Polyamines in Grapevine: An Update

  • K.A. Paschalidis
  • P.N. Moschou
  • A. Aziz
  • I. Toumi
  • K.A. Roubelakis-Angelakis

The polyamines (PAs) putrescine (Put), spermidine (Spd) and spermine (Spm) exist as free (soluble; S-), or as conjugated to small (SH-) or to large (PH-) molecules. Increasing evidence supports that PAs represent important intrinsic developmental signals, which may affect developmental processes that range from cell division and morphogenesis to stress responses (Perez-Amador et al. 2002, Fos et al. 2003, Arias et al. 2005, Paschalidis et al. 2001, Paschalidis and Roubelakis-Angelakis 2005a, b, Cona et al. 2006, Vuosku et al. 2006, Kusano et al. 2007, Agalou et al. 2008, Moschou et al. 2008a, b, c).


Osmotic Stress Leaf Disc Amine Oxidase Botrytis Cinerea Diamine Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agalou A, Purwantomo S, Overnäs E, Johannesson H, Zhu X, Estiati A, de Kam RJ, Engström P, Slamet-Loedin IH, Zhu Z, Wang M, Xiong L, Meijer AH, Ouwerkerk PB (2008) A genomewide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol 66:87-103PubMedCrossRefGoogle Scholar
  2. Alcazar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448-455CrossRefGoogle Scholar
  3. Allègre M, Daire X, Héloir MC, Trouvelot S, Mercier L, Adrian M, Pugin A (2007) Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. New Phytol 173:832-840PubMedCrossRefGoogle Scholar
  4. Allen LJ, MacGregor KB, Koop RS, Bruce DH, Karner J, Bown AW (1999) The relationship between photosynthesis and a mastoparan-induced hypersensitive response in isolated mesophyll cells. Plant Physiol 119:1233-1241PubMedCrossRefGoogle Scholar
  5. An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815-825PubMedCrossRefGoogle Scholar
  6. Angelini R, Bragaloni M, Federico R, Infantino A, Porta-Puglia A (1993) Involvement of polyamines, diamine oxidase and peroxidase in resistance of chick-pea to Ascochyta rabiei. J Plant Physiol 142:704-709Google Scholar
  7. Arias M, Carbonell J, Agustí M (2005) Endogenous free polyamines and their role in fruit set of low and high parthenocarpic ability citrus cultivars. J Plant Physiol 162:845-853PubMedCrossRefGoogle Scholar
  8. Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Joubert JM, Pugin A (2003) Lamisignificantly narin elicits defence responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact 16:1118-1128PubMedCrossRefGoogle Scholar
  9. Aziz A, Heyraud A, Lambert B (2004) Oligogalacturonide signal transduction, induction of defence related responses and protection of grapevine against Botrytis cinerea. Planta 218:767-774PubMedCrossRefGoogle Scholar
  10. Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine (Vitis vinifera L.) defence reactions and resistance to grey mould and downy mildew. Phytopathology 96:1188-1194PubMedCrossRefGoogle Scholar
  11. Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301-317PubMedCrossRefGoogle Scholar
  12. Cohen SS (1998) A guide to polyamines. Oxford University Press, New York, OxfordGoogle Scholar
  13. Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80-88PubMedCrossRefGoogle Scholar
  14. Coutos-Thévenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogeninducible PR10 promoter. J Exp Bot 358:901-910CrossRefGoogle Scholar
  15. Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111-134PubMedCrossRefGoogle Scholar
  16. Fos M, Proaño K, Alabadí D, Nuez F, Carbonell J, García-Martínez JL (2003) Polyamine metabolism is altered in unpollinated parthenocarpic pat-2 tomato ovaries. Plant Physiol 131:359-66PubMedCrossRefGoogle Scholar
  17. Hamiduzzaman MM, Jakab G, Barnavon L, Neuhaus JM, Mauch-Mani B (2005) β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signalling. Mol Plant-Microbe Interact 18:819-829PubMedCrossRefGoogle Scholar
  18. Ioannidis NE, Kotzabasis K (2007) Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. BBA - Bioenergetics 1767:372-1382Google Scholar
  19. Kumar A, Altabella T, Taylor MA, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2:124-136CrossRefGoogle Scholar
  20. Kotzabasis K, Christakis-Hampsas MD, Roubelakis-Angelakis KA. (1993) A narrow-Bore HPLC Method for the Identification and Quantification of Free, Conjugated, and Bound Polyamines. Analytical Biochemistry 214: 484-489PubMedCrossRefGoogle Scholar
  21. Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) Advances in polyamine research in 2007. J Plant Res 120:345-350PubMedCrossRefGoogle Scholar
  22. Lebon E, Pellegrino A, Tardieu F, Lecoeur J (2004) Shoot development in grapevine (Vitis vinifera) is affected by the modular branching pattern of the stem and intra- and inter-shoot trophic competition. Ann Bot 93:263-274PubMedCrossRefGoogle Scholar
  23. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409-414PubMedCrossRefGoogle Scholar
  24. Moschou PN, Delis ID, Paschalidis KA, Roubelakis-Angelakis KA (2008a) Transgenic Tobacco Plants over-expressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiol Plant 133:140-156Google Scholar
  25. Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis- Angelakis KA (2008b) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that depict tolerance responses in tobacco. Plant Cell 20:1708-1724Google Scholar
  26. Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis- Angelakis KA (2008c) Bridging the gap between plant and mammalian polyamine catabolism: A novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis thaliana. Plant Physiol 10.1104/pp.108.123802Google Scholar
  27. Papadakis AK, Roubelakis-Angelakis KA (1999) The generation of active oxygen species differs in Nicotiana and Vitis plant protoplasts. Plant Physiol 121:197-245PubMedCrossRefGoogle Scholar
  28. Papadakis AK, Siminis CI, Roubelakis-Angelakis KA (2001) Reduced activity of antioxidant machinery is correlated with suppression of totipotency in plant protoplasts. Plant Physiol 126:434–444.PubMedCrossRefGoogle Scholar
  29. Papadakis AK, Roubelakis-Angelakis KA (2005) Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta 220:826-837PubMedCrossRefGoogle Scholar
  30. Papadakis AK, Paschalidis KA, Roubelakis-Angelakis KA (2005) Biosynthesis profile and endogenous titers of polyamines differ in totipotent and recalcitrant plant protoplasts. Physiol Plant 125:10-20CrossRefGoogle Scholar
  31. Paschalidis KA, Aziz A, Geny L, Primikirios NI, Roubelakis-Angelakis KA (2001) Polyamines in grapevine. In KA Roubelakis-Angelakis (ed), Molecular Biology and Biotechnology of the Grapevine. Kluwer Academic Publishers, The Netherlands, pp 109-152Google Scholar
  32. Paschalidis KA, Roubelakis-Angelakis KA (2005a) Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol 138:142-152Google Scholar
  33. Paschalidis KA, Roubelakis-Angelakis KA (2005b) Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. Plant Physiol 138:2174-2184Google Scholar
  34. Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130: 1454-1463PubMedCrossRefGoogle Scholar
  35. Rea G, Metoui O, Infantino A, Federico R, Angelini R (2002) Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion. Plant Physiol 128: 865-875PubMedCrossRefGoogle Scholar
  36. Schachtman PD, Goodger QDJ (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281-287PubMedCrossRefGoogle Scholar
  37. Sfakianaki M, Sfichi L, Kotzabasis K (2006) The involvement of LHCII-associated polyamines in the response of the photosynthetic apparatus to low temperature. J Photochem Photobiol B Biol 84: 181-188CrossRefGoogle Scholar
  38. Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446-452PubMedCrossRefGoogle Scholar
  39. Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767-2781PubMedCrossRefGoogle Scholar
  40. Tavladoraki P, Schinina ME, Cecconi F, Di Agostino S, Manera F, Rea G, Mariottini P, Federico R, Angelini R (1998) Maize polyamine oxidase: primary structure from protein and cDNA sequencing. FEBS Lett 426:62-66PubMedCrossRefGoogle Scholar
  41. Taylor MA, Mad Arif SA, Kumar A, Davis HV, Scobie LA, Pearce SR, Flavell AJ (1992) Expression and sequence analysis of cDNAs induced during the early stages of tuberization in different organs of the potato plant (Solanum tuberosum L.). Plant Mol Biol 20:641-651PubMedCrossRefGoogle Scholar
  42. Tiburcio AF, Altabella T, Borell A, Masgrau C (1997) Polyamine metabolism and its regulation. Physiol Plant 100: 664-674CrossRefGoogle Scholar
  43. Tkachenko AG, Pshenichnov MR, Nesterova LY (2001) Putrescine as a factor protecting Escherichia coli against oxidative stress. Microbiology 70:422-428CrossRefGoogle Scholar
  44. Torrigiani P, Rabiti AL, Bortolotti C, Betti L, Marani F, Canova A, Bagni N (1997) Polyamine synthesis and accumulation in the hypersensitive response to TMV in Nicotiana tabacum. New Phytol 145:467-473CrossRefGoogle Scholar
  45. Toumi I, Gargouri M, Nouairi I, Moschou PN, Salem-Fnayou AB, Mliki A, Zarrouk M, Ghorbel A (2008) Water stress induced changes in the leaf lipid composition of four grapevine geno types with different drought tolerance. Biol Plant 52:161-164CrossRefGoogle Scholar
  46. Urano K, Yoshiba Y, Nanjo T, Igarashi K, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917-1926CrossRefGoogle Scholar
  47. Vilela BJ, Carvalho LC, Ferreira J, Amancio S (2007) Gain of function of stomatal movements in rooting Vitis vinifera L. plants: regulation by H2O2 is independent of ABA before the protruding of roots. Plant Cell Rep 26:2149-2157PubMedCrossRefGoogle Scholar
  48. Vuosku J, Jokela A, Laara E, Saaskilahti M, Muilu R, Sutela S, Altabella T, Sarjala T, Haggman H (2006) Consistency of polyamine profiles and expression of arginine decarboxylase in mitosis during zygotic embryogenesis of Scots pine. Plant Physiol 142:1027-1038PubMedCrossRefGoogle Scholar
  49. Walters D, Cowley T, Mitchell A (2002) Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J Exp Bot 53:747-756PubMedCrossRefGoogle Scholar
  50. Walters DR (2003) Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol 159:109-115CrossRefGoogle Scholar
  51. Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell (in press)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • K.A. Paschalidis
    • 1
  • P.N. Moschou
    • 1
  • A. Aziz
    • 2
  • I. Toumi
    • 3
  • K.A. Roubelakis-Angelakis
    • 1
  1. 1.Department of BiologyUniversity of Crete71409 HeraklionGreece
  2. 2.URVVC Stress & Environment EA 2069, Lab. PPDDUniversity of Reims51687 REIMS Cedec 02France
  3. 3.Laboratory of Grapevine Molecular PhysiologyHammam-Lif 2050Tunisia

Personalised recommendations