Recent Trends in Grapevine Genetic Engineering

  • G.M. Reustle
  • G. Buchholz

In the former edition, genetic engineering was described as a powerful tool for plant breeding and research. In two chapters (Colova-Tsolova et al. 2001, Kikkert et al. 2001), applications to grapevine breeding and genetics, transformation methods, selection and regeneration systems for transgenic grapevines and the current status of grapevine transformation projects were comprehensively described. In addition strategies for disease and stress tolerance, regulatory issues and public perception were presented.


Embryogenic Callus Vitis Vinifera Embryogenic Cell Suspension Biolistic Transformation Grapevine Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agüero CB, Dandekar A, Meredith C (2003) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of (Vitis vinifera L.) L. expressing the pear PGIP gene. Acta Hort. 603:473–478Google Scholar
  2. Agüero CB, Meredith CP, Dandekar AM (2006) Genetic transformation of (Vitis vinifera L.) L cvs Thomson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45:1–8Google Scholar
  3. Batoko H, Zheng HQ, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2217PubMedCrossRefGoogle Scholar
  4. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedCrossRefGoogle Scholar
  5. Ben Amar A, Cobanov P, Boonrod K, Krczal G, Bouzid S, Ghorbel A, Reustle GM (2007) Efficient procedure for grapevine embryogenic suspension establishment and plant regeneration: role of condition medium for cell proliferation. Plant Cell Rep 26:1439–1447PubMedCrossRefGoogle Scholar
  6. Bornhoff BA, Harst M, Zyprian E, Töpfer R (2005) Transgenic plants of (Vitis vinifera L.) cv Seyval blanc. Plant Cell Rep 24:433–438PubMedCrossRefGoogle Scholar
  7. Bouquet A, Torregrosa L, Iocco P, Thomas MR (2006) Grapevine (Vitis vinifera L.) In: Wang K (ed) Agrobacterium Protocols. Methods in Molecular Biology. Humana Press Inc.Google Scholar
  8. Colova-Tsolova V, Perl A, Krastanova S, Tsvetkov I., Atanassov A (2001) Genetically engineered grape for disease and stress tolerance. In: Roubelakis-Angelakis KA (ed) Molecular Biology and Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  9. Costantini E, Landi L, Silvestroni O, Pandolfini T, Spena A, Mezzetti B (2007) Auxin synthesisencoding transgene enhances grape fecundity. Plant Physiol 143:1689–1694PubMedCrossRefGoogle Scholar
  10. Coutos-Thévenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogeninducible PR10 promoter. J Exp Bot 52:901–910PubMedCrossRefGoogle Scholar
  11. Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9:9–20PubMedCrossRefGoogle Scholar
  12. DeFrancesco L, Watanabe M (2008) Vintage genetic engineering. Nature Biotech 26:261–263CrossRefGoogle Scholar
  13. Dhekney SA, Li ZT, Dutt M, Gray DJ (2008) Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape). Plant Cell Rep 27:865–872PubMedCrossRefGoogle Scholar
  14. Dutt M, Li ZT, Kelley KT, Dhekney SA, Van Aman M, Tattersall J, Gray DJ (2007) Transgenic rootstock protein transmission in grapevines. Acta Hort 738:749–754Google Scholar
  15. Emershad RI, Ramming DW (1994) Somatic embryogenesis and plant development from immature zygotic embryos of seedless grapes (Vitis vinifera L). Plant Cell Rep 14:6–12CrossRefGoogle Scholar
  16. Franks T, Ding G, Thomas M (1998) Regeneration of transgenic Vitis vinifera L. Sultana plants: Genetic and phenotypic analysis. Mol Breed 4:321–333CrossRefGoogle Scholar
  17. Franks TK, Powell KS, Choimes S, Marsh E, Iocco P, Sinclair BJ, Ford CM, van Heeswijck R (2006) Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res 15:181–195PubMedCrossRefGoogle Scholar
  18. Fuchs M. (2003) Transgenic resistance: advances and prospects. 15th meeting of the international council for the study of virus and virus-like diseases of the grapevine (ICVG), 3rd-7th April 2006, Stellenbosch, South AfricaGoogle Scholar
  19. Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep 24:655–662PubMedCrossRefGoogle Scholar
  20. Gambino G, Ruffa P, Vallania R, Gribaudo I (2007) Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tiss Organ Cult 90:79–83CrossRefGoogle Scholar
  21. Gray DJ, Li Z, Jayasankar S (2005) Tissue-specific expression of lytic peptides in transgenic grapevines via use of a NPTII/GFP fusion marker. Acta Hort 692:125–130Google Scholar
  22. Harst M, Bornhoff BA, Töpfer R (2006) Investigation of pollen dispersal and out crossing events with transgenic grapevines: a pilot study. 9th International conference on Grape Genetics and Breeding, 2nd-6th July 2006, Udine, ItalyGoogle Scholar
  23. Hinrichsen P, Reyes MA, Castro A, Araya S, Garnier M, Prieto H, Reyes F, Muñoz C, Dell’Orto, P, Moynihan MR (2005) Genetic transformation of grapevines with Trichoderma harzianum and anti-microbial peptide genes for improvement of fungal tolerance. Acta Hort 689:469–474Google Scholar
  24. Iocco P, Franks T, Thomas MR (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res 10:105–112PubMedCrossRefGoogle Scholar
  25. Jaillon O, et al. (2007) The grapevine genome sequence suggests ancestral exploration in major angiosperm phyla. Nature 449 (7161):463–467PubMedCrossRefGoogle Scholar
  26. Jardak-Jamoussi R, Bouamama B, Wetzel T, Mliki A, Reustle GM, Ghorbel A (2003) Evaluation of different gene constructs for production of resistant grapevines against Grapevine fanleaf virus and Arabis mosaic virus. Acta Hort 603:315–323Google Scholar
  27. Jardak-Jamoussi R, Bouamama B, Mliki A, Ghorbel A, Reustle GM (2008) The use of phosphinothricin resistance as selectable marker for genetic transformation of grapevine. Vitis 47:35–37Google Scholar
  28. Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108CrossRefGoogle Scholar
  29. Kikkert JR, Hébert-Soulé D, Wallace PG, Striem MJ, Reisch BI (1996) Transgenic plantlets form ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep 15:311–316CrossRefGoogle Scholar
  30. Kikkert JR, Vidal JR, Reisch BI (2005) Stable transformation of plant cells by particle bombardment/biolistics. Transgenic Plants: Methods and Protocols. In: Peña L (ed) Methods in Molecular Biology. Humana Press Inc.Google Scholar
  31. Kieffer F, Triouleyre C, Bertsch C, Farine S, Leva Y, Walter B (2004) Mannose and xylose cannot be used as selectable agents for Vitis vinifera L. Vitis 43:35–39Google Scholar
  32. Legrand V, Dalmayrac S, Latché A, Pech J-C, Bouzayen M, Fallot J, Torregrosa L, Bouquet A, Roustan J-P (2003) Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Sci 164:809–814CrossRefGoogle Scholar
  33. Li Z, Jayasankar S, Gray DJ (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivates in transgenic grapevine (Vitis vinifera). Plant Sci 160:877–887PubMedCrossRefGoogle Scholar
  34. Li Z, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley KT, Gray DJ (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42:220–227CrossRefGoogle Scholar
  35. Maghuly F, Leopold S, DaCamara Machado A, Fernandez EB, Khan MA, Gambino G, Gribaudo, I, Schartl A, Laimer M (2006) Molecular characterization of grapevine plants transformed with GFLV resistance genes: II. Plant Cell Rep 25:546–553PubMedCrossRefGoogle Scholar
  36. Martinelli L, Gribaudo I (2001) Somatic embryogenesis in grapevine In: Roubelakis-Angelakis KA (ed) Molecular Biology and Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  37. Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol 2:1–10CrossRefGoogle Scholar
  38. Reustle GM, Wallbraun M, Zwiebel M, Wolf R, Manthey T, Burkhardt C, Lerm T, Vivier M, Krczal G (2003). Selectable marker systems for genetic engineering of grapevine. Acta Hort 603:485-490Google Scholar
  39. Reustle GM, Ebel R, Winterhagen P, Manthey T, Dubois C, Bassler A, Sinn M, Cobanov P, Wetzel T, Krcza, G, Jardak-Jamoussi R, Ghorbel A (2005) Induction of silencing in transgenic grapevines (Vitis sp.). Acta Hort 689:521–528Google Scholar
  40. Reustle GM, Winterhagen P, Jardak-Jamoussi R, Cobanov P, Dubois C, Manthey T, Wetzel T, Ghorbel A, Brendel G, Ipach U, Krczal G (2006) Resistance against nepoviruses: molecular and biological characterisation of transgenic tobacco and grapevine plants. 15th Meeting of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), 3rd-7th April 2006, Stellenbosch, South AfricaGoogle Scholar
  41. Reisch BI, Kikkert JR, Vidal JR, Ali GS, Gadoury DM, Seem RC, Wallace PG (2003) Genetic vtransformation of Vitis vinifera to improve disease resistance. Acta Hortic 603:303–308Google Scholar
  42. Schöb H, Kunz C, Meins FJ (1997) Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol Gen Genet 256:581–585PubMedCrossRefGoogle Scholar
  43. Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053–1063PubMedCrossRefGoogle Scholar
  44. Tèsniere C, Torregrosa L, Pradal M, Souquet JM, Gilles C, Dos Santos K, Chatelet P, Gunata Z (2006) Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves. J Exp Bot 57:91–99PubMedCrossRefGoogle Scholar
  45. Torregrosa L, Iocco P, Thomas MR (2002) Influence of Agrobacterium strain, culture media, and cultivar on the transformation efficiency of Vitis vinifera L. Am J Enol Vitic 53:183–190Google Scholar
  46. Valat L, Fuchs M, Burrus M (2006) Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of Grapevine fanleaf virus: Characterization and reaction to virus infection upon protoplast electroporation. Plant Sci 170: 739-747CrossRefGoogle Scholar
  47. Van der Hoorn RAL, Laurent F, Roth R, De Wit PJGM (2000) Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant Microbe Interact 13:439–446PubMedCrossRefGoogle Scholar
  48. Velasco R, et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLOS One 2, e1326PubMedCrossRefGoogle Scholar
  49. Vidal JR, Kikkert JR, Wallace PG, Reisch BI (2003) High-efficiency biolistic co-transformation and regeneration of Chardonnay (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep 22:252–260PubMedCrossRefGoogle Scholar
  50. Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, Reisch BI (2006a) Biolistic transformation of grapevine using minimal gene cassette Technology. Plant Cell Rep 25:807–814Google Scholar
  51. Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI (2006b) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15:69-82Google Scholar
  52. Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Res 13:165–179PubMedCrossRefGoogle Scholar
  53. Wang Q, Li P, Hanani U, Sahar N, Mawassi M, Gafny R, Sela I, Tanne E, Perl A (2005) Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Plant Sci 168:565–571CrossRefGoogle Scholar
  54. Winterhagen P, Cobanov P, Dubois C, Eisenhauer C, Manthey T, Sinn M, Jardak-Jamoussi R, Wetzel T, Krczal G, Reustle GM (2006) Resistance against nepoviruses by transgene induced gene silencing. 15th Meeting of The International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), 3rd-7th April 2006, Stellenbosch, South AfricaGoogle Scholar
  55. Winterhagen P, Brendel G, Krczal G, Reustle GM (2007) Development of an in vitro dual culture system for grapevine and Xiphinema index as a tool for virus transmission. S Afr J Enol Vitic 28:1–5Google Scholar
  56. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–73PubMedCrossRefGoogle Scholar
  57. Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Schiavo FL (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845–853PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • G.M. Reustle
    • 1
  • G. Buchholz
    • 1
  1. 1.Institute for Plant ResearchRLP-AgroScience GmbH, AlPlantaGermany

Personalised recommendations