogle Scholar
  87. 87.
    Wearing HJ, Rohani P, and Keeling MJ (2005) Appropriate models for the management of infectious diseases. PLOS Med. 2:621–627.Google Scholar
  88. 88.
    White LC and Pagano MA (2007) likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic. Stat. Med. in press (doi: 10.1002/sim.3136).Google Scholar
  89. 89.
    Yan P (2008) Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks. J. Theor. Biol. 251:238–252.CrossRefGoogle Scholar
  90. 90.
    Yang CK and Brauer F (2008) Calculation of R0 for age-of-infection models. Math. Biosci. Eng. 5:585–599.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Gerardo Chowell
    • 1
  • Fred Brauer
    • 2
  1. 1.Arizona State University School of Human Evolution&Social ChangeTempeUSA
  2. 2.Department of MathematicsThe University of British ColumbiaVancouverCanada V6T 1Z2

Personalised recommendations