Water Transport & Aquaporins in Grapevine

  • S.D. Tyerman
  • R.K. Vandeleur
  • M.C. Shelden
  • J. Tilbrook
  • G. Mayo
  • M. Gilliham
  • B.N. Kaiser

Water use and yield in plants are positively linked, and grapevines are no exception. Increased demand for water resources has focused interest on vine physiological factors that may determine how water use affects yield and quality. Yield (Y) depends on transpiration efficiency (W), total amount of water incident on vines (I), transpiration rate (T), and harvest index (HI, proportion of total dry matter removed as harvested product): Y = I x T/I x W x HI (Gibberd et al. 2001). Crop water use efficiency (WUE = Y/I) can be improved by an increase in one or other of three factors; T/I, W or HI. Yield may not be the primary goal for the production of quality wine grapes, but in circumstances where grape quality seems to be linked to yield and thus the relationship between quality and water use is likely to have the same terms as above but with additional non-linear components. We introduce the topic of this chapter through this discussion of WUE, because each of the parameters apart from I that determine WUE are dependent on the regulation of water flow across cellular membranes. Embedded in these membranes exist protein-channels permeable to water called aquaporins. As such, aquaporins control the rate of water transport through grapevines and therefore warrant special attention in the molecular biology andbiotechnology of grapevines.


Hydraulic Conductance Plant Cell Environ Vitis Vinifera Grape Berry Grape Wine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alleva K, Niemietz CM, Maurel C, Parisi M, Tyerman SD, Amodeo G (2006) Plasma membrane of Beta vulgaris storageoot shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. J Exp Bot 57:609-621PubMedCrossRefGoogle Scholar
  2. Alsina MM, De Herralde F, Aranda X, Save R, Biel C (2007) Water relations and vulnerability to embolism are not related: Experiments with eight grapevine cultivars. Vitis 46:1-6Google Scholar
  3. Baiges I, Schaffner AR, Mas A (2001) Eight cDNA encoding putative aquaporins in Vitis hybrid Richter-110 and their differential expression. J Exp Bot 52:1949-1951PubMedCrossRefGoogle Scholar
  4. Barone LM, Shih C, Wasserman BP (1997) Mercury-induced conformational changes and identification of conserved surface loops in plasma membrane aquaporins from higher plants - Topology of PMIP31 from Beta vulgaris L. J Biol Chem 272:30672-30677PubMedCrossRefGoogle Scholar
  5. Bauerle TL, Smart DR, Bauerle WL, Stockert C, Eissenstat DM (2008) Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate. New Phytol 179:857-866PubMedCrossRefGoogle Scholar
  6. Bienert GP, Moller ALB, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183-1192PubMedCrossRefGoogle Scholar
  7. Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)(3) and Sb(OH)(3) across membranes. BMC Biology 6Google Scholar
  8. Bindon K, Dry P, Loveys B (2008) Influence of partial rootzone drying on the composition and accumulation of anthocyanins in grape berries (Vitis vinifera cv. Cabernet Sauvignon). Aust J Grape Wine Res 14:91-103CrossRefGoogle Scholar
  9. Bondada BR, Matthews MA, Shackel KA (2005) Functional xylem in the post-veraison grape berry. J Exp Bot 56: 2949-2957PubMedCrossRefGoogle Scholar
  10. Bramley H (2006) Water flow in the roots of three crop species: The influence of root structure, aquaporin activity and waterlogging. The University of Western Australia, PerthGoogle Scholar
  11. Bramley H, Turner DW, Tyerman SD, Turner NC (2007a) Water flow in the roots of crop species: The influence of root structure, aquaporin activity, and waterlogging. In: Sparks DL (ed) Advances in Agronomy. Elsevier, AmsterdamGoogle Scholar
  12. Bramley H, Turner NC, Turner DW, Tyerman SD (2007b) Comparison between gradientdependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways. Plant Cell Environ 30:861-874Google Scholar
  13. Chatelet DS, Rost TL, Shackel KA, Matthews MA (2008a) The peripheral xylem of grapevine (Vitis vinifera). 1. Structural integrity in post-v’eraison berries. J Exp Bot 59:1987-1996Google Scholar
  14. Chatelet DS, Rost TL, Matthews MA, Shackel KA (2008b) The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development. J Exp Bot 59:1997-2007Google Scholar
  15. Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025-1034PubMedCrossRefGoogle Scholar
  16. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206-1215PubMedCrossRefGoogle Scholar
  17. Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167-174PubMedCrossRefGoogle Scholar
  18. Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Tyree MT, Sakr S (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol 143:122-133PubMedCrossRefGoogle Scholar
  19. Comas LH, Anderson LJ, Dunst RM, Lakso AN, Eissenstat DM (2005) Canopy and environmental control of root dynamics in a long-term study of Concord grape. New Phytol 167:829-840PubMedCrossRefGoogle Scholar
  20. Comas LH, Eissenstat DM, Lakso AN (2000) Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytol 147:171-178CrossRefGoogle Scholar
  21. Coombe BG (1992) Research on development and ripening of the grape berry. Am J Enol Vitic 43:101-110Google Scholar
  22. Coombe BG, McCarthy MG (1997) Identification and naming of the inception of aroma development in ripening grape berries. Aust J Grape Wine Res 3:18-20CrossRefGoogle Scholar
  23. Creasy GL, Price SF, Lombard PB (1993) Evidence for xylem discontinuity in pinot-noir and merlot grapes - dye uptake and mineral-composition during berry maturation. Am J Enol Vitic 44:187-192Google Scholar
  24. Delrot S, Picaud S, Gaudillere J-P (2001) Water transport and aquaporins in grapevine. In: Roubelakis-Angelakis KA (ed) Molecular Biology and Biotechnology of the Grapevine. Kluwer Academic Publishers,Dordrecht, NetherlandsGoogle Scholar
  25. Dodd IC (2007) Soil moisture heterogeneity during deficit irrigation alters root-to-shoot signalling of abscisic acid. Funct Plant Biol 34:439-448CrossRefGoogle Scholar
  26. dos Santos TP, Lopes CM, Rodrigues ML, De Souza CR, Ricardo-Da-Silva JM, Maroco JP, Pereira JS, Chaves MM (2005) Effects of partial root-zone drying irrigation on cluster microclimate and fruit composition of field-grown Castelao grapevines. Vitis 44:117-125Google Scholar
  27. Dreier LP, Hunter JJ, Ruffner HP (1998) Invertase activity, grape berry development and cell compartmentation. Plant Physiol Biochem 36:865-872CrossRefGoogle Scholar
  28. Dreier LP, Stoll GS, Ruffner HP (2000) Berry ripening and evapotranspiration in Vitis vinifera L. Am J Enol Vitic 51:340-346Google Scholar
  29. Dry PR, Loveys BR (1998) Factors influencing grapevine vigour and the potential for control with partial root-zone drying. Aust J Grape Wine Res 4:140-148CrossRefGoogle Scholar
  30. Dry PR, Loveys BR (1999) Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried. Vitis 38: 151-156Google Scholar
  31. Dry PR, Loveys BR, During H (2000) Partial drying of the rootzone of grape. I. Transient changes in shoot growth and gas exchange. Vitis 39:3-7Google Scholar
  32. Dry PR, Loveys BR, During H (2000) Partial drying of the rootzone of grape. II. Changes in the pattern of root development. Vitis 39:9-12Google Scholar
  33. Dry PR, Loveys BR, McCarthy MG, Stoll M (2001) Strategic irrigation management in Australian vineyards. J Int Sci Vigne Du Vin 35:129-139Google Scholar
  34. During H (1992) Low air humidity causes nonuniform stomatal closure in heterobaric leaves of Vitis species. Vitis 31:1-7Google Scholar
  35. During H (2003) Stomatal and mesophyll conductances control CO2 transfer to chloroplasts in leaves of grapevine (Vitis vinifera L.). Vitis 42: 65-68Google Scholar
  36. Eckert M, Biela A, Siefritz F, Kaldenhoff R (1999) New aspects of plant aquaporin regulation and specificity. J Exp Bot 50:1541-1545CrossRefGoogle Scholar
  37. Esau K (1965) Plant Anatomy. Wiley, New York Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215-228Google Scholar
  38. Fila G, Badeck FW, Meyer S, Cerovic Z, Ghashghaie J (2006) Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. J Exp Bot 57:2687-2695PubMedCrossRefGoogle Scholar
  39. Findlay N, Oliver KJ, Nii N, Coombe BG (1987) Solute accumulation by grape pericarp cells. J Exp Bot 38:668-679CrossRefGoogle Scholar
  40. Flexas J, Ribas-Carbo M, Bota J, Galmes J, Henkle M, Martinez-Canellas S, Medrano H (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73-82PubMedCrossRefGoogle Scholar
  41. Flexas J, Ribas-Carbo M, Diaz-Espej A, Galmes J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602-621PubMedCrossRefGoogle Scholar
  42. Flexas J, Ribas-Carbo M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant Journal 48:427-439PubMedCrossRefGoogle Scholar
  43. Fouquet R, Leon C, Ollat N, Barrieu F (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27:1541-1550PubMedCrossRefGoogle Scholar
  44. Frensch J, Steudle E (1989) Axial and radial hydraulic resistance to roots of maize (Zea mays L). Plant Physiol 91:719-726PubMedCrossRefGoogle Scholar
  45. Galmes J, Pou A, Alsina MM, Tomas M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671-681PubMedCrossRefGoogle Scholar
  46. Gaspar M, Bousser A, Sissoeff I, Roche O, Hoarau J, Mahe A (2003) Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci 165:21-31CrossRefGoogle Scholar
  47. Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30:71-81PubMedCrossRefGoogle Scholar
  48. Gerbeau P, Guclu J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577-587PubMedCrossRefGoogle Scholar
  49. Gibberd MR, Walker RR, Blackmore DH, Condon AG (2001) Transpiration efficiency and carbon-isotope discrimination of grapevines grown under well-watered conditions in either glasshouse or vineyard. Aust J Grape Wine Res 7:110-117CrossRefGoogle Scholar
  50. Gloser V, Zwieniecki MA, Orians CM, Holbrook NM (2007) Dynamic changes in root hydraulic properties in response to nitrate availability. J Exp Bot 58:2409-2415PubMedCrossRefGoogle Scholar
  51. Gorska A, Ye Q, Holbrook NM, Zwieniecki MA (2008) Nitrate control of root hydraulic properties in plants: translating local information to whole plant response. Plant Physiol. doi:10.1104/pp.108.122499Google Scholar
  52. Grechi I, Vivin P, Hilbert G, Milin S, Robert T, Gaudillere JP (2007) Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environ Exp Bot 59:139-149CrossRefGoogle Scholar
  53. Greenspan MD, Schultz HR, Matthews MA (1996) Field evaluation of water transport in grape berries during water deficits. Physiol Plant 97:55-62CrossRefGoogle Scholar
  54. Greenspan MD, Shackel KD, Matthews MA (1994) Developmental changes in the diurnal water budget of the grape berry exposed to water deficits. Plant Cell Environ 17:811-820CrossRefGoogle Scholar
  55. Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981-991PubMedCrossRefGoogle Scholar
  56. Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 53:27-32PubMedCrossRefGoogle Scholar
  57. Henzler T, Waterhouse RN, Smyth AJ, Carvajal M, Cooke DT, Schaffner AR, Steudle E, Clarkson DT (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210:50-60PubMedCrossRefGoogle Scholar
  58. Henzler T, Ye Q, Steudle E (2004) Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals. Plant Cell Environ 27:1184-1195CrossRefGoogle Scholar
  59. Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001) In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiol 126:27-31PubMedCrossRefGoogle Scholar
  60. Howell GS (2001) Sustainable grape productivity and the growth-yield relationship: A review. Am J Enol Vitic 52:165-174Google Scholar
  61. Hunter JJ, Ruffner HP (2001) Assimilate transport in grapevines-effect of phloem disruption. Aust J Grape Wine Res 7:118-126CrossRefGoogle Scholar
  62. Jahn TP, Moller ALB, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kuhlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31-36PubMedCrossRefGoogle Scholar
  63. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P, French-Italian P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-465Google Scholar
  64. Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19:456-461PubMedGoogle Scholar
  65. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358-1369PubMedCrossRefGoogle Scholar
  66. Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10: 451-459PubMedCrossRefGoogle Scholar
  67. Kaldenhoff R (2006) Besides water: Functions of plant membrane intrinsic proteins and aquaporins. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in Botany. Springer, Berlin HeidelbergGoogle Scholar
  68. Kaldenhoff R, Grote K, Zhu JJ, Zimmermann U (1998) Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J 14:121-128PubMedCrossRefGoogle Scholar
  69. Kaldenhoff R, Ribas-Carbo M, Sans JF, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31: 658-666 Katsuhara M, Hanba YT (2008) Barley plasma membrane intrinsic proteins (PIP aquaporins) as water and CO2 transporters. Pflugers Archiv-Eur J Physiol 456:687-691CrossRefGoogle Scholar
  70. Katsuhara M, Hanba YT, Shiratake K, Maeshima M (2008) Review: Expanding roles of plant aquaporins in plasma membranes and cell organelles. Funct Plant Biol 35:1-14CrossRefGoogle Scholar
  71. Keller M, Smith JP, Bondada BR (2006) Ripening grape berries remain hydraulically connected to the shoot. J Exp Bot 57:2577-2587PubMedCrossRefGoogle Scholar
  72. Krasnow M, Matthews M, Shackel K (2008) Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. J Exp Bot 59:849-859PubMedCrossRefGoogle Scholar
  73. Lang A, Düring H (1991) Partitioning control by water potential gradient:evidence for compartmentation breakdown in grape berries. J Exp Bot 42:1117-1122Google Scholar
  74. Lang A, Thorpe MR (1989) Xylem, phloem and transpiration flows in a grape:application of a technique for measuring the volume of attached fruits to high resolution using Archimedes’ Principle. J Exp Bot 219:1069-1078CrossRefGoogle Scholar
  75. Liu LH, Ludewig U, Gassert B, Frommer WB, von Wiren N (2003) Urea transport by nitrogenregulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220-1228PubMedCrossRefGoogle Scholar
  76. Lopez M, Bousser AS, Sissoeff I, Gaspar M, Lachaise B, Hoarau J, Mahe A (2003) Diurnal regulation of water transport and aquaporin gene expression in maize roots: Contribution of PIP2 proteins. Plant Cell Physiol 44:1384-1395PubMedCrossRefGoogle Scholar
  77. Lovisolo C, Perrone I, Hartung W, Schubert A (2008) An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytol. doi:10.1111/j.1469-8137.2008.02592.xGoogle Scholar
  78. Lovisolo C, Schubert A (2006) Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: evidence from a whole-plant approach. New Phytol 172:469-478PubMedCrossRefGoogle Scholar
  79. Lovisolo C, Tramontini S, Flexas J, Schubert A (2008) Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Environ Exp Bot 63:178-182CrossRefGoogle Scholar
  80. Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85-96CrossRefGoogle Scholar
  81. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688-691PubMedCrossRefGoogle Scholar
  82. Maeshima M, Ishikawa F (2008) ER membrane aquaporins in plants. Pflugers Archiv-Eur J Physiol 456:709-716CrossRefGoogle Scholar
  83. Mapfumo E, Aspinall D, Hancock TW (1994) Growth and development of roots of grapevine (Vitis vinifera L) in relation to water-uptake from soil. Annals Bot 74:75-85CrossRefGoogle Scholar
  84. Maurel C, Kado RT, Guern J, Chrispeels MJ (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-tip. EMBO J 14:3028-3035PubMedGoogle Scholar
  85. Maurel C, Reizer J, Schroeder JI, Chrispeels MJ (1993) The vacuolar membrane-protein gammatip creates water specific channels in xenopus-oocytes. EMBO J 12:2241-2247PubMedGoogle Scholar
  86. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: Membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595-624PubMedCrossRefGoogle Scholar
  87. McCarthy MG (1999) Weight loss from ripening berries of shiraz grapevines (Vitis vinifera L. cv.Shiraz). Aust J Grape Wine Res 5:10-16CrossRefGoogle Scholar
  88. McCarthy MG, Coombe BG (1999a) Berry weight loss and phloem transport. Aust J Grape Wine Res 5:17-21Google Scholar
  89. McCarthy MG, Coombe BG (1999b) Is weight loss in ripening grape berries cv. Shiraz caused by impeded phloem transport? Aust J Grape Wine Res 5:17-21Google Scholar
  90. Missner A, Kugler P, Saparov SM, Sommer K, Mathai JC, Zeidel ML, Pohl P (2008) Carbon dioxide transport through membranes. J Biol Chem 283:25340-25347PubMedCrossRefGoogle Scholar
  91. Mitchell PD, Goodwin I (1996) Manipulating tree growth. In: Mitchell PD, Goodwin I (eds) Micro-irrigation of vines and fruit trees. Agmedia, East MelbourneGoogle Scholar
  92. Miyazawa S, Yoshimura S, Shinzaki Y, Maeshima M, Miyake C (2008) Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under longterm drought. Funct Plant Biol 35:553-564CrossRefGoogle Scholar
  93. Mohr HD (1996) Periodicity of root tip growth of vines in the Moselle valley. Vitic Enol Sci 51:83-90Google Scholar
  94. Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: Diurnal and circadian regulation. Plant Cell 14:727-739PubMedCrossRefGoogle Scholar
  95. Niemietz CM, Tyerman SD (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett 465:110-114PubMedCrossRefGoogle Scholar
  96. Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443-447PubMedCrossRefGoogle Scholar
  97. Nikolaou N, Angelopoulos K, Karagiannidis N (2003) Effects of drought stress on mycorrhizal and non-mycorrhizal Cabernet Sauvignon grapevine grafted onto various rootstocks. Exp Agric 39:241-252CrossRefGoogle Scholar
  98. Patrick JW (1997) Phloem unloading: sieve element unloading and post-seive element transport. Annu Rev Plant Physiol Plant Mol Biol 48:191-222PubMedCrossRefGoogle Scholar
  99. Picaud S, Becq F, Dedaldechamp F, Ageorges A, Delrot S (2003) Cloning and expression of two plasma membrane aquaporins expressed during the ripening of grape berry. Funct Plant Biol 30:621-630CrossRefGoogle Scholar
  100. Richards D (1983) The grape root system. Hortic Rev 5:127-167Google Scholar
  101. Rieger M, Litvin P (1999) Root system hydraulic conductivity in species with contrasting root anatomy. J Exp Bot 50: 201-209CrossRefGoogle Scholar
  102. Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML (1997) Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem 272:16256-16261PubMedCrossRefGoogle Scholar
  103. Rodrigues ML, Santos TP, Rodrigues AP, de Souza CR, Lopes CM, Maroco JP, Pereira JS, Chaves MM (2008) Hydraulic and chemical signalling in the regulation of stomatal conductance and plant water use in field grapevines growing under deficit irrigation. Funct Plant Biol 35:565-579CrossRefGoogle Scholar
  104. Rogiers S, Greer D, Hatfield J, Orchard B, Keller M (2006a) Solute transport into Shiraz berries during development and late-ripening shrinkage. Am J Enol Vitic 57:73-80Google Scholar
  105. Rogiers SY, Greer DH, Hatfield JM, Orchard BA, Keller M (2006b) Mineral sinks within ripening grape berries (Vitis vinifera L.). Vitis 45:115-123Google Scholar
  106. Rogiers SY, Hatfield JM, Jaudzems VG, White RG, Keller M (2004) Grape berry cv Shiraz epicuticular wax and transpiration during ripening and preharvest weight loss. Am J Enol Vitic 55:121-127Google Scholar
  107. Rogiers SY, Smith JA, White R, Keller M, Holzapfel BP, Virgona JM (2001) Vascular function in berries of Vitis vinifera (L) cv Shiraz. Aust J Grape Wine Res 7:47-51CrossRefGoogle Scholar
  108. Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361-381PubMedCrossRefGoogle Scholar
  109. Sadras VO, McCarthy MG (2007) Quantifying the dynamics of sugar concentration in berries of Vitis vinifera cv Shiraz: a novel approach based on allometric analysis. Aust J Grape Wine Res 13:66-71CrossRefGoogle Scholar
  110. Sakr S, Alves G, Morillon RL, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ (2003) Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol 133:630-641PubMedCrossRefGoogle Scholar
  111. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568-77PubMedCrossRefGoogle Scholar
  112. Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991-1997PubMedCrossRefGoogle Scholar
  113. Schachtman DP, Goodger JQD (2008) Chemical root to shoot signalling under drought. Trends Plant Sci 13:281-287PubMedCrossRefGoogle Scholar
  114. Schaffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131-139PubMedCrossRefGoogle Scholar
  115. Schlosser J, Olsson N, Weis M, Reid K, Peng F, Lund S, Bowen P (2008) Cellular expansion and gene expression in the developing grape (Vitis vinifera L.). Protoplasma 232:255-265PubMedCrossRefGoogle Scholar
  116. Scholander PF, Lowe WE, Kanwisher JW (1955) The rise of sap in tall grapevines. Plant Physiol 30:94-104Google Scholar
  117. Schreiner R (2005) Spatial and temporal variation of roots, arbuscular mycorrhizal fungi, and plant and soil nutrients in a mature pinot noir (Vitis vinifera L.) vineyard in Oregon, USA.Plant Soil 276:219-234CrossRefGoogle Scholar
  118. Schultz HR (2003) Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ 26:1393-1405CrossRefGoogle Scholar
  119. Secchi F, Lovisolo C, Uehlein N, Kaldenhoff R, Schubert A (2007) Isolation and functional characterization of three aquaporins from olive (Olea europaea L.). Planta 225:381-392PubMedCrossRefGoogle Scholar
  120. Shelden MC (2007) A comparison of water stress-induced xylem embolism in two grapevine cultivars, Chardonnay and Grenache, and the role of aquaporins. PhD Thesis. University of Adelaide, AdelaideGoogle Scholar
  121. Smart DR, Carlisle E, Goebel M, Nunez BA (2005) Transverse hydraulic redistribution by a grapevine. Plant Cell Environ 28:157-166CrossRefGoogle Scholar
  122. Soar CJ, Speirs J, Maffei SM, Loveys BR (2004) Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of Vitis vinifera cv Shiraz: molecular and physiological studies investigating their source. Funct Plant Biol 31:659-669CrossRefGoogle Scholar
  123. Soar CJ, Speirs J, Maffei SM, Penrose AB, McCarthy MG, Loveys BR (2006) Grapevine varieties Shiraz and Grenache differ in their stomatal response to VPD: apparent links with ABA physiology and gene expression in leaf tissue. Aust J Grape Wine Res 12:2-12CrossRefGoogle Scholar
  124. Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25:251-263PubMedCrossRefGoogle Scholar
  125. Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51: 1531-1542PubMedCrossRefGoogle Scholar
  126. Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:847-875PubMedCrossRefGoogle Scholar
  127. Steudle E, Heydt H (1997) Water transport across tree roots. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees: Contributions to modern tree physiology. Backhuys Publishers, LeidenGoogle Scholar
  128. Steudle E, Meshcheryakov AB (1996) Hydraulic and osmotic properties of oak roots. J Exp Bot 47:387-401CrossRefGoogle Scholar
  129. Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775-788CrossRefGoogle Scholar
  130. Stoll M, Loveys B, Dry P (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot 51:1627-1634PubMedCrossRefGoogle Scholar
  131. Sui HX, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872-878PubMedCrossRefGoogle Scholar
  132. Sun Q, Rost TL, Reid MS, Matthews MA (2007) Ethylene and not embolism is required for wound-induced tylose development in stems of grapevines. Plant Physiol 145:1629-1636PubMedCrossRefGoogle Scholar
  133. Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498-1509PubMedCrossRefGoogle Scholar
  134. Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419-432CrossRefGoogle Scholar
  135. Thomas TR, Matthews MA, Shackel KA (2006) Direct in situ measurement of cell turgor in grape (Vitis vinifera L.) berries during development and in response to plant water deficits. Plant Cell Environ 29:993-1001PubMedCrossRefGoogle Scholar
  136. Tilbrook J, Tyerman SD (2008) Cell death in grape berries: varietal differences linked to xylem pressure and berry weight loss. Funct Plant Biol 35:173-184CrossRefGoogle Scholar
  137. Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688-694PubMedCrossRefGoogle Scholar
  138. Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393-397PubMedCrossRefGoogle Scholar
  139. Tsuda M, Tyree MT (2000) Plant hydraulic conductance measured by the high pressure flow meter in crop plants. J Exp Bot 51:823-828PubMedCrossRefGoogle Scholar
  140. Tyerman SD, Bohnert HJ, Maurel C, Steudle E, Smith JAC (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055-1071CrossRefGoogle Scholar
  141. Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173-194PubMedCrossRefGoogle Scholar
  142. Tyerman SD, Tilbrook J, Pardo C, Kotula L, Sullivan W, Steudle E (2004) Direct measurement of hydraulic properties in developing berries of Vitis vinifera L. cv Shiraz and Chardonnay. Aust J Grape Wine Res 10:170-181Google Scholar
  143. Tyree MT, de Kroon H, Visser EJW (2003) Hydraulic properties of roots. In: Kroon H, Visser EJW (eds) Root Ecology. Springer, HeidelbergGoogle Scholar
  144. Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody-plants. New Phytol 119:345-360CrossRefGoogle Scholar
  145. Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19-38CrossRefGoogle Scholar
  146. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734-737PubMedCrossRefGoogle Scholar
  147. Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648-657PubMedCrossRefGoogle Scholar
  148. Vandeleur R (2007) Grapevine root hydraulics: The role of aquaporins. PhD Thesis. University of Adelaide, AdelaideGoogle Scholar
  149. Vandeleur R, Niemietz C, Tilbrook J, Tyerman SD (2005) Roles of aquaporins in root responses to irrigation. Plant Soil 274:141-161CrossRefGoogle Scholar
  150. Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD (2008) The role of PIP aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology 149: 445-460PubMedCrossRefGoogle Scholar
  151. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2: e1326PubMedCrossRefGoogle Scholar
  152. Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol 135:2318-2329PubMedCrossRefGoogle Scholar
  153. Vincent D, Ergul A, Bohlman MC, Tattersall EAR, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR (2007) Proteomic analysis reveals differences between Vitis vinifera L. cv Chardonnay and cv Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58:1873-1892PubMedCrossRefGoogle Scholar
  154. Volder A, Smart DR, Bloom AJ, Eissenstat DM (2005) Rapid decline in nitrate uptake and respiration with age in fine lateral roots of grape: implications for root efficiency and competitive effectiveness. New Phytol 165:493-501PubMedCrossRefGoogle Scholar
  155. Wada H, Shackel KA, Matthews MA (2008) Fruit ripening in Vitis vinifera: apoplastic solute accumulation accounts for pre-v’eraison turgor loss in berries. Planta 227:1351-1361PubMedCrossRefGoogle Scholar
  156. Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta Biomem 1758:1165-1175CrossRefGoogle Scholar
  157. Wan XC, Steudle E, Hartung W (2004) Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. J Exp Bot 55:411-422PubMedCrossRefGoogle Scholar
  158. Warren CR (2008) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475-1487PubMedCrossRefGoogle Scholar
  159. Wells CE, Eissenstat DM (2002) Beyond the roots of young seedlings: The influence of age and order on fine root physiology. J Plant Growth Reg 21:324-334CrossRefGoogle Scholar
  160. Wilkinson S, Corlett JE, Oger L, Davies WJ (1998) Effects of xylem pH on transpiration from wild-type and flacca tomato leaves - A vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol 117:703-709PubMedCrossRefGoogle Scholar
  161. Wilkinson S, Davies WJ (1997) Xylem sap pH increase: A drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol 113:559-573PubMedGoogle Scholar
  162. Williams LE, Trout TJ (2005) Relationships among vine- and soil-based measures of water status in a Thompson Seedless vineyard in response to high-frequency drip irrigation. Am J Enol Vitic 56:357-366Google Scholar
  163. Yamada S, Komori T, Myers PN, Kuwata S, Kubo T, Imaseki H (1997) Expression of plasma membrane water channel genes under water stress in Nicotiana excelsior. Plant Cell Physiol 38:1226-1231PubMedGoogle Scholar
  164. Ye Q, Muhr J, Steudle E (2005) A cohesion/tension model for the gating of aquaporins allows estimation of water channel pore volumes in Chara. Plant Cell Environ 28:525-535CrossRefGoogle Scholar
  165. Ye Q, Steudle E (2006) Oxidative gating of water channels (aquaporins) in corn roots. Plant Cell Environ 29:459-470PubMedCrossRefGoogle Scholar
  166. Zeier J, Schreiber L (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata - Identification of the biopolymers lignin and suberin. Plant Physiol 113:1223-1231PubMedGoogle Scholar
  167. Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci USA 104:12359-12364Google Scholar
  168. Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849-857PubMedCrossRefGoogle Scholar
  169. Zhang X-Y, Wang X-L, Wang X, Xia G-H, Pan Q-H, Fan R-C, Wu F-Q, Yu X-C, Zhang D-P (2006) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol 142:220-232PubMedCrossRefGoogle Scholar
  170. Zwieniecki MA, Brodribb TJ, Holbrook NM (2007) Hydraulic design of leaves: insights from rehydration kinetics. Plant Cell Environ 30:910-921PubMedCrossRefGoogle Scholar
  171. Zwieniecki MA, Thompson MV, Holbrook NM (2002) Understanding the hydraulics of porous pipes: Tradeoffs between water uptake and root length utilization. J Plant Growth Reg 21:315-323CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • S.D. Tyerman
    • 1
  • R.K. Vandeleur
    • 1
  • M.C. Shelden
    • 1
    • 3
  • J. Tilbrook
    • 1
  • G. Mayo
    • 2
  • M. Gilliham
    • 1
  • B.N. Kaiser
    • 1
  1. 1.School of Agriculture Food and WineUniversity of Adelaide, Waite CampusPMB 1 Glen OsmondAustralia
  2. 2.Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite CampusUrrbraeAustralia
  3. 3.Australian Centre for Plant Functional Genomics, School of Botany, University of MelbourneParkville, VictoriaAustralia

Personalised recommendations