Skip to main content

Recent Trends in Grapevine Genetic Engineering

  • Chapter
Grapevine Molecular Physiology & Biotechnology

In the former edition, genetic engineering was described as a powerful tool for plant breeding and research. In two chapters (Colova-Tsolova et al. 2001, Kikkert et al. 2001), applications to grapevine breeding and genetics, transformation methods, selection and regeneration systems for transgenic grapevines and the current status of grapevine transformation projects were comprehensively described. In addition strategies for disease and stress tolerance, regulatory issues and public perception were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agüero CB, Dandekar A, Meredith C (2003) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of (Vitis vinifera L.) L. expressing the pear PGIP gene. Acta Hort. 603:473–478

    Google Scholar 

  • Agüero CB, Meredith CP, Dandekar AM (2006) Genetic transformation of (Vitis vinifera L.) L cvs Thomson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45:1–8

    Google Scholar 

  • Batoko H, Zheng HQ, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2217

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Ben Amar A, Cobanov P, Boonrod K, Krczal G, Bouzid S, Ghorbel A, Reustle GM (2007) Efficient procedure for grapevine embryogenic suspension establishment and plant regeneration: role of condition medium for cell proliferation. Plant Cell Rep 26:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Bornhoff BA, Harst M, Zyprian E, Töpfer R (2005) Transgenic plants of (Vitis vinifera L.) cv Seyval blanc. Plant Cell Rep 24:433–438

    Article  PubMed  CAS  Google Scholar 

  • Bouquet A, Torregrosa L, Iocco P, Thomas MR (2006) Grapevine (Vitis vinifera L.) In: Wang K (ed) Agrobacterium Protocols. Methods in Molecular Biology. Humana Press Inc.

    Google Scholar 

  • Colova-Tsolova V, Perl A, Krastanova S, Tsvetkov I., Atanassov A (2001) Genetically engineered grape for disease and stress tolerance. In: Roubelakis-Angelakis KA (ed) Molecular Biology and Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Costantini E, Landi L, Silvestroni O, Pandolfini T, Spena A, Mezzetti B (2007) Auxin synthesisencoding transgene enhances grape fecundity. Plant Physiol 143:1689–1694

    Article  PubMed  CAS  Google Scholar 

  • Coutos-Thévenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogeninducible PR10 promoter. J Exp Bot 52:901–910

    Article  PubMed  Google Scholar 

  • Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9:9–20

    Article  PubMed  CAS  Google Scholar 

  • DeFrancesco L, Watanabe M (2008) Vintage genetic engineering. Nature Biotech 26:261–263

    Article  CAS  Google Scholar 

  • Dhekney SA, Li ZT, Dutt M, Gray DJ (2008) Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape). Plant Cell Rep 27:865–872

    Article  PubMed  CAS  Google Scholar 

  • Dutt M, Li ZT, Kelley KT, Dhekney SA, Van Aman M, Tattersall J, Gray DJ (2007) Transgenic rootstock protein transmission in grapevines. Acta Hort 738:749–754

    Google Scholar 

  • Emershad RI, Ramming DW (1994) Somatic embryogenesis and plant development from immature zygotic embryos of seedless grapes (Vitis vinifera L). Plant Cell Rep 14:6–12

    Article  CAS  Google Scholar 

  • Franks T, Ding G, Thomas M (1998) Regeneration of transgenic Vitis vinifera L. Sultana plants: Genetic and phenotypic analysis. Mol Breed 4:321–333

    Article  CAS  Google Scholar 

  • Franks TK, Powell KS, Choimes S, Marsh E, Iocco P, Sinclair BJ, Ford CM, van Heeswijck R (2006) Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res 15:181–195

    Article  PubMed  CAS  Google Scholar 

  • Fuchs M. (2003) Transgenic resistance: advances and prospects. 15th meeting of the international council for the study of virus and virus-like diseases of the grapevine (ICVG), 3rd-7th April 2006, Stellenbosch, South Africa

    Google Scholar 

  • Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep 24:655–662

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Ruffa P, Vallania R, Gribaudo I (2007) Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tiss Organ Cult 90:79–83

    Article  CAS  Google Scholar 

  • Gray DJ, Li Z, Jayasankar S (2005) Tissue-specific expression of lytic peptides in transgenic grapevines via use of a NPTII/GFP fusion marker. Acta Hort 692:125–130

    CAS  Google Scholar 

  • Harst M, Bornhoff BA, Töpfer R (2006) Investigation of pollen dispersal and out crossing events with transgenic grapevines: a pilot study. 9th International conference on Grape Genetics and Breeding, 2nd-6th July 2006, Udine, Italy

    Google Scholar 

  • Hinrichsen P, Reyes MA, Castro A, Araya S, Garnier M, Prieto H, Reyes F, Muñoz C, Dell’Orto, P, Moynihan MR (2005) Genetic transformation of grapevines with Trichoderma harzianum and anti-microbial peptide genes for improvement of fungal tolerance. Acta Hort 689:469–474

    Google Scholar 

  • Iocco P, Franks T, Thomas MR (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res 10:105–112

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, et al. (2007) The grapevine genome sequence suggests ancestral exploration in major angiosperm phyla. Nature 449 (7161):463–467

    Article  PubMed  CAS  Google Scholar 

  • Jardak-Jamoussi R, Bouamama B, Wetzel T, Mliki A, Reustle GM, Ghorbel A (2003) Evaluation of different gene constructs for production of resistant grapevines against Grapevine fanleaf virus and Arabis mosaic virus. Acta Hort 603:315–323

    CAS  Google Scholar 

  • Jardak-Jamoussi R, Bouamama B, Mliki A, Ghorbel A, Reustle GM (2008) The use of phosphinothricin resistance as selectable marker for genetic transformation of grapevine. Vitis 47:35–37

    CAS  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Kikkert JR, Hébert-Soulé D, Wallace PG, Striem MJ, Reisch BI (1996) Transgenic plantlets form ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep 15:311–316

    Article  CAS  Google Scholar 

  • Kikkert JR, Vidal JR, Reisch BI (2005) Stable transformation of plant cells by particle bombardment/biolistics. Transgenic Plants: Methods and Protocols. In: Peña L (ed) Methods in Molecular Biology. Humana Press Inc.

    Google Scholar 

  • Kieffer F, Triouleyre C, Bertsch C, Farine S, Leva Y, Walter B (2004) Mannose and xylose cannot be used as selectable agents for Vitis vinifera L. Vitis 43:35–39

    CAS  Google Scholar 

  • Legrand V, Dalmayrac S, Latché A, Pech J-C, Bouzayen M, Fallot J, Torregrosa L, Bouquet A, Roustan J-P (2003) Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Sci 164:809–814

    Article  CAS  Google Scholar 

  • Li Z, Jayasankar S, Gray DJ (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivates in transgenic grapevine (Vitis vinifera). Plant Sci 160:877–887

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley KT, Gray DJ (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42:220–227

    Article  CAS  Google Scholar 

  • Maghuly F, Leopold S, DaCamara Machado A, Fernandez EB, Khan MA, Gambino G, Gribaudo, I, Schartl A, Laimer M (2006) Molecular characterization of grapevine plants transformed with GFLV resistance genes: II. Plant Cell Rep 25:546–553

    Article  PubMed  CAS  Google Scholar 

  • Martinelli L, Gribaudo I (2001) Somatic embryogenesis in grapevine In: Roubelakis-Angelakis KA (ed) Molecular Biology and Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol 2:1–10

    Article  Google Scholar 

  • Reustle GM, Wallbraun M, Zwiebel M, Wolf R, Manthey T, Burkhardt C, Lerm T, Vivier M, Krczal G (2003). Selectable marker systems for genetic engineering of grapevine. Acta Hort 603:485-490

    Google Scholar 

  • Reustle GM, Ebel R, Winterhagen P, Manthey T, Dubois C, Bassler A, Sinn M, Cobanov P, Wetzel T, Krcza, G, Jardak-Jamoussi R, Ghorbel A (2005) Induction of silencing in transgenic grapevines (Vitis sp.). Acta Hort 689:521–528

    CAS  Google Scholar 

  • Reustle GM, Winterhagen P, Jardak-Jamoussi R, Cobanov P, Dubois C, Manthey T, Wetzel T, Ghorbel A, Brendel G, Ipach U, Krczal G (2006) Resistance against nepoviruses: molecular and biological characterisation of transgenic tobacco and grapevine plants. 15th Meeting of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), 3rd-7th April 2006, Stellenbosch, South Africa

    Google Scholar 

  • Reisch BI, Kikkert JR, Vidal JR, Ali GS, Gadoury DM, Seem RC, Wallace PG (2003) Genetic vtransformation of Vitis vinifera to improve disease resistance. Acta Hortic 603:303–308

    Google Scholar 

  • Schöb H, Kunz C, Meins FJ (1997) Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol Gen Genet 256:581–585

    Article  PubMed  Google Scholar 

  • Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Tèsniere C, Torregrosa L, Pradal M, Souquet JM, Gilles C, Dos Santos K, Chatelet P, Gunata Z (2006) Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves. J Exp Bot 57:91–99

    Article  PubMed  Google Scholar 

  • Torregrosa L, Iocco P, Thomas MR (2002) Influence of Agrobacterium strain, culture media, and cultivar on the transformation efficiency of Vitis vinifera L. Am J Enol Vitic 53:183–190

    CAS  Google Scholar 

  • Valat L, Fuchs M, Burrus M (2006) Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of Grapevine fanleaf virus: Characterization and reaction to virus infection upon protoplast electroporation. Plant Sci 170: 739-747

    Article  CAS  Google Scholar 

  • Van der Hoorn RAL, Laurent F, Roth R, De Wit PJGM (2000) Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant Microbe Interact 13:439–446

    Article  PubMed  Google Scholar 

  • Velasco R, et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLOS One 2, e1326

    Article  PubMed  Google Scholar 

  • Vidal JR, Kikkert JR, Wallace PG, Reisch BI (2003) High-efficiency biolistic co-transformation and regeneration of Chardonnay (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep 22:252–260

    Article  PubMed  CAS  Google Scholar 

  • Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, Reisch BI (2006a) Biolistic transformation of grapevine using minimal gene cassette Technology. Plant Cell Rep 25:807–814

    Google Scholar 

  • Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI (2006b) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15:69-82

    Google Scholar 

  • Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Res 13:165–179

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Li P, Hanani U, Sahar N, Mawassi M, Gafny R, Sela I, Tanne E, Perl A (2005) Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Plant Sci 168:565–571

    Article  CAS  Google Scholar 

  • Winterhagen P, Cobanov P, Dubois C, Eisenhauer C, Manthey T, Sinn M, Jardak-Jamoussi R, Wetzel T, Krczal G, Reustle GM (2006) Resistance against nepoviruses by transgene induced gene silencing. 15th Meeting of The International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), 3rd-7th April 2006, Stellenbosch, South Africa

    Google Scholar 

  • Winterhagen P, Brendel G, Krczal G, Reustle GM (2007) Development of an in vitro dual culture system for grapevine and Xiphinema index as a tool for virus transmission. S Afr J Enol Vitic 28:1–5

    CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–73

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Schiavo FL (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845–853

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Reustle, G., Buchholz, G. (2009). Recent Trends in Grapevine Genetic Engineering. In: Roubelakis-Angelakis, K.A. (eds) Grapevine Molecular Physiology & Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2305-6_18

Download citation

Publish with us

Policies and ethics