Grapevine & Sulfur: Old Partners, New Achievements

  • S. Amâncio
  • S. Tavares
  • J.C. Fernandes
  • C. Sousa

The central role of sulfur in biological functions Sulfur (S) is the 14th more abundant element on earth crust (Charlson et al. 1992), the 9th and least abundant essential macronutrient in plants (Saito 2004) and the 6th element in the cytoplasm (Xavier and LeGall 2007). The interconversion of oxidized and reduced sulfur states, the biogeochemical sulfur cycle, depends mainly on microorganisms (Falkowski et al. 2008) and plants. The inorganic forms of S in soil consist mainly of sulfates (SO4 2-) (Mengel and Kirkby 1982).


Powdery Mildew Sulfur Metabolism Sulfate Transporter Sulfate Uptake Sulfate Assimilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam-Blondon AF, Romieu C, Bouquet A. (2007) Genomics as a road for grapevine improvement. In: Morot-Gaudry J-F, Lea P, Briat J-F (eds) Functional Plant Genomics. Science Publ, Enfield, NH, pp. 463-480Google Scholar
  2. Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G. (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96:1188-1194PubMedCrossRefGoogle Scholar
  3. Bavaresco L, Fregoni C, van Zeller de Macedo Basto Gonçalves MI, Vezzulli S (2009) Physio logy and molecular biology of grapevine stilbenes – Un update. In: Roubelakis-Angelakis K.A. (ed.), Grapevine Molecular Physiology & Biotechnology, 2nd ed., Springer Science+Business Media B.V., pp. 341-364Google Scholar
  4. Bavaresco L, Pezzutto S, Ragga A, Ferrari F, Trevisan M (2001) Effect of nitrogen supply on trans-resveratrol concentration in berries of Vitis vinifera L. cv Cabernet Sauvignon. Vitis 40:229-230Google Scholar
  5. Bick JA, Leustek T (1998) Plant sulfur metabolism – the reduction of sulfate to sulfite. Curr Op Plant Biol 1:240-244CrossRefGoogle Scholar
  6. Blake-Kalff MMA, Hawkesford MJ, Zhao FJ, McGrath SP (2000) Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.). Plant Soil 225:95-107CrossRefGoogle Scholar
  7. Bloem E, Haneklaus S, Salac I, Wickenhäuser P, Schnug E (2007) Facts and fiction about sulfur metabolism in relation to plant-pathogen interactions. Plant Biol 9:596-607PubMedCrossRefGoogle Scholar
  8. Boss PK, Davies C (2009) Molecular biology of anthocyanin accumulation in grape berries. In: Roubelakis-Angelakis K.A. (ed.), Grapevine Molecular Physiology & Biotechnology, 2nd ed., Springer Science+Business Media B.V., pp. 263-292Google Scholar
  9. Bourbos VA, Skoudridakis MT, Barbopoulou E, Venetis K (2000) Ecological control of grape powdery mildew (Uncinula necato) 1043197_l1/index.html. Accessed 5 June 2008
  10. Bovy A., de Vos R, Kemper M, Schijlen E, Pertejo MA, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509-2526PubMedCrossRefGoogle Scholar
  11. Brunold C (1976) Regulatory interactions between sulfate and nitrate assimilation. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur Nutrition and Assimilation in Higher Plants. SPB Publ, The Hague, ND, pp. 61-76Google Scholar
  12. Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulfate transporters:co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765-1773PubMedCrossRefGoogle Scholar
  13. Byers M, Franklin J, Smith SJ (1987) The nitrogen and sulfur nutrition of wheat and its effect on the composition and baking quality of the grain. Aspects Appl Biol 15:327-344Google Scholar
  14. Charlson RJ, Anderson T, McDuff RE (1992) The sulfur cycle. In: Butcher SS, Charlson RJ, Orians GH, Wolfe GV (eds) Global Biogeochemical Cycles. Academic Press, London, UK, pp. 285-300CrossRefGoogle Scholar
  15. Clarkson DT, Diogo E, Amâncio S (1999) Uptake and assimilation of sulfate by sulfur deficient Zea mays cells:The role of O-acetyl-L-serine in the interaction between nitrogen and sulfur assimilatory pathways. Plant Physiol Biochem 37:283-290CrossRefGoogle Scholar
  16. Clarkson DT, Hawkesford MJ, Davidian J-C (1993) Membrane and long-distance transport of sulfate. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur Nutrition and Assimilation in Higher Plants. SPB Publ, The Hague, ND, pp. 3-19Google Scholar
  17. dePinho PG, Beloqui AA, Bertrand A (1997) Detection of a sulfur compound responsible for the typical aroma of some non Vitis vinifera wines. Sci Alim 17:341-348Google Scholar
  18. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097PubMedCrossRefGoogle Scholar
  19. Droux M (2004) Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosynthesis Res 79:331-348CrossRefGoogle Scholar
  20. Droux M, Ruffet M-L, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants. Eur J Biochem 255:235-245PubMedCrossRefGoogle Scholar
  21. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034-1039PubMedCrossRefGoogle Scholar
  22. Gadoury DM, Pearson RC, Riegel DG, Seem RC, Becker CM, Pscheidt JW (1994) Reduction of powdery mildew and other diseases by over-the-trellis application of lime sulfur to dormant grapevines. Plant Dis 78:83-87Google Scholar
  23. Goes da Silva F, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J, Cramer GR, Cushman JC, Cook DR (2005) Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol 139:574-597CrossRefGoogle Scholar
  24. Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 8:187 (doi:10.1186/1471-2164-8-187)PubMedCrossRefGoogle Scholar
  25. Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and APS reductase activity. Proc Natl Acad Sci USA 93:13377-13382PubMedCrossRefGoogle Scholar
  26. Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL (1997) Molecular evidence supports an APS-dependent pathway of reductive sulfate assimilation in higher plants. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulfur Metabolism in Higher Plants. Backhuys Publ, Leiden, ND, pp. 187-189Google Scholar
  27. Haneklaus S, Bloem E, Schnug E (2007) Sulfur interactions in crop ecosystems. In: Hawkesford MJ, De Kok LJ (eds) Sulfur in Plants. An Ecological Perspective. Springer, Dordrecht, ND, pp. 17-58CrossRefGoogle Scholar
  28. Hatzfeld Y, Cathala N, Grignon C, Davidian J-C (1998) Effect of ATP sulfurylase overexpression in bight yellow 2 tobacco cells. Plant Physiol 116:1307-1313PubMedCrossRefGoogle Scholar
  29. Hawkesford MJ (2000) Plant responses to sulfur deficiency and the genetic manipulation of sulfate transporters to improve S-utilization efficiency. J Exp Bot 51:131-138PubMedCrossRefGoogle Scholar
  30. Hawkesford MJ (2003) Transporter gene families in plants:the sulfate transporter gene family:redundancy or specialization? Physiol Plant 117:155-163CrossRefGoogle Scholar
  31. Hawkesford MJ (2005). Sulfur. In: Broadley MR, White PJ (eds) Plant Nutritional Genomics. Blackwell Publ, Oxford, UK, pp. 87-111Google Scholar
  32. Hawkesford MJ, De Kok LJ (2006) Managing sulfur metabolism in plants. Plant Cell Environ 29:382-395PubMedCrossRefGoogle Scholar
  33. Hawkesford MJ, Wray JL (2000) Molecular genetics of sulfate assimilation. Adv Bot Res 33:159-223CrossRefGoogle Scholar
  34. Hell R, Jost R, Berkowitz O, Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana. Amino Acids 22:245–257PubMedCrossRefGoogle Scholar
  35. Hell R, Kruse C (2007) Sulfur in biotic interactions of plants. In: Hawkesford MJ, De Kok LJ (eds) Sulfur in Plants. An Ecological Perspective. Springer, Dordrecht, ND, pp. 197-224CrossRefGoogle Scholar
  36. Hell R, Schwenn JD, Bork C (1997) Light and sulfur sources of several genes of sulfate assimilation. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulfur Metabolism in Higher Plants. Backhuys Publ, Leiden, ND, pp. 181-185Google Scholar
  37. Hesse H, Höefgen R (2003) Molecular aspects of methionine biosynthesis in Arabidopsis and potato. rends Plant Sci 8:259-262.CrossRefGoogle Scholar
  38. Hilbert G, Soyer JP, Molot C, Giraudon J, Milin S, Gaudillere JP (2003) Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis 42:69–76Google Scholar
  39. Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33:651-663PubMedCrossRefGoogle Scholar
  40. Hirai MK, Saito K (2004) Post-genomic approaches for the elucidation of plant adaptive mechanisms to sulfur deficiency. J Exp Bot 55:1871-1879PubMedCrossRefGoogle Scholar
  41. Höefgen R, Hesse H (2007) Sulfur in plants as part of a metabolic network In: Hawkesford MJ, De Kok LJ (eds) Sulfur in Plants. An Ecological Perspective. Springer, Dordrecht, ND, pp. 197-224Google Scholar
  42. Howarth JR, Roberts MA, Wray JL (1997) Cysteine biosynthesis in higher plants:cloning and expression of three members of the serine acetyl-transferase gene family from Arabidopsis thaliana. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulfur Metabolism in Higher Plants. Backhuys Publ, Leiden, ND, pp. 231-232Google Scholar
  43. Jaillon O, Aury JO, Noel B, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedCrossRefGoogle Scholar
  44. Jolivet P (1993) Elemental sulfur in agriculture. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur Nutrition and Assimilation in Higher Plants. SPB Publ, The Hague, ND, pp. 3-19Google Scholar
  45. Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004a) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198-4204Google Scholar
  46. Kataoka T, Maruyama-Nakashita A, Hayashi N, Ohnishi M, Mimura, T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004b) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693-2704Google Scholar
  47. Kutz A, Muller A, Hennig P, Kaiser WM, Piotrowski M, Weiler EW (2002) A role of nitrilase 3 in the regulation of root morphology in sulfur-starving Arabidopsis thaliana. Plant J 30:95-106PubMedCrossRefGoogle Scholar
  48. Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120:637-643PubMedCrossRefGoogle Scholar
  49. Leustek T, Martin MN, Bick JÁ, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141-65PubMedCrossRefGoogle Scholar
  50. Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H (2004) Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves phophorylation /dephosphorylation circuit for transcriptional regulation. Plant Cell Physiol 45:340-345PubMedCrossRefGoogle Scholar
  51. Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of a plant sulfur response and metabolism. Plant Cell 18:3235-3251PubMedCrossRefGoogle Scholar
  52. Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:,305-314PubMedCrossRefGoogle Scholar
  53. Mengel K, Kirkby EA (1982) Principles of Plant Nutrition, 3rd Ed. Int Potash Inst. Bern, CH 593 pp.Google Scholar
  54. Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signalling pathways. Plant Physiol 131:298–308PubMedCrossRefGoogle Scholar
  55. Müller B, Sheen J (2007) Advances in cytokinin signalling. Science 318:68-69PubMedCrossRefGoogle Scholar
  56. Nakayama M, Akashi T, Hase T (2000) Plant sulfite reductase:molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82:27-32PubMedCrossRefGoogle Scholar
  57. Newenschwander U, Suter ME, Brunold C (1991) Regulation of sulfate assimilation by light and O-acetyl-L-serine in Lemna minor L. Plant Physiol 97:253-258CrossRefGoogle Scholar
  58. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205-217PubMedCrossRefGoogle Scholar
  59. Page RDM (1996) TREEVIEW:an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357-358Google Scholar
  60. Pate JS (1980) Transport and partitioning of nitrogenous solutes. Annu Rev Plant Physiol 31:313-340CrossRefGoogle Scholar
  61. Peuke A (2000) The chemical composition of xylem sap in Vitis vinifera L. cv. Riesling during vegetative growth on three different franconian vineyard soils and as influenced by nitrogen fertilizer. Am J Enol Vitic 51:329-339Google Scholar
  62. Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805-7812PubMedCrossRefGoogle Scholar
  63. Rausch T (2007) When plant life gets tough sulfur gets going. Plant Biol 9:551-555PubMedCrossRefGoogle Scholar
  64. Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defense operations. Trends Plant Sci 10:503-509PubMedCrossRefGoogle Scholar
  65. Schutz M, Kunkee R (1977). Formation of hydrogen sulfide from elemental sulfur during fermentation by wine yeast. Am J Enol Vitic 28:133-144Google Scholar
  66. Rotte C, Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5’- adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytososlic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124:715-724PubMedCrossRefGoogle Scholar
  67. Rouhier N, Lemaire SD, Jacquot J-P (2008) The role of glutathione in photosynthetic organisms:Emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59: 143–66PubMedCrossRefGoogle Scholar
  68. Saito K (2004) Sulfur assimilation metabolism. The long and smelling road. Plant Physiol 136: 2443-2450PubMedCrossRefGoogle Scholar
  69. Saito K, Takahashi H, Takagi Y, Inoue K, Noji M (1997) Molecular characterization and regulation of cysteine synthase and serine acetyltransferase from plants. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulfur Metabolism in Higher Plants. Backhuys Publ, Leiden, ND, pp. 235-238Google Scholar
  70. Schachtman DP, Shin R (2007) Nutrient sensing and signalling: NPKS. Annu Rev Plant Biol 58: 47-69PubMedCrossRefGoogle Scholar
  71. Schnug E (1997) Significance of sulfur for the quality of domesticated plants. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulfur Metabolism in Higher Plants. Backhuys Publ, Leiden, ND, pp. 109-130Google Scholar
  72. Shibagaki N, Rose A, Mcdermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify SULTR1;2 a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475-486PubMedCrossRefGoogle Scholar
  73. Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U.S.A. 92:9373-9377PubMedCrossRefGoogle Scholar
  74. Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, van den Berg PJ, Belcher AR, Warrilow AGS (1997) Regulation of expression of a cDNA from barley roots enconding a high affinity sulfate transporter. Plant J 12:875-884PubMedCrossRefGoogle Scholar
  75. Stulen I, De Kok LJ (1993) Whole plant regulation of sulfate uptake and metabolism – a theorectical approach and comparison with current ideas on regulation of nitrogen metabolism. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur Nutrition and Assimilation in Higher Plants. SPB Publ, The Hague, ND, pp. 77-91Google Scholar
  76. Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J 23:171-182PubMedCrossRefGoogle Scholar
  77. Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida-Engler J, Engler G, van Montagu M, Saito K (1997) Regulation of sulfur in higher plants:a sulfate transporter induced in sulfate starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci U.S.A. 94:11102-11107PubMedCrossRefGoogle Scholar
  78. Tavares S, Sousa C, Carvalho LC, Amâncio S (2008) De-repressed transporters are strongly repressed after sulfate addition to sulfur depleted Vitis cells. Int J Plant Sci 169 (in press)Google Scholar
  79. Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216:193-202PubMedCrossRefGoogle Scholar
  80. Thomas CS, Gubler WD, Silacci MW, Miller R (1993) Changes in elemental sulfur residues on Pinot-Noir and Cabernet Sauvignon grape berries during the growing-season. Am J Enol Vitic 44:205-210Google Scholar
  81. Vauclare P, Stanislav K, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op de Camp R, Brunold C (2002) Flux control of sulfate assimilation in Arabidopsis thaliana: adenosine 5’-phosphosulfate reductase is more susceptible than ATP sulfurylase to negative control by thiols. Plant J 31:729-740PubMedCrossRefGoogle Scholar
  82. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2(12): e1326. doi:10.1371/journal.pone.0001326PubMedCrossRefGoogle Scholar
  83. Vidmar J, Tagmount A, Cathala N, Touraine B, Davidian J-C (2000) Cloning and characterization of root specific high-affinity sulfate transporter from Arabidopsis thaliana. FEBS Letts 475: 65-69CrossRefGoogle Scholar
  84. Williams JS, Cooper RM (2003) Elemental sulfur is produced by diverse plant families as a component of defense against fungal and bacterial pathogens. Physiol Mol Plant Pathol 63:3-16CrossRefGoogle Scholar
  85. Williams JS, Cooper RM (2004) the oldest fungicide and newest phytoalexin – a re-appraisal of the fungitoxicity of elemental sulfur. Plant Pathol 53:263-279CrossRefGoogle Scholar
  86. Williams JS, Hall AS, Hawkesford MJ, Beale MH, Cooper RM (2002) Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiol 128: 150-159PubMedCrossRefGoogle Scholar
  87. Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr 1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511-1517PubMedCrossRefGoogle Scholar
  88. Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporter with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465-473PubMedCrossRefGoogle Scholar
  89. Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–74PubMedCrossRefGoogle Scholar
  90. Xavier AV, LeGall J (2007) Sulfur metabolism. In: Bertini I, Gray HB, Stiefel EI, Valentine JS (eds) Biological Inorganic Chemistry. University Science Books, Sausalito, CA, pp. 508-517Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • S. Amâncio
    • 1
  • S. Tavares
    • 1
  • J.C. Fernandes
    • 1
  • C. Sousa
    • 1
  1. 1.Universidade Técnica de LisboaDBEB/CBAA, Instituto Superior de AgronomiaPortugal

Personalised recommendations