Molecular Maps, Qtl Mapping & Association Mapping In Grapevine

  • L. Costantini
  • F.M. Moreira
  • E. Zyprians
  • J.M. Martínez-Zapater
  • M.S. Grando

Linkage mapping in grape is based on the pseudo-testcross strategy (Grattapaglia and Sederoff 1994). Starting from 1995 several linkage maps have been developed for grape (Table 1) with the goal of locating the genetic determinants of target traits and identifying markers to assist breeding. The first maps were mainly based on RAPD (Williams et al. 1993) and AFLP (Zabeau and Vos 1992) markers, which allow the rapid generation of Linkage Groups (LG), but do not easily permit their comparison. The increasing interest in the comparison of genes and QTLs detected in different crosses encouraged the development of microsatellite or SSR markers (Gupta et al. 1996), which are codominant, highly polymorphic and easily transferable across related Vitis species. The first large set (371 markers) was produced by the Vitis Microsatellite Consortium (VMC), a cooperative effort of 21 research groups in 10 countries that was coordinated by AgroGene S.A. in Moissy Cramayel, France.


Powdery Mildew Association Mapping Downy Mildew Powdery Mildew Resistance Bulk Segregant Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam-Blondon AF, Lahogue Esnault F, Bouquet A, Boursiquot JM, This P (2001) Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars. Vitis 40:147–155Google Scholar
  2. Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the V vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027PubMedCrossRefGoogle Scholar
  3. Akkurt M, Welter L, Maul E, Töpfer R, Zyprian E (2007) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L and Vitis sp). Mol Breeding 19:103–111CrossRefGoogle Scholar
  4. Alleweldt G, Spiegel-Roy P, Reisch BI (1990) Grape (I) In: Moore JN, Ballington JR (eds) Genetic Resources of Temperate Fruit and Nut Crops. Acta Hortic 290:291–337Google Scholar
  5. Ambrosi H, Dettweiler E, Rühl E, Schmid J, Schumann F (1994) Farbatlas Rebsorten. 300 Sorten und ihre. Weine, Ulmer StuttgartGoogle Scholar
  6. Antcliff AJ (1980) Inheritance of sex in Vitis. Ann Amélior Plant 30:113–122Google Scholar
  7. Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377PubMedCrossRefGoogle Scholar
  8. Barnaud A, Lacombe T, Doligez A (2006) Linkage disequilibrium in cultivated grapevine, Vitis vinifera L. Theor Appl Genet 112:708–716PubMedCrossRefGoogle Scholar
  9. Battilana J, Madini A, Moreira FM, Costantini L, Velasco R, Grando MS (2006) QTL analysis of disease resistance and quality traits in grape. In: Qiu W, Kovacs G (eds) Proc of the International Grape Genomics Symposium. July 12-14 2005, St Louis, Missouri, USAGoogle Scholar
  10. Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C, Moser S, Velasco R, Versini G, Grando MS (2009). The 1-deoxy-D-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor Appl Genet 118:653-669PubMedCrossRefGoogle Scholar
  11. Bouquet A (1986) Introduction dans l’espèce Vitis vinifera L d’un caractère de resistance à l’oidium (Uncinula necator Schw Burr) issu de l’espèce Muscadinia rotundifolia (Michx) Small. Vignevini 12 (suppl):141-146Google Scholar
  12. Bouquet A and Danglot Y (1996) Inheritance of seedlessness in grapevine (Vitis vinifera L). Vitis 35:35–42Google Scholar
  13. Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreño J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585Google Scholar
  14. Carbonneau A (1983) Male and female sterility in the genus Vitis I: Modeling of their inheritance. Agronomie 3:635–644CrossRefGoogle Scholar
  15. Costantini L, Madini A, Battilana J, Grando MS (2005) Comparative mapping of quantitative traits in grape. Acta Hort (ISHS) 689:409–416Google Scholar
  16. Costantini L, Grando MS, Feingold S, Ulanovsky S, Mejía N, Hinrichsen P, Doligez A, This P, Cabezas JA, Martínez-Zapater JM (2007) Generation of a common set of mapping markers to assist table grape breeding Am J Enol Vitic 58:102-111Google Scholar
  17. Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L): from Quantitative Trait Loci to underlying genes. BMC Plant Biol 8:38PubMedCrossRefGoogle Scholar
  18. Dalbò MA (1998) Genetic mapping, QTL analysis, and marker-assisted selection for disease resistance loci in grapes. PhD Thesis, Cornell Univ, Ithaca, NYGoogle Scholar
  19. Dalbò MA, Ye GN, Weeden NF, Steinkellner H, Sefc KM, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340PubMedCrossRefGoogle Scholar
  20. Dalbò MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Amer Soc Hort Sci 126:83–89Google Scholar
  21. Di Gaspero G, Cipriani G, Marrazzo MT, Andreetta D, Prado Castro MJ, Peterlunger E, Testolin R (2005) Isolation of (AC)n-microsatellites in Vitis vinifera L. and analysis of genetic background in grapevines under marker assisted selection. Mol Breeding 15:11–20CrossRefGoogle Scholar
  22. Di Gaspero G, Cipriani G, Adam-Blondon AF, Testolin R (2007) Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates. Theor Appl Genet 114:1249–1263PubMedCrossRefGoogle Scholar
  23. Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795PubMedCrossRefGoogle Scholar
  24. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006a) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369-382Google Scholar
  25. Doligez A, Audiot E, Baumes R, This P (2006b) QTLs for muscat flavour and monoterpenic odorant content in grapevine (Vitis vinifera L). Mol Breeding 18:109-125Google Scholar
  26. Donald TM, Pellerone F, Adam-Blondon AF, Bouquet A, Thomas MR, Dry IB (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet 104:610–618PubMedCrossRefGoogle Scholar
  27. Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF, Walker MA (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109:1178–1187PubMedCrossRefGoogle Scholar
  28. Eibach R, Diehl H, Alleweldt G (1989) Untersuchungen zur Vererbung von Resistenzeigenschaften bei Reben gegen Oidium tuckeri, Plasmopora viticola und Botrytis cinerea. Vitis 28:209–228Google Scholar
  29. Eibach R, Zyprian E, Welter L, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124Google Scholar
  30. Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664PubMedCrossRefGoogle Scholar
  31. Fernandez L, Doligez A, Lopez G, Thomas MR, Bouquet A, Torregrosa L (2006) Somatic chimerism, genetic inheritance, and mapping of the fleshless berry (flb) mutation in grapevine (Vitis vinifera L). Genome 49:721–728PubMedCrossRefGoogle Scholar
  32. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515PubMedCrossRefGoogle Scholar
  33. Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M, Velasco R (2003) Molecular linkage maps of Vitis vinifera L and V riparia Mchx. Theor Appl Genet 106:1213–1224PubMedGoogle Scholar
  34. Grattapaglia D and Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  35. Grimme H (1975) Magnesium diffusion in Böden bei verschiedenen Wasser- und Magnesiumgehalten. Kali-Briefe, Fachgebiet 1 v3Google Scholar
  36. Gupta PK, Balyan IS, Sharma PC, Ramesh B (1996) Microsatellites in plants: A new class of molecular markers. Curr Sci 70:45–54Google Scholar
  37. Hofmann S, Di Gaspero G, Kovács L, Howard S, Kiss E, Galbács Z, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427–438CrossRefGoogle Scholar
  38. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin colour. Science 304:982PubMedCrossRefGoogle Scholar
  39. Kombrink E, Schmelzer E (2001) The hypersensitive response and its role in local and systemic disease resistance. Eur J Plant Pathol 107:69–78CrossRefGoogle Scholar
  40. Krivanek AF, Famula TR, Tenscher A, Walker MA (2005) Inheritance of resistance to Xylella fastidiosa within a Vitis rupestris x Vitis arizonica hybrid population. Theor Appl Genet 111:110–119PubMedCrossRefGoogle Scholar
  41. Krivanek AF, Riaz S, Walker MA (2006) Identification and molecular mapping of PdR1, a pri mary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125–1131PubMedCrossRefGoogle Scholar
  42. Jansen CJ and Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedGoogle Scholar
  43. Lahogue F, This P, Bouquet A (1998) Identification of a codominant marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959CrossRefGoogle Scholar
  44. Lamoureux D, Bernole A, Le Clainche I, Tual S, Thareau V, Paillard S, Legeai F, Dossat C, Wincker P, Oswald M, Merdinoglu D, Vignault C, Delrot S, Caboche M, Chalhoub B, Adam- Blondon AF (2006) Anchoring of a large set of markers onto a BAC library for the development of a draft physical map of the grapevine genome. Theor Appl Genet 113:344–356PubMedCrossRefGoogle Scholar
  45. Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L subsp sativa. BMC Plant Biol 8:31PubMedCrossRefGoogle Scholar
  46. Ledbetter CA and Ramming DW (1989) Seedlessness in grapes. Hort Rev 11:159–184Google Scholar
  47. Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesisin plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65PubMedCrossRefGoogle Scholar
  48. Lijavetzky D, Ruiz-García L, Cabezas JA, De Andrés MT, Bravo G Ibáñez A, Carreño J, CabelloF, Ibáñez J Martínez-Zapater JM (2006) Molecular genetics of berry colour variation in tablegrape. Mol Gen Genomics 276:427–435Google Scholar
  49. Lijavetzky D, Cabezas JA, Ibáñez A, Rodríguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424. doi: 101186/1471-2164-8-424PubMedCrossRefGoogle Scholar
  50. Lodhi MA, Daly MJ, Ye GN, Weeden NF, Reisch BI (1995) A molecular marker based linkage map of Vitis. Genome 38:786–794PubMedCrossRefGoogle Scholar
  51. Lowe KM and Walker MA (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) x Riparia Gloire (Vitis riparia). Theor Appl Genet 112:1582–1592PubMedCrossRefGoogle Scholar
  52. Luan F and Wüst M (2002) Differential incorporation of 1-deoxy-D-xylulose into (3S)-linalool and geraniol in grape berry exocarp and mesocarp. Phytochem 60:451–459CrossRefGoogle Scholar
  53. Luo SL, He PC, Zhou P, Zheng XQ (2001) Identification of molecular genetic markers tightly linked to downy mildew resistant genes in grape. Acta Genet Sin 28:76–82PubMedGoogle Scholar
  54. Madini A (2007) Studio della resistenza alla peronospora in Vitis spp mediante analisi dei QTL, mapping comparativo e approccio del gene candidato. PhD Thesis, Università degli Studi di PadovaGoogle Scholar
  55. Mahanil S, Reisch BI, Owens CL, Thipyapong P, Laosuwan P (2007) Resistance Gene Analogs from Vitis cinerea, Vitis rupestris and Vitis Hybrid Horizon. Am J Enol Vitic 58:484–493Google Scholar
  56. Mandl K, Santiago JL, Hack R, Fardossi A, Regner F (2006) A genetic map of Welschriesling x Sirius for the identification of magnesium deficiency by QTL analysis. Euphytica 149:133–144CrossRefGoogle Scholar
  57. Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic Analysis of Downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451–456Google Scholar
  58. Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon AF, Decroocq S (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L) suitable for multiplex PCR. Mol Breeding 15:349–366CrossRefGoogle Scholar
  59. Mejía N and Hinrichsen P (2003) A new, highly assertive Scar marker potentially useful to assist selection for seedlessness in table grape breeding. Acta Hort (ISHS) 603:559–564Google Scholar
  60. Mejía N, Gebauer M, Muñoz L, Hewstone N, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny. Am J Enol Vitic 58:499–507Google Scholar
  61. Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker-assisted selection. Theor Appl Genet 103:1201–1210CrossRefGoogle Scholar
  62. Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a re view. Mol Breeding 7:275–291CrossRefGoogle Scholar
  63. Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111PubMedCrossRefGoogle Scholar
  64. Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108:864–872PubMedCrossRefGoogle Scholar
  65. Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris x V arizonica. Theor Appl Genet 113:1317–1329PubMedCrossRefGoogle Scholar
  66. Riaz S, Tenscher AC, Rubin J, Graziani R, Pao SS, Walker MA (2008) Fine-scale genetic mapping of two Pierce’s disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Theor Appl Genet 117:671–681PubMedCrossRefGoogle Scholar
  67. Ribérau-Gayon P, Boidron JN, Terrier A (1975) Aroma of muscat grape varieties. J Agric Food Chem 23:1042–1047CrossRefGoogle Scholar
  68. Salmaso M, Malacarne G, Troggio M, Faes G, Stefanini M, Grando MS, Velasco R (2008) A grapevine (Vitis vinifera L) genetic map integrating the position of 139 expressed genes. Theor Appl Genet 116:1129–1143CrossRefGoogle Scholar
  69. Staub JE, Serquen FC, Gupta M (1996) Genetic markers, map construction and their application in plant breeding. HortScience 31:729–741Google Scholar
  70. Striem MJ, Spiegel-Roy P, Baron I, Sahar N (1992) The degrees of development of the seed-coat and the endosperm as separate subtraits of stenospermocarpic seedlessness in grapes. Vitis 31:149–155Google Scholar
  71. Striem MJ, Ben-Hayyim G, Spiegel-Roy P (1996) Identifying molecular genetic markers associated with seedlessness in grape. J Am Soc Hort Sci 121:758–763Google Scholar
  72. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519PubMedCrossRefGoogle Scholar
  73. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723–730PubMedCrossRefGoogle Scholar
  74. Troggio M, Malacarne G, Coppola G, Segala C, Cartwright DA, Pindo M, Stefanini M, Mank R, Moroldo M, Morgante M, Grando MS, Velasco R (2007) A dense Single-Nucleotide Polymorphism- based genetic linkage map of grapevine (Vitis vinifera L) anchoring Pinot Noir Bacterial Artificial Chromosome contigs. Genetics 176:2637–2650PubMedCrossRefGoogle Scholar
  75. Varilo T, Paunio T, Parker A, Perola M, Meyer J, Terwilliger JD, Peltonen L (2003) The interval of linkage disequilibrium (LD) detected with microsatellite and SNP markers in chromosomes of Finnish populations with different histories. Hum Mol Genet 12:51–59PubMedCrossRefGoogle Scholar
  76. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando MS, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326CrossRefGoogle Scholar
  77. Versini G, Dalla Serra A, Monetti A, De Micheli L, Mattivi F (1993) Free and bound grape aroma profiles variability within the family of muscat-called varieties. In: Proceedings of the International Symposium “Connaissance aromatique des cépages et qualité des vins”, Montpellier (France), 9–10 February 1993, edited by Bayonove C, Crouzet J, Flanzy C Martin JC, Sapis JC. Revue Française d’Oenologie, Lattes, FranceGoogle Scholar
  78. Vezzulli S, Troggio M, Coppola G, Jermakow A, Cartwright D, Zharkikh A, Stefanini M, Grando MS, Viola R, Adam-Blondon AF, Thomas M, This P, Velasco R (2008) A reference integrated map for cultivated grapevine (Vitis vinifera L) from three crosses, based on 283 SSR and 501 SNP-based markers. Theor Appl Genet 117:499–511PubMedCrossRefGoogle Scholar
  79. Wagner R (1967) Etude de quelques disjonctions dans des descendances de Chasselas, Muscat Ottonel et Muscat à petits grains. Vitis 6:353–363Google Scholar
  80. Walker AR, Lee E, Bogs J, McDavid DA, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785PubMedCrossRefGoogle Scholar
  81. Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breeding 20:359–374CrossRefGoogle Scholar
  82. Williams JGK, Hanafey MK, Rafalski JA, Tingey VT (1993) Genetic analysis using random amplified polymorphic DNA markers. Meth Enzymol 218:704–740PubMedCrossRefGoogle Scholar
  83. Xu K, Riaz S, Roncoroni NC, Jin Y,·Hu R, Zhou R, Walker MA (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theor Appl Genet 116:305–311PubMedCrossRefGoogle Scholar
  84. Zabeau M and Vos P (1992) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application, EPOGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • L. Costantini
    • 1
  • F.M. Moreira
    • 2
  • E. Zyprians
    • 2
  • J.M. Martínez-Zapater
    • 3
  • M.S. Grando
    • 2
  1. 1.Fondazione Edmund Mach IASMA Research Center, Genetics and Molecular Biology Department38010 San Michele all’Adige (TN)Italy
  2. 2.Julius Kühn-Institut (JKI) Bundesforschungsinstitut für Kulturpflanzen, Institut für RebenzüchtungGeilweilerhofGermany
  3. 3.Departamento de Genética Molecular de Plantas, Centro Nacional de BiotecnologíaCSIC, Campus de la Universidad Autónoma de MadridCantoblancoSpain

Personalised recommendations