Advertisement

Progress in Genetic Engineering of Grapevine for Disease & Stress Tolerance

  • V. Colova-Tsolova
  • A. Perl
  • S. Krastanova
  • S. Samuelian
  • A. Atanassov

In 2007, the scientific community and wine world welcomed the complete genome sequencing of Vitis vinifera L cv Pinot Noir (Valasco et al. 2007, The French-Italian Public Consortium for Grapevine Genome Characterization, 2007), which made grape the first fruit and second commercial crop after rice to be fully sequenced. The development of high-throughput analytical techniques for analyzing the genome, proteome and metabolome resulted in the accumulation of large quantities of biological data for the living organisms and grape in particular, which currently is recognized as a ‘systems biology’ approach.

Keywords

Transgenic Plant Somatic Embryo Coat Protein Gene Glycine Betaine Vitis Vinifera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrios GN (1988) Plant Pathology. Academic Press, New YorkGoogle Scholar
  2. Agüero C, Uratsu S, Greve C, Powell A, Labavitch J, Meredith C, Dandecar A (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L expressing the pear PGIP gene. Mol Plant Pathol 6:43–51CrossRefGoogle Scholar
  3. Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054PubMedGoogle Scholar
  4. Alleweldt G, Spiegel-Roy P, Raisch B (1990) Grapes (Vitis). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops. Acta Hortic 290: 291–337Google Scholar
  5. Aronson AI, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24PubMedGoogle Scholar
  6. Asada J (1994) Production and action of toxic oxygen species in photosynthesis tissue. In: Foyer CH, Mullineaux PM (eds) Causes of Phytooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca RatonGoogle Scholar
  7. Atkinson HJ, Urrwin PE, Hansen E, McPherson MJ (1995) Designs for engineered resistance to root-parasitic nematodes. Trends Biotech 13:369–374CrossRefGoogle Scholar
  8. Barbier P, Demangeat G, Perin M, Cobanov P, Jacquet C, Walte B (1997) Grapevine genetically transformed with the coat protein gene of grapevine fanleaf virus: an analysis of transformants. Proc of the 12th ICGV Meeting, Abstracts, LisbonGoogle Scholar
  9. Baulcombe D (1994) Novel strategies for engineering virus resistance in plants. Curr Opin Biotech 5:117–124CrossRefGoogle Scholar
  10. Beachy RN (1993) Introduction: Transgenic resistance to plant viruses. virology 4:327–328Google Scholar
  11. Beyer Y, Imaly J, Fridovich I (1991) Superoxide dismutases. Prog Nucl Acid Res Mol Biol 40:221–253CrossRefGoogle Scholar
  12. Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92PubMedCrossRefGoogle Scholar
  13. Bornhoff BA, Harst M, Zyprian E, Töpfer R (2005) Transgenic plants of Vitis vinifera cv Seyval blanc. Plant Cell Rep 24:433–438PubMedCrossRefGoogle Scholar
  14. Bouquet A (1993) Vignes transgeniques et resistance aux virus. Prog Agric Vitic 110:327–330Google Scholar
  15. Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116CrossRefGoogle Scholar
  16. Bowles DJ (1990) Defence-related proteins in higher plants. Annu Rev Biochem 59:873–907PubMedCrossRefGoogle Scholar
  17. Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358PubMedCrossRefGoogle Scholar
  18. Burr T, Katz B (1984) Grapevine cutting as potential sites of survival and means of dissemination of Agrobacterium tumefaciens. Plant Dis 68:976–978CrossRefGoogle Scholar
  19. Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterials peptides from honeybees. EMBO J 8:2387–2391PubMedGoogle Scholar
  20. Chen CH, Brown JH, Morell J, Huang CM (1988) Synthetic magainin analogous with improved antimicrobial activity. FEBS Lett 236:462–466PubMedCrossRefGoogle Scholar
  21. Citovsky V, Warnick D, Zambrysk P (1994) Nuclear import of Agrobacterium VIRD2 and VIRE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91:3210–3214PubMedCrossRefGoogle Scholar
  22. Collinge DB, Slusarenko AJ (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9:389–410CrossRefGoogle Scholar
  23. Colova V, Bordallo P, Phills B, Bausher M (2007) Synchronized somatic embryo development in embryogenic suspensions of grapevine (Muscadinia rotundifolia and Vitis vinifera L). Vitis 1:36-41Google Scholar
  24. Colova-Tsolova V, Gollop R, Farchi S, Even S, Sahar N, Perl A (2000) Co-transformation with two vectors and regeneration of transgenic plants on base of high –efficient Agrobacteriummediated gene transfer in grape embryogenic cell suspension. Hort Sci 35(3):393Google Scholar
  25. Colova-Tsolova V, Perl A, Krastanova S, Tsvetkov I, Atanassov A (2001) Genetically engineered grape for disease and stress tolerance. In: Roubelakis-Angelakis KA (ed) Molecular Biology & Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, NederlandGoogle Scholar
  26. Courtois N, Gaire F, Mauro M, Toutain S, Burrus M, Pink L, Walter B, Audran J, Duteurtre B (1997) Electroporation of grapevine protoplast: Inoculation of GFLV V into grapevine for the screening of transgenic plants. Proceeding of the 12th ICGV Meeting, Abstracts, LisbonGoogle Scholar
  27. Coutos-Thevenot P, Mauro MC, Breda C, Buffard D, Esnault R, Hain R, Boulay M (1998) First approaches for improving through molecular way grapevine tolerance to fungus disease. Resumes, VIIeme Symposium International sur la Genetique et l’Amellioration de la Vigne. MontpellierGoogle Scholar
  28. Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors - A defence against microbial infection in plants. Annu Rev Plant Physiol 35:243-275CrossRefGoogle Scholar
  29. De Beer A, Vivier M (2008) Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC Plant Biol. 8:75PubMedCrossRefGoogle Scholar
  30. De Francesco L (2006) Vintage genetic engineering. Nature Biotechnology 26 (3):261-263CrossRefGoogle Scholar
  31. Destefano-Beltran L, Nagpala PG, Cetiner SM, Denny T, Jaynes MJ (1993) Using genes encoding novel peptides and proteins to enhance disease resistance in plants. In: Chet I (ed) Biotechnology in Plant Disease Control. John Wiley & Sons, Inc New YorkGoogle Scholar
  32. Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41:339–367CrossRefGoogle Scholar
  33. During J, Porsch P, Fladung M, Lorz H (1993) Thransgenic potato plants resistant to the phytopathogenic bacterium Ervinia corotovora. Plant J 3:587–598CrossRefGoogle Scholar
  34. Fink J, Boman A, Boman HG, Merrifield RB (1989) Design, synthesis and antibacterial activity of cecropinilike model peptides. Int J Peptide Protein Res 33:412–421Google Scholar
  35. Flor HH (1942) Inheritance of pathogenicity in Melanospora lini. Phytopathol 32:653–669Google Scholar
  36. Flor HH (1956) The complementary genic system in flax and flax rust. Adv Genet 8:29–54CrossRefGoogle Scholar
  37. Franks TK, Powell JS, Choimes S, Marsh E, Iocco P, Sinclair B J, Ford C M, van Heewijck R (2006) Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res 15:181–195PubMedCrossRefGoogle Scholar
  38. Gabriel DW, Rolfe BG (1990) Working models of specific recognition in plant-microbe interactions. Annu Rev Phytopathol 28:365–391CrossRefGoogle Scholar
  39. Galun E, Breiman A (1997) Transgenic plants. Imperial College Press, LondonGoogle Scholar
  40. Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) M Molecular characterization of grapevine plants transformed with GFLV resistance genes. Plant Cell Rep 24:655–662PubMedCrossRefGoogle Scholar
  41. Golembovski DV, Lomonossov GP, Zaitlin M (1990) Plants transformed with tobacco mosaic VIRus nonstructural gene sequence are resistant to the VIRus. Proc Natl Acad Sci USA 87:6311–6315CrossRefGoogle Scholar
  42. Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterials peptides from honeybees. EMBO J 8:2387–2391PubMedGoogle Scholar
  43. Chen CH, Brown JH, Morell J, Huang CM (1988) Synthetic magainin analogous with improved antimicrobial activity. FEBS Lett 236:462–466PubMedCrossRefGoogle Scholar
  44. Citovsky V, Warnick D, Zambrysk P (1994) Nuclear import of Agrobacterium VIRD2 and VIRE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91:3210–3214PubMedCrossRefGoogle Scholar
  45. Collinge DB, Slusarenko AJ (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9:389–410CrossRefGoogle Scholar
  46. Colova V, Bordallo P, Phills B, Bausher M (2007) Synchronized somatic embryo development in embryogenic suspensions of grapevine (Muscadinia rotundifolia and Vitis vinifera L). Vitis 1:36-41Google Scholar
  47. Colova-Tsolova V, Gollop R, Farchi S, Even S, Sahar N, Perl A (2000) Co-transformation with two vectors and regeneration of transgenic plants on base of high –efficient Agrobacteriummediated gene transfer in grape embryogenic cell suspension. Hort Sci 35(3):393Google Scholar
  48. Colova-Tsolova V, Perl A, Krastanova S, Tsvetkov I, Atanassov A (2001) Genetically engineered grape for disease and stress tolerance. In: Roubelakis-Angelakis KA (ed) Molecular Biology & Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, NederlandGoogle Scholar
  49. Courtois N, Gaire F, Mauro M, Toutain S, Burrus M, Pink L, Walter B, Audran J, Duteurtre B (1997) Electroporation of grapevine protoplast: Inoculation of GFLV V into grapevine for the screening of transgenic plants. Proceeding of the 12th ICGV Meeting, Abstracts, LisbonGoogle Scholar
  50. Coutos-Thevenot P, Mauro MC, Breda C, Buffard D, Esnault R, Hain R, Boulay M (1998) First approaches for improving through molecular way grapevine tolerance to fungus disease. Resumes, VIIeme Symposium International sur la Genetique et l’Amellioration de la Vigne. MontpellierGoogle Scholar
  51. Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors ’ A defence against microbial infection in plants. Annu Rev Plant Physiol 35:243-275CrossRefGoogle Scholar
  52. De Beer A, Vivier M (2008) Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC Plant Biol. 8:75PubMedCrossRefGoogle Scholar
  53. De Francesco L (2006) Vintage genetic engineering. Nature Biotechnology 26 (3):261-263CrossRefGoogle Scholar
  54. Destefano-Beltran L, Nagpala PG, Cetiner SM, Denny T, Jaynes MJ (1993) Using genes encoding novel peptides and proteins to enhance disease resistance in plants. In: Chet I (ed) Biotechnology in Plant Disease Control. John Wiley & Sons, Inc New YorkGoogle Scholar
  55. Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41:339–367CrossRefGoogle Scholar
  56. During J, Porsch P, Fladung M, Lorz H (1993) Thransgenic potato plants resistant to the phytopathogenic bacterium Ervinia corotovora. Plant J 3:587–598CrossRefGoogle Scholar
  57. Fink J, Boman A, Boman HG, Merrifield RB (1989) Design, synthesis and antibacterial activity of cecropinilike model peptides. Int J Peptide Protein Res 33:412–421Google Scholar
  58. Flor HH (1942) Inheritance of pathogenicity in Melanospora lini. Phytopathol 32:653–669Google Scholar
  59. Flor HH (1956) The complementary genic system in flax and flax rust. Adv Genet 8:29–54CrossRefGoogle Scholar
  60. Franks TK, Powell JS, Choimes S, Marsh E, Iocco P, Sinclair B J, Ford C M, van Heewijck R (2006) Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res 15:181–195PubMedCrossRefGoogle Scholar
  61. Gabriel DW, Rolfe BG (1990) Working models of specific recognition in plant-microbe interactions. Annu Rev Phytopathol 28:365–391CrossRefGoogle Scholar
  62. Galun E, Breiman A (1997) Transgenic plants. Imperial College Press, LondonGoogle Scholar
  63. Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) M Molecular characterization of grapevine plants transformed with GFLV resistance genes. Plant Cell Rep 24:655–662PubMedCrossRefGoogle Scholar
  64. Golembovski DV, Lomonossov GP, Zaitlin M (1990) Plants transformed with tobacco mosaic VIRus nonstructural gene sequence are resistant to the VIRus. Proc Natl Acad Sci USA 87:6311–6315CrossRefGoogle Scholar
  65. Gölless R, da Camara Machado A, Minafra A, Savino G, Saldareli GP, Marteli H, Puringer H, Katinger H, Laimer da Camara Machado M (1998) Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabis mosaic virus, grapevine virus A and grapevine virus B. Resumes, VIIeme Symp Intern sur la Genetique et l’amellioration de la Vigne. MontpellierGoogle Scholar
  66. Gölless R, da Camara Machado A, Tsolova V, Bouquet A, Moser R, Katinger H, Laimer da Camara Machado M (1997) Transformation of somatic embryos of Vitis sp with different constructs containing nucleotide sequences from nepovirus coat protein genes. Acta Hortic 447:265–272Google Scholar
  67. Gray DJ, Meredith CP (1992) The Grape. In: Hamershlag F, Litz RE (eds) Biotechnology in Agriculture, N8: Biotechnology of Perennial Crops. CAB International, WallingfordGoogle Scholar
  68. Gressel J, Galun E (1994) Genetic controls of photooxidant tolerance. In Foyer CH, Mullineaux PM (eds) Causes of Phytooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca RatonGoogle Scholar
  69. Gutoranov P, Tsvetkov I, Colova-Tsolova V, Atanassov A (2001) Genetically engineered grapevines carrying gflv coat protein and antifreeze genes. Agric Consp Scient 66 (1):71-76Google Scholar
  70. Haberman E (1972) Bee and wasp venoms. Science 177:314–322CrossRefGoogle Scholar
  71. Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel J (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156PubMedCrossRefGoogle Scholar
  72. Holmström JO, Welin B, Mandal A, Kritiansdottir I, Teeri TH, Lamark T, Strom AR, Pavla ET (1994) Production of the Escherichia coli betain-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine in transgenic plants. Plant J 6:749–758PubMedCrossRefGoogle Scholar
  73. Hung XS, Mullins MG (1989) Application of biotechnology to transferring alien genes to grapevine. Hereditas 11:9–11Google Scholar
  74. Jaines JM, Burton CA, Barr SB, Jeffers GW, White JL, Enright FM, Klei TR, Laine RA, Julian GR (1988) In vitro cytocidal effect of novel lytic peptides on Plasmodium falcyparum and Tryponosoma cruzi. FSAEB J 2:2878–2883Google Scholar
  75. Keen NT (1990) Gene-for-gene complementary in plant-pathogen interactions. Annu Rev Genet 24:447–463PubMedCrossRefGoogle Scholar
  76. Keen NT, Dawson WO (1992) Pathogen avirulence genes and elicitors of plant defense. In: Boller T, Mains F (eds) Genes Involved in Plant Defense, Vol 8, Plant Gene research. Springer-Verlag, New YorkGoogle Scholar
  77. Kikkert JR, Ali GS, Striem MJ, Martens MH, Wallace PG, Molino L, Reisch BI (1997) Genetic engineering of grapevine (Vitis sp) for enhancement of disease resistance. Acta Horticult 447:273–279Google Scholar
  78. Kikkert JR, Reustle GM, Ali GS, Wallace PG, Reisch BI (1998) Expression of a fungal chitinase in Vitis vinifera L Merlot and Chardonnay plants produced by biolistic transformation. Resumes, VIIeme Symp Intern sur la Genetique et l’Amellioration de la Vigne. MontpellierrGoogle Scholar
  79. Kikkert JR, Thomas MR, Reisch BI (2001) Grapevine genetic engineering. In: Roubelakis-Angelakis KA (ed) Molecular Biology & Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, NederlandGoogle Scholar
  80. Krastanova S, Ling JS, Zhu HY, Xue B, Burr TJ, Gonsalves D (1998) Development of transgenic grapevine rootstocks with the genes from grapevine fanleaf virus and grapevine leafroll associated closteroviruses 2 and 3. Resumes VIIeme Symp Intern sur la Genetique et L’Amellioration de la Vigne. MontpellierGoogle Scholar
  81. Krastanova S, Ling JS, Zhu HY, Xue B, Burr TJ, Gonsalves D (2000) Development of transgenic grapevine rootstocks with the genes from grapevine fanleaf virus and grapevine leafroll associated closteroviruses 2 and 3. Acta Hortic 528 (I):367-372Google Scholar
  82. Krastanova S, Marc-Martin S, Gugerli P, Sigrist-Prince, M-E, Spielmann A (1996) Transformation genetique d’embryos somatiques de viqne par Agrobacterium tumefaciens et regeneration de plants exprimant la protein capsidiale et la replicase du virus du GFLV et ou de ArMV. The 2nd Colmar Symp for Biological Sciences, Plant Biology, May 2-3. CREFColmarGoogle Scholar
  83. Krastanova S, Perrin M, Barbier P, Demangeat G, Cornuet P, Bardonet N, Otten L, Pink L, Walter B (1995) Transformation of grapevine rootstock with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Rep 14:550–554Google Scholar
  84. Krastanova S, Perrin M, Barbier P, Demangeat G, Walter B (1995) Transformation de la vigne avec le gene de la proteine de coque d’un virus transmis par nematodes, le grapevine fanleaf nepovirus (GFLV), et tests de protection vis a vis du court-noue. Communication aux Rencontre de virology vegetale. CNRS/INRA, Aussios, JanvierGoogle Scholar
  85. Krastanova S, Walter B, Perrin M, Cornuet P, Bardonet N, Pinck L, Otten L (1993) Transfer and expression of the coat protein gene of grapevine fanleaf virus in grapevine. Extended abstracts of the 11th Meeting ICVG, Montreux, Switzerland, 6-9 Sept. Federal Agricultural Research Station of Changins, CH-Nyon, SwitzerlandGoogle Scholar
  86. Lamb CG, Lawton MA, Dron M, Dixon R (1989) Signals and transduction mechanisms for activation of plant defences against microbial attack. Cell 56:215–224PubMedCrossRefGoogle Scholar
  87. Le Gall O, Torregrosa L, Danglot Y, Candresse T, Bouquet A (1994) Agrobacterium mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Sci 102:161–170CrossRefGoogle Scholar
  88. Logemann J, Jack G, Tommerup H, Mundy J, Schell J (1992) Expression of a barley ribosomeinactivating protein leads to increased fungal protection in transgenic tobacco plants. Bio/Technology: 305-308Google Scholar
  89. Logemann J, Shell J (1993) The impact of biotechnology on plant breeding, or how to combine increases in agricultural productivity with an improved protection of the environment. In: Chet I (ed) Biotechnology in Plant Disease Control. John Wiley & Sons, Inc, New YorkGoogle Scholar
  90. Maghuly F, Leopold S, Machado A, Fernandez E, Khan M, Gambino G, Laimer M (2006) Molecular characterization of grapevines plants transformed with GFLV resistance gene. Plant Cell Rep 25:546–553PubMedCrossRefGoogle Scholar
  91. Martinelli L, Buzkan N, Minafra A, Saldarelli P, Costa D, Poletti V, Festi S, Perl A, Martelli GP (1998) Genetic transformation of grape for resistance to viruses related to the rugose wood disease complex. Resumes VIIeme Symp Intern sur la Genetique et l’Amellioration de la Vigne, MontpellierGoogle Scholar
  92. Mauro MC, Toutain S, Walter B, Pinck L, Otten L, Coutos-Thevenot P, Deloire A, Barbier P (1995) High efficiency regeneration grapevine plants transformed with the GFLV coat protein gene. Plant Sci 112:97–106CrossRefGoogle Scholar
  93. Mauro MC, Walter B, Pink L, Valat L, Barbier P, Boulay M, Coutos-Thevenot P (1998) Analysis of 41B grapevine rootstocks for grapevine fanleaf virus resistance. Resumes VIIeme Symp Intern sur la Genetique et l’amellioration de la Vigne, MontpellierGoogle Scholar
  94. Mezzetti B, Pandolfini T., Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotech 2:18Google Scholar
  95. Murata N, Ishizaki-Nishizava O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in chilling sensitivity of plants. Nature 356:710–713CrossRefGoogle Scholar
  96. Negrul A (1936) The Genetics Basis of Grape Breeding. The Lenin Academy of Agricultural Science Press, LeningradGoogle Scholar
  97. Okada M, Natori S (1985) Primary structure of sarcotoxin I, and antibacterial protein induced in hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 260:7174–7177PubMedGoogle Scholar
  98. Pearson R, Goheen A (1988) Compendium of Grape Diseases MN: APS Press, St PaulGoogle Scholar
  99. Perl A, Colova-Tsolova V, Esdat Y, (2004) Agrobacterium –mediated transformation of grape embryogenic calli. In: Curtis I (ed) Transgenic Crop of the World, Essential Protocols. Kluwer Academic Publishers, DordrechtGoogle Scholar
  100. Perl A, Eshdat Y (1998) DNA Transfer and gene expression in transgenic grapes. In: Tombs MP (ed) Biotechnology and Genetic Engineering Reviews. Intercept Ltd, AndoverGoogle Scholar
  101. Powel AP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743CrossRefGoogle Scholar
  102. Pretorius IS (2005) Grape and wine biotechnology: challenges, opportunities and potential benefits. Austr J Grape Wine Res 1 (2):83-108CrossRefGoogle Scholar
  103. Raisch B, Pratt C (1996) Grapes. In: Janic J, Moore J (eds) Fruit Breeding. Vine and Small Fruits. John Wiley & Sons, Inc New YorkGoogle Scholar
  104. Rezaian MA, Skene JG, Ellis JG (1988) Anti-sense RNAs of cucumber mosaic virus in transgenic plants assessed for control of the virus. Plant Mol Biol 11:463–471CrossRefGoogle Scholar
  105. Roustan JP, Colrat S, Dalmayrac S, Guillen P, Guis M, Martinez-Reina G, Deswarte C (1998) Expression in grapevine of an NADPH-dependent adelhyde reductase which detoxifies eutypine, a toxin from Eutypa lata. Resumes, VIIeme Symp Intern sur la Genetique etl’amellioration de la Vigne, MontpellierGoogle Scholar
  106. Sanchez-Serano J, Amati S, Dammann C, Ebneth M, Herbers J, Hildmann T, Lorberth R, Prat S, Willmitzer L (1993) Proteinase inhibitors in the potato response to wounding. In: Chet I (ed) Biotechnology in Plant Disease Control. John Wiley & Sons, Inc, New YorkGoogle Scholar
  107. Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance-deriving resistance genes from the parasite’s own genome. Theor Biol 113:395–405CrossRefGoogle Scholar
  108. Scorza R, Cordts JM, Gray DJ, Gonsalves D, Emershad RL, Ramming DW (1996) Producing transgenic Thompson Seedless grape (Vitis vinifera L) plants. J Am Soc Hortic Sci 121:616–619Google Scholar
  109. Scorza R, Cordts JM, Ramming DW, Emershad RL (1995) Transformation of grape (Vitis vinifera L) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Reports 14:589–592CrossRefGoogle Scholar
  110. Scorza, R, Gray DJ (2001) Disease resistance in Vitis , US Patent No. 6,232,528 B1Google Scholar
  111. Scorza, R, Gray DJ (2006) Disease resistance in Vitis , US Patent No. 7,151,203 B2Google Scholar
  112. Selsted M, Broun DM, Delange RG, Harwig SL, Lehrer RI (1985) Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophilis. J Biol Chem 260:4579–4584PubMedGoogle Scholar
  113. Skopelitis DS, Paranychianakis NV, Pliakonis ED, Paschalidis KA, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic Glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781PubMedCrossRefGoogle Scholar
  114. Smith CJ (1991) Biochemistry and Molecular Biology of Plant-Pathogen Interaction. Clarendon Press, OxfordGoogle Scholar
  115. Spielman A, Krastanova S, Douet–Orhant V, Marc-Martin S, Prince Sigrist MH, Gugerli P (1998) Resistance to nepoVIRuses in grapevine: expression of several putative resistance genes in transgenic plants. Resumes VIIeme Symp Intern sur la Genetique et l’Amellioration de la Vigne MontpellierGoogle Scholar
  116. Spielmann A, Douet-Orhand V, Krastanova S, Gugerli P (2000) Resistance to nepoviruses in grapevine and Nicotiana benthamiana: Expression of several putative resistance genes in transgenic plants. Acta Hortic 528 (I):373-378Google Scholar
  117. Spielmann A, Krastanova S, Douet-Ohrant V, Marc-Martin S, Prince Sigrist, M-E, Gugerli P (1997) Resistance to nepoviruses in grapevine: Expression of several putative resistance genes in transgenic plants. Proc of the 12th ICGV Meeting, Abstracts, LisbonGoogle Scholar
  118. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248PubMedCrossRefGoogle Scholar
  119. Tesniere C Torregrosa L, Pradal M, Souquet J, Gilles C, Santos JD, Chatelet P, Gunata Z (2006) Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves. J Exp Bot 57 (1):91-99PubMedCrossRefGoogle Scholar
  120. The French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggest hexaploididzation in major angiosperm phyla. Nature 449(7161):463-467Google Scholar
  121. Torregrosa L (1995) Biotechnologie de la vigne: les techniques de regeneration in vitro. Progr Agric Vitic 112:479–489Google Scholar
  122. Torregrosa L, Le Gall O, Danglot Y, Candresse T, Bouquet A (1994) Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of the grape chrome mosaic virus (GCMV). Proc of the VIth International Symposium on Grape Breeding, Yalta, Crime, UkraineGoogle Scholar
  123. Tsvetkov I, Tsolova V, Atanassov A (2000) Gene transfer for stress resistance in grapes. Acta Hortic 528 (I):389-394Google Scholar
  124. Valat L, Fuchs M, Burrus M (2006) Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of Grapevine fanleaf virus: Characterization and reaction to virus infection upon protoplast electroporation Plant Science 170(4):739-747Google Scholar
  125. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2(12): e1326 doi:10.1371/journal.poe.0001326PubMedCrossRefGoogle Scholar
  126. Vidal J, Kikkert J, Malnoy M, Wallace P, Barnard J, Reisch B (2006) Evaluation of transgenic Chardonnay (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15(1):69-82PubMedCrossRefGoogle Scholar
  127. Vidal J, Kikkert J, Wallace,P, Reisch B (2003) High-efficiency biolistic co-transformation and regeneration of Chardonnay (Vitis vinifera L) containing npt-II and anthimicrobial peptide genes. Plant Cell Rep 22 (4):252-260PubMedCrossRefGoogle Scholar
  128. Vidal JR, Kikkert JB, Donzelli BD, Wallace PG, Reisch BI (2006) Biolistic transformation of grapevine using minimal gene cassete technology. Plant Cell Rep 25:807–814PubMedCrossRefGoogle Scholar
  129. Walton J (1997) Biochemical Plant Pathology. In: Day PM, Harborne JB (eds) Plant Biochemistry. Academic Press, San DiegoGoogle Scholar
  130. Wolter FP, Schmidt R and Heinz E (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J 11:4685–4692PubMedGoogle Scholar
  131. Xue B, Ling K-S, Reid C, Krastanova S, Sekiya M, Momol E, Sule S, Mozar J, Gonsalves D (1999) Transformation of five grape rootstocks with plant VIRus gene and a VIR E2 gene from Agrobacterium tumefaciens. In vitro Cell Dev Biol- Plant 35:226–231CrossRefGoogle Scholar
  132. Yamamato T, Iketani H, Ieki H, Nishizawa Y, Nostuka K, Hibi T, Hayashi T, Matusta N (2000) Transgeneic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646CrossRefGoogle Scholar
  133. Yoneyama J, Hiroyuki A (1993) Transgenic plants resistant to diseases by the detoxification of toxins. In: Chet I (ed) Biotechnology in Plant Disease Control. John Wiley & Sons, Inc, New YorkGoogle Scholar
  134. Zasloff M (1987) Magianins, a class of antimicrobial peptides from Xenopus laevis skin: isolation, characterization of two active forms, and partial c DNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • V. Colova-Tsolova
    • 1
  • A. Perl
    • 2
  • S. Krastanova
    • 3
  • S. Samuelian
    • 1
  • A. Atanassov
    • 4
  1. 1.Center for Viticulture and Small Fruit ResearchCollege of Engineering Sciences, Technology and Agriculture, Florida Agricultural and Mechanical University ’ TallahasseeUSA
  2. 2.Department of Fruit Tree Breeding and Molecular Genetics, Institute of Horticulture, Agricultural Research Organization, The Volcani Center50250 Bet-DaganIsrael
  3. 3.Department of Plant Pathology, New York State Agricultural Experimental StationCornell University14456 GenevaUSA
  4. 4.AgroBio InstituteBulgaria

Personalised recommendations