Advertisement

Molecular Aspects of Grapevine-Pathogenic Fungi Interactions

  • E. Gomès
  • P. Coutos-Thévenot

Grapevine is a major and highly valuable fruit crop with roughly 2.25 mil ha grown worldwide in 2007 (source: U.S. Food and Agriculture Organization). Unfortunately, most of the premium cultivars used for winemaking, including the widely used European Vitis vinifera cultivars, are highly susceptible to several pathogenic microorganisms including fungi, oomycetes, bacteria, phytoplasma and viruses. In the past 15 years, the understanding of grapevinepathogen interactions has entered the molecular era and will most certainly constitute a basis for future improvement of grapevine disease tolerance. After a brief presentation of the main fungal- or oomycete-induced diseases, this chapter aims to give an overview of some aspects of grapevine-pathogenic fungi or oomycete interactions, at the molecular level. It includes an overview of resistance gene analogs, elicitors that induce defense reactions in grapevine, signalling pathways and gene activation.

Keywords

Powdery Mildew Downy Mildew Nucleotide Binding Site Vitis Vinifera Grape Berry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian M, Jeandet P, Bessis R, Joubert JM (1996) Induction of phytoalexin (resveratrol) synthesis in grapevine leaves reated with aluminum chloride (AlCl3). J Agric Food Chem 44:1979-1981CrossRefGoogle Scholar
  2. Adrian M, Jeandet P, Veneau J, Weston LA, Bessis R (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23:1689-1702CrossRefGoogle Scholar
  3. Adrian M, Jeandet P, Douillet-Breuil AC, Tesson L, Bessis R (2000) Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J Agric Food Chem 48:6103-5PubMedCrossRefGoogle Scholar
  4. Ausubel FM (2005) Are innate immune signalling pathways in plant, animals concerved? Nat Immunol 6:973-797PubMedCrossRefGoogle Scholar
  5. Aziz A, Poinssot B, Daire X, Adrian M, Bezier A, Lambert B, Joubert J M, Pugin A (2003) Laminarin elicits defense responses in grapevine, induces protection against Botrytis cinerea, Plasmopara viticola. Mol Plant Microbe Interact 16:1118-1128PubMedCrossRefGoogle Scholar
  6. Aziz A, Heyraud A, Lambert B (2004) Oligogalacturonide signal transduction, induction of defense-related responses, protection of grapevine against Botrytis cinerea. Planta 218:767-774PubMedCrossRefGoogle Scholar
  7. Aziz A, Gauthier A, Bezler A, Poinssot B, Joubert JM, Pugin A, Heyraud A, Baillieul F (2007) Elicitor, resistance-nducing activities of beta-1,4 cellodextrins in grapevine, comparison with beta-1,3 glucans, alpha-1,4 oligogalacturonides. J Exp Bot 58:1463-1472PubMedCrossRefGoogle Scholar
  8. Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in leucine in nucleotide binding site-Leucine-rich repeat genes in cereals. Genome Res 12:1871-1884PubMedCrossRefGoogle Scholar
  9. Bais AJ, Mutphy P J, Dry IB (2000) The molecular regulation of stilbene phytoalexin biosynthesis in Vitis vinifera during grape berry development. Austral J Plant Physiol 27:425-433CrossRefGoogle Scholar
  10. Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic, physical mapping of the grapevine powdery mildew resistance gene Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370-377PubMedCrossRefGoogle Scholar
  11. Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281-2285PubMedCrossRefGoogle Scholar
  12. Bertsch C, Joly D, Walter B (2003) Sequence of a putative Vitis vinifera PR-1. Vitis 42:103-104Google Scholar
  13. Bisson LF, Waterhouse AL, Ebeler SE, Walker AM, Lapsley JT (2002) The present, the future of the international wine industry. Nature 418:969-699CrossRefGoogle Scholar
  14. Blein J-P, Coutos-Thévenot P, Marion D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defense mechanisms. Trends Plant Sci 7:293-296PubMedCrossRefGoogle Scholar
  15. Bonomelli A, Mercier L, Franchel J, Baillieul F, Benizri E, Mauro MC (2004) Response of grapevine defenses to UV-C exposure. Am J Enol Vitic 55:51-59Google Scholar
  16. Borie B, Jeandet P, Parize A, Bessis R, Adrian M (2004) Resveratrol, stilbene synthase mRNA production in grapevine leaves treated with biotic, abiotic phytoalexin elicitors. Am J Enol Vitic 55:60-64Google Scholar
  17. Bru R, Selles S, Casado-Vela J, Belchi-Navarro S, Pedreno MA (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54:65-71PubMedCrossRefGoogle Scholar
  18. Bruno G, Sparapano L (2006a) Effects of three esca-associated fungi on Vitis vinifera L.:II. Characterization of biomolecules in xylem sap, leaves of healthy, diseased vines. Physiol Mol Plant Pathol 69:195-208Google Scholar
  19. Bruno G, Sparapano L (2006b) Effects of three esca-associated fungi on Vitis vinifera L.:III. Enzymes produced by the pathogens, their role in fungus-to-plant or in fungus-to-fungus interactions. Physiol Mol Plant Pathol 69:182-194Google Scholar
  20. Busam G, Kassemeyer HH, Matern U (1997) Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol 115:1029-38PubMedCrossRefGoogle Scholar
  21. Calonnec A, Cartolaro P, Poupot C, Dubourdieu D, Darriet P (2004) effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) wine. Plant Pathol 53:434-445CrossRefGoogle Scholar
  22. Chen JY, Wen PF, Kong WF, Pan QH, Zhan JC, Li JM, Wan SB, Huang WD (2006) Effect of salicylic acid on phenylpropanoids, phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 40:64-72CrossRefGoogle Scholar
  23. Chen W-J, Delmotte F, Richard-Cervera S, Douence L, Greif C, Corio-Costet M-F (2007) At least two origins of fungicide resistance in grapevine downy mildew populations. Appl Ennviron Microbiol 73:5162-5172CrossRefGoogle Scholar
  24. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune system. Cell 124:803-814PubMedCrossRefGoogle Scholar
  25. Coutos-Thévenot P, Jouenne T, Maes O, Guerbette F, Grosbois M, Le Caer JP, Boulay M, Deloire A, Kader J, Guern J (1993) Four 9-kD proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins. Eur J Biochem 217:885-889PubMedCrossRefGoogle Scholar
  26. Coutos-Thevenot P, Poinssot B, Yean H, Buffard D, Esnault R, Hain R, Boulay M (2001) Tolerance of grapevine 41B rootstock in in vitro transgenic plants expressing the stilbene synthase vst1 gene under the control of a fungi inducible PR 10 promoter. J Exp Bot 358:949-959Google Scholar
  27. Curtin C, Zhang W, Franco C, Curtin C, Kikuchi M (2003) Manipulating anthocyanin composition in Vitis vinifera suspension cultures by elicitation with jasmonic acid, light irradiation. Biotechnol Letters 25:1131-1135CrossRefGoogle Scholar
  28. Dalbo MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Horticult 126:83-89Google Scholar
  29. Dangl JL, Jones JDG (2001) Plant pathogens, integrated defense responses to infection. Nature 411:826-833PubMedCrossRefGoogle Scholar
  30. Délye C, Laigret F, Corio-Costet M-F (1997) A mutation in the 14α-demethylase gene of Un cinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol 63:2996–2970Google Scholar
  31. Di Gaspero G, Cipriani G (2003) Nucleotide biding site/leucine-rich repeats, Pto-like, repceptorlike kinases related to disease resistance in grapevine. Mol Gen Genomics 269:612-623CrossRefGoogle Scholar
  32. Di Gaspero G, Cipriani G, Adam-Blondon A-F, Testolin R (2007) Linkage maps of grapevine displaying the chromosomal location of 420 microsatellite markers, 82 markers for R-gene candidates. Theor Appl Genet 114:1249-1263PubMedCrossRefGoogle Scholar
  33. Doligez A, Adam-Blondon A-F, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369-382PubMedCrossRefGoogle Scholar
  34. Ellis J, Dodds P, Pryor T (2000) Structure, function, evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278-284PubMedCrossRefGoogle Scholar
  35. Fan CH, Pu N, Wang XP, Wang YJ, Fang L, Xu WR, Zhang JX (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Cult 92:197-206CrossRefGoogle Scholar
  36. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501-515PubMedCrossRefGoogle Scholar
  37. François J, Lallemand M, Fleurat-Lessard P, Laquitaine L, Delrot S, Coutos-Thévenot P, Gomès E (2008) Overexpression of the VvLTP1 gene interferes with somatic embryo development in grapevine. Function Plant Biol 35:394-402CrossRefGoogle Scholar
  38. Gabler FM, Smilanick JL, Mansour M, Ramming DW, Mackey BE (2003) Correlations of morphological, anatomical,, chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology 93:1263-1273PubMedCrossRefGoogle Scholar
  39. Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signalling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:714-724CrossRefGoogle Scholar
  40. Giorcelli A, Sparvoli F, Fulvio MY, Tava A, Balestrazzi A, Vrhovsek U, Calligari P, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res 13:203-214PubMedCrossRefGoogle Scholar
  41. Girault TJF, Rogniaux H, Pascal S, Delrot S, Coutos-Thevenot P, Gomès E (2008) Exogenous application of a lipid transfer protein-jasmonic acid complex induces protection of grapevine towards infection by Botrytis cinerea. Plant Physiol Biochem 46:140-149PubMedCrossRefGoogle Scholar
  42. Godfrey D, Able AJ, Dry IB (2007) Induction of a grapevine germin-like protein (VvGLP3) gen is closely linked to the site of Erysiphe necator infection: a possible role in defense? Mol Plant Microbe Interact 20:1112-1115PubMedCrossRefGoogle Scholar
  43. Gomès E, Sagot E, Gaillard C, aquitaine L, Poinsot B, Sanejouand H-Y, Delrot S, Coutos-Thévenot, P (2003) Non specific lipid-transfer protein genes expression in grape (Vitis sp.) cells in response to fungal elicitor treatments. Mol Plant Microbe Interact 16:456-464PubMedCrossRefGoogle Scholar
  44. Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M, Velasco R (2003) Molecular linkage maps of Vitis vinifera L., Vitis riparia Mchx. Theor Appl Genet 106:1213-1224PubMedGoogle Scholar
  45. Grant, M Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414-420PubMedCrossRefGoogle Scholar
  46. Grimmig B, Gonzalez-Perez MN, Welzl G, Penuelas J, Schubert R, Hain R, Heidenreich B, Betz C, Langebartels C, Ernst D, Sandermann H (2002) Ethylene-, ozone-induced regulation of a grapevine resveratrol synthase gene:different responsive promoter regions. Plant Physiol Biochem 40:865-870CrossRefGoogle Scholar
  47. Hain, R Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH et al. (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153-6PubMedCrossRefGoogle Scholar
  48. Hayasaka Y, Adams KS, Pocock KF, Baldock GA, Waters EJ, Hoj PB (2001) Use of electrospray mass spectrometry for mass determination of grape (Vitis vinifera) juice pathogenesis-related proteins:a potential tool for varietal differentiation. J Agric Food Chem 49:1830-9PubMedCrossRefGoogle Scholar
  49. Husken A, Baumert A, Milkowski C, Becker HC, Strack D, Mollers C (2005) Resveratrol glucoside (piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Genet 111:1553-1562PubMedCrossRefGoogle Scholar
  50. Iriti M, Rossoni M, Borgo M, Faoro F (2004) Benzothiadiazole enhances resveratrol, anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. J Agric Food Chem 52:4406-4413PubMedCrossRefGoogle Scholar
  51. Jacobs AK, Dry IB, Robinson SP (1999) Induction of different pathogenesis-related cDNAs in grapevine infected by powdery mildew, treated with etephon. Plant Pathol 48:325-336CrossRefGoogle Scholar
  52. Jaysankar S, Zhijin LI, Gray DJ (2003) Constitutive expression of Vitis vinifera thaumatin-like protein after in vitro selection, its role in anthracnose resistance. Function Plant Biol 30:1105-1115CrossRefGoogle Scholar
  53. Jean-Denis JB, Pezet R, Tabacchi R (2006) Rapid analysis of stilbenes, derivatives from downy mildew-infected grapevine leaves by liquid chromatography-atmospheric pressure photoionisation mass spectrometry. J Chromatogr 1112:263-268CrossRefGoogle Scholar
  54. Kasparovsky T, Blein JP, Mikes V (2004) Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2, protein kinase C signal pathway. Plant Physiol Biochem 42:429-35PubMedCrossRefGoogle Scholar
  55. Keller M, Viret O, Cole FM (2003) Botrytis cinerea infection in grape flowers:defense reaction, latency, disease expression. Phytopathology 93:316-322PubMedCrossRefGoogle Scholar
  56. Kortekamp A (2006) Expression analysis of defense-related genes in grapevine leaves after inoculation with a host, a non-host pathogen. Plant Physiol Biochem 44:58-67PubMedCrossRefGoogle Scholar
  57. Kortekamp A, Welter L, Vogt S, Knoll A, Schwander F, Töpfer R, Zyprian E (2008) Identification, isolation, characterization of a CC-NBS-LRR candidate disease resitance gene family in grapevine. Mol Breeding:doi 10.1007/s11032-008-9186-2.Google Scholar
  58. Krivanek AF, Riaz S, Walker MA (2006) Identification, molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125-1131PubMedCrossRefGoogle Scholar
  59. La Guerche S, Dauphin B, Pons M, Blancard D, Darriet P (2006) Characterization of some mushroom, earthy off-odors microbially induced by the development of rot on grapes. J Agric Food Chem 54:9193-9200PubMedCrossRefGoogle Scholar
  60. Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera, other members of the Vitaceae as o response to infection or injury. Physiol Plant Pathol 9:77-86CrossRefGoogle Scholar
  61. Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33:151-2PubMedCrossRefGoogle Scholar
  62. Laquitaine L, Gomès E, François J, Marchive C, Pascal S, Hamdi S, Atanassova R, Delrot S, Coutos-Thevenot P (2006) Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: induction of type I Lipid Transfer Protein promoter activity, WRKY, stilbene synthase gene expression. Mol Plant Microbe Interact 19:1103-1112PubMedCrossRefGoogle Scholar
  63. Larignon P, Dubos B (1997) Fungi associated with esca disease in grapevine. Eur J Plant Pathol 103:147-157CrossRefGoogle Scholar
  64. Larronde F, Gaudillere JP, Krisa S, Decendit A, Deffieux G, Merillon JM (2003) Airborne methyl jasmonate induces stilbene accumulation in leaves, berries of grapevine plants. Am J Enol Vitic 54:63-66Google Scholar
  65. Laura R, Franceschetti M, Ferri M, Tassoni A, Bagni N (2007) Resveratrol production in Vitis vinifera cell suspensions treated with several elicitors. Caryologia 60:169-171Google Scholar
  66. Leroux P, Chapeland F, Arnold A, Gredt M (1998) Résistance de Botrytis cinerea aux fongicides. Phytoma, la défense des végétaux 504:62-67Google Scholar
  67. Liswidowati F, Melchior F, Holmann F, Schwer B, Kindl H (1991) Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta 183:307-314CrossRefGoogle Scholar
  68. Lochman J, Mikes V (2006) Ergosterol treatment leads to the expression of a specific set of defense-related genes in tobacco. Plant Mol Biol 62:43-51PubMedCrossRefGoogle Scholar
  69. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399-403PubMedCrossRefGoogle Scholar
  70. Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet MF, Regad F, Cailleteau B, Hamdi S, Lauvergeat V (2007) Isolation, characterization of a Vitis vinifera transcription factor, VvWRKY1,, its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 58:1999-2010PubMedCrossRefGoogle Scholar
  71. Melchior F, Kindl H (1990) Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into a catalytically active enzyme. FEBS Lett 268:17-20PubMedCrossRefGoogle Scholar
  72. Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Horticult 603:451-456Google Scholar
  73. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of the NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809-834PubMedCrossRefGoogle Scholar
  74. Mohamed N, Lherminier J, Farmer MJ, Fromentin J, Beno N, Houot V, Milat ML, Blein J-P (2006) Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin, to roots. Phytopathology 97:611-620CrossRefGoogle Scholar
  75. Moller WJ, Kasimatis AN (1978) Dieback of grapevine caused by Eutypa armeniacae. Plant Disease Rep 62:254-258Google Scholar
  76. Monteiro S, Carra-Pereira MA, Loureiro VB, Teixeira AR, Ferreira RB (2007) The diversity of pathogenesis-related proteins decreases during grape maturation. Phytochemistry 68:416-425PubMedCrossRefGoogle Scholar
  77. Morales M, Bru R, Garcia-Carmona F, Ros-Barcelo A, Pedreno MA (1998) Effect of dimethyl-{\ss}cyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before, after inoculation with Xylophilus ampelinus. Plant Cell Tissue Organ Cult 53:179-187CrossRefGoogle Scholar
  78. Moroldo M, Paillard S, Marconi R, Legeai F, et al. (2008) A physical map of the heterozygous grapevine Carbernet Sauvignon allows mapping candidate genes for disease resistance. BMC Plant Biol 6:66CrossRefGoogle Scholar
  79. Mullins MG, Bouquet A, Williams LE (1992) Biology of the Grapevine. Cambridge University Press, Cambridge, UKGoogle Scholar
  80. Munkvold GP, Marois JJ (1994) Eutypa dieback of sweet cherry, occurence of Eutypa lata perithecia in the central valley of california. Plant Disease 78:200-207Google Scholar
  81. Olmo H P (1986) The potential role of (vinifera x Rotundifolia) hybrids in grape variety improvement. Experientia 42:921-926CrossRefGoogle Scholar
  82. Pascoe I (1999) Grapevine trunk disease - black goo decline, esca, Eutypa dieback, others. Aust Grape Wine 429:27-28Google Scholar
  83. Pauquet J, Bouquet,A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine, assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201-1210CrossRefGoogle Scholar
  84. Pezet R, Pont V (1995) Mode of toxic action of Vitaceae stilbenes on fungal cells. In: Daniel M, Purkayastha RP (eds) Handbook of Phytoalexin Metabolism. Action, Marcel Dekker IncGoogle Scholar
  85. Pezet R, Gindro K, Viret O, Richter H (2004) Effects of resveratrol, viniferins, pterostilbene on Plasmopara viticola zoospore mobility, disease development. Vitis 43:145-148Google Scholar
  86. Poinssot B, Vandelle E, Bentéjac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thevenot P, Pugin A (2003) The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant Microbe Interact 16:553-563PubMedCrossRefGoogle Scholar
  87. Ponchet M, Panabières F, Milat M-L, Mikes V, Montillet J-L, Suty L, Triantaphylides C, Tirilly Y, Blein J-P (1999) Are elicitins cryptograms in plant-Oomycetes communication? Cell Mol Life Sci 56:1020-1047PubMedCrossRefGoogle Scholar
  88. Pont V, Pezet R (1990) Relation between the chemical structure, the biological activity of hydroxystilbenes against Botrytis cinerea. J Phytopathol 130:1-8CrossRefGoogle Scholar
  89. Repka V, Kubikova J, Fischerova L (2000) Immunodetection of PR-1-like proteins in grapevine leaves infected with Oidium tuckeri, in elicited suspension cell cultures. Vitis 39:123-127Google Scholar
  90. Repka V, Fischerova I, Silharova K (2001a) Biological activity of the elicitor released from mycelium of a grapevine isolate of the necrotrophic fungus Botrytis cinerea. Vitis 40:205-212Google Scholar
  91. Repka V (2001b) Elicitor-stimulated induction of defense mechanisms, defense gene activation in grapevine cell suspension cultures. Biol Plant 44:555-565Google Scholar
  92. Repka V (2002) A bestatin primes grapevine cells for augmented elicitation of the hypersensitivelike cell death, associated defense responses by methyl jasmonate. Vitis 41:69-76Google Scholar
  93. Repka, V, Fischerova, I, Silharova, K, Repka, V, Fischerova, I (2004) Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves, cell-suspension cultures. Biol Plant 48:273-283CrossRefGoogle Scholar
  94. Repka V (2006) Early defense responses induced by two distinct elicitors derived from a Botrytis cinerea in grapevine leaves, cell suspensions. Biol Plant 50:94-106CrossRefGoogle Scholar
  95. Richter H, Pezet R, Viret O, Gindro K (2005) Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. Physiol Mol Plant Pathol 67:248-260CrossRefGoogle Scholar
  96. Robert N, Ferran J, Breda C, Coutos-Thevenot P, Boulay M, Buffard D, Esnault R (2001) Molecular characterization of the incompatible interaction of Vitis vinifera leaves with Pseudomonas syringae pv. pisi: expression of genes coding for stilbene synthase, class 10 PR protein. Eur J Plant Pathol 107:249-261CrossRefGoogle Scholar
  97. Robert N, Roche K, Lebeau Y, Breda C, Boulay M, Esnault R, uffard D (2002) Expression of grapevine chitinase genes in berries, leaves infected by fungal, bacterial pathogens. Plant Sci 162:389-400CrossRefGoogle Scholar
  98. Rossard S, Luini E, Perault JM, Bonmort J, Roblin G (2006) Early changes in membrane permeability, production of oxidative burst, modification of PAL activity induced by ergosterol in cotyledons of Mimosa pudica. J Exp Bot 57:1245-52PubMedCrossRefGoogle Scholar
  99. Schulze K, Schreiber L, Szankowski I (2005) Inhibiting effects of resveratrol, its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. J Agric Food Chem 53:356-362PubMedCrossRefGoogle Scholar
  100. Schwekendiek A, Spring O, Heyerick A, Pickel B, Pitsch NT, Peschke F, De-Keukeleire D, Weber G (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol, its derivatives in substantial quantities. J Agric Food Chem 105:195-203Google Scholar
  101. Shiu S-H, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763-10768PubMedCrossRefGoogle Scholar
  102. Szankowski I, Briviba K, Fleschhut J, Schonherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.), a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141-149PubMedCrossRefGoogle Scholar
  103. Tassoni A, Fornale S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N, Franceschetti M, Ferri M, Tassoni A (2005) Jasmonates, Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895-905PubMedCrossRefGoogle Scholar
  104. Trouvelot S, Varnier AL, Allegre M, Mercier L, Baillieul F, Arnould C, Gianinazzi-Pearson V, Klarzynski O, Joubert JM, Pugin A, Daire X (2008) A beta-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death. Mol Plant Microbe Interact 21:232-243PubMedCrossRefGoogle Scholar
  105. Urena AG, Orea JM, Montero C, Jimenez JB, Gonzalez JL, Sanchez A, Dorado M (2003) Improving postharvest resistance in fruits by external application of trans-resveratrol. J Agric Food Chem 51:82-89CrossRefGoogle Scholar
  106. Van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135-162PubMedCrossRefGoogle Scholar
  107. Vandelle E, Poinssot B, Wendehenne D, Bentéjac M, Pugin A (2006) Integrated signalling network involving calcium, nitric oxide, active oxygen species but not mitogen-activated protein kinases in Bc-PG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429-440PubMedCrossRefGoogle Scholar
  108. Velasco R, Zharkikh A, Troggio M, Cartwright DA, et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 12:e1326CrossRefGoogle Scholar
  109. Vezzulli S, Civardi S, Ferrari F, Bavaresco L (2007) Methyl jasmonate treatment as a trigger of resveratrol synthesis in cultivated grapevine. Am J Enol Vitic 58:530-533Google Scholar
  110. Wang W, Devoto A, Turner JG, Xiao S (2007) Expression of the membrane-associated resistance RPW8 enhances basal defense against biotrophic pathogens. Mol Plant Microbe Interact 20:966-976PubMedCrossRefGoogle Scholar
  111. Wen PF, Chen JY, Kong WF, Pan QH, Wan SB, Huang WD (2005) Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Sci 169:928-934CrossRefGoogle Scholar
  112. Wen PF, Chen JY, Wan SB, Kong WF, Zhang P, Wang W, Zhan JC, Pan QH, Huang WD (2008) Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Reg 55:1-10CrossRefGoogle Scholar
  113. Wielgoss A, Kortekamp A (2006) Comparison of PR1 expression in grapevine cultures after inoculation with a host-, a non-host pathogen. Vitis 45:9-13Google Scholar
  114. Wiese W, Vornam B, Krause E, Kindl H (1994) Structural organization, differential expression of three stilbene synthase genes located on a 13  kb grapevine DNA fragment. Plant Mol Biol 26:667-677PubMedCrossRefGoogle Scholar
  115. Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Meuskett P, Parker JE, Turner JG (2005) The atypical resistance gene, RPW8, recruits components of basal defense for powdery mildew resistance in Arabidopsis. Plant J 42:95-110PubMedCrossRefGoogle Scholar
  116. Zhang W, Curtin C, Kikuchi M, Franco C (2002) Integration of jasmonic acid, light irradiation for enhancement of anthocyanin biosynthesis in Vitis vinifera suspension cultures. Plant Sci 162:459-468CrossRefGoogle Scholar
  117. Zhou T, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS-LRR genes in japonica rice reveals significant expansion of divergent non-TIR NBSLRR genes. Mol Gen Genet 271:402-415Google Scholar
  118. Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241-250PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E. Gomès
    • 1
  • P. Coutos-Thévenot
    • 2
  1. 1.Institut des Sciences de la Vigne et du VinUMR INRA 1287 Ecophysiologie et Génomique Fonctionnelle de la VigneDomaine de la Grande FerradeFrance
  2. 2.FRE CNRS 3091 Physiologie Moléculaire des Transports de sucresUniversité de Poitiers, Bâtiment de Botanique40 Av. du Recteur PineauFrance

Personalised recommendations