Biochemical & Molecular Aspects of Flavan-3-OL Synthesis During Berry Development

  • N. Terrier
  • D. Ollé
  • C. Verriès
  • V. Cheynier

Flavan-3-ols make up a large group of flavonoid compounds, encountered in several tissues of plants and involved in reactions against various biotic aggressions, such microbial pathogens (bacteria and fungi), insects and larger herbivores (Dixon et al. 2005). They comprise monomers (often called catechins), and oligomers and polymers, called condensed tannins or proanthocyanidins (PAC). In grapevine they are present in wood, stems, leaves, and in fruits (Boukharta et al. 1988, Souquet et al. 2000, Bogs et al. 2005, Tesnière et al. 2006). They are quantitatively the most abundant secondary metabolites of grape berries. They are extracted during winemaking and are a major qualitative factor in red wines because of their implication in colour stability, astringency and bitterness.


Vitis Vinifera Grape Berry Extension Unit Grape Skin Berry Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams S, Lee E, Walker AR, Tanner GJ, Larkin PJ, Ashton AR (2003) The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J 35:624-36PubMedCrossRefGoogle Scholar
  2. Ageorges A, Fernandez L, Vialet S, Merdinoglu D, Terrier N, Romieu C (2006) Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Sci 170:372-383CrossRefGoogle Scholar
  3. Albert S, Delseny M, Devic M (1997) BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J 11:289-299PubMedCrossRefGoogle Scholar
  4. Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione Stransferases. Plant Cell 10:1135-1149PubMedCrossRefGoogle Scholar
  5. Baur PS, Walkinshaw CH (1974) Fine structure of tannin accumulation in callus cultures of Pinus elliotti (slash pine). Can J Bot 52:615-619CrossRefGoogle Scholar
  6. Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366-80PubMedCrossRefGoogle Scholar
  7. Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer WA, Hazen SP, Murphy AS, Harper JF (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci USA 102:2649-54PubMedCrossRefGoogle Scholar
  8. Bishop PB, Nagel CW (1984) Characterization of the condensation product of malvidin 3,5- diglucoside and catechin. J Agric Food Chem 32:1022-1026CrossRefGoogle Scholar
  9. Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139:652-663PubMedCrossRefGoogle Scholar
  10. Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279-91PubMedCrossRefGoogle Scholar
  11. Bogs J, Jaffe FW, Takos AM, Walker AR, Robinson SP (2007) The Grapevine Transcription Factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347-61PubMedCrossRefGoogle Scholar
  12. Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Syrah grape berries and the implications for pathway regulation. Plant Physiol 111:1059-1066PubMedGoogle Scholar
  13. Boukharta M, Girardin M, Metche M (1988) Procyanidines galloylées du sarment de vigne (Vitis vinifera) separation et identification par chromatographie liquide haute performance et chromatographie en phase gazeuse. J Chromatogr 455:406-409CrossRefGoogle Scholar
  14. Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478-490PubMedCrossRefGoogle Scholar
  15. Cadot Y, Minana Castello MT, Chevalier M (2006) Flavan-3-ol compositional changes in grape berries (Vitis vinifera L. cv Cabernet franc) before véraison, using two complementary analytical approaches, HPLC reversed phase and histochemistry. Anal Chim Acta 563:65-75CrossRefGoogle Scholar
  16. Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon AF, Testolin R (2006) Colour variation in red grapevines (Vitis vinifera L.):genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skins. BMC Genomics 7:12PubMedCrossRefGoogle Scholar
  17. Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101-112PubMedCrossRefGoogle Scholar
  18. Cheynier V, Rigaud J (1986) HPLC separation and characterization of flavonols in the skins of Vitis vinifera var. Cinsault. Am J Enol Vitic 37 :248-252Google Scholar
  19. Cheynier V, Moutounet M, Sarni-Manchado P (1998) Les composés phénoliques. In Flanzy C (ed) Oenologie Fondements Scientifiques et Technologiques. Editions Tec et Doc, ParisGoogle Scholar
  20. Cohen SD, Tarara JM, Kennedy JA (2008) Assessing the impact of temperature on grape phenolic metabolism. Anal Chim Acta 621:57-67PubMedCrossRefGoogle Scholar
  21. Cortell JM, Halbleib M, Gallagher AV, Righetti TL, Kennedy JA (2005) Influence of the vine vigor on grape (Vitis vinifera cv Pinot noir) and wine proanthocyanidins. J Agric Food Chem 53:5798-5808PubMedCrossRefGoogle Scholar
  22. Cortell JM, Kennedy JA (2006) Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) Pinot noir fruit and extraction in a model system. J Agric Food Chem 54:8510-8520PubMedCrossRefGoogle Scholar
  23. Debeaujon I, Peeters AJ, Léon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853-871PubMedCrossRefGoogle Scholar
  24. Delcour JA, Ferreira D, Roux DG (1983) Synthesis of condensed tannins part 9. The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidins. J Chem Soc Perkin Trans I:1711-1717CrossRefGoogle Scholar
  25. Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde JP, Merillon JM, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140:499-511PubMedCrossRefGoogle Scholar
  26. Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041-2053PubMedCrossRefGoogle Scholar
  27. Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M (1999) The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J 19 :387-98PubMedCrossRefGoogle Scholar
  28. Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins - a final frontier in flavonoid research? New Phytol 165:9-28PubMedCrossRefGoogle Scholar
  29. Downey MO, Harvey JS, Robinson SP (2003) Analysis of tannins in seeds and skins of Syrah grapes throughout berry development. Aust J Grape Wine Res 9:15-27CrossRefGoogle Scholar
  30. Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940-953PubMedCrossRefGoogle Scholar
  31. Fournand D, Vicens A, Sidhoum L, Souquet JM, Moutounet M, Cheynier V (2006) Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J Agric Food Chem 54:7331-7338PubMedCrossRefGoogle Scholar
  32. Gagné S, Saucier C, Gény L (2006) Composition and cellular localization of tannins in Cabernet- Sauvignon durin growth. J Agric Food Chem 54:9465-9471PubMedCrossRefGoogle Scholar
  33. Goodman CD, Casati P, Walbot V (2004) A multidrug resistance–associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16:1812-1826PubMedCrossRefGoogle Scholar
  34. Grotewold E (2008) Trafficking and sequestration of anthocyanins. Natural Product Comm 3:1251-1258Google Scholar
  35. Geissman T, Yoshimura N (1966). Synthetic proanthocyanidin. Tetrahedron Lett 24: 2669-2673CrossRefGoogle Scholar
  36. Guyot S, Vercauteren J, Cheynier V (1996) Colourless and yellow dimers resulting from (+)- catechin oxidative coupling catalysed by grape polyphenoloxidase. Phytochemistry 42:1279-1288CrossRefGoogle Scholar
  37. Haslam E (1980) In vino veritas: oligomeric procyanidins and the ageing of red wines. Phytochemistryistry 19: 2577-2582CrossRefGoogle Scholar
  38. Harbertson JF, Kennedy JA, Adams DO (2002) Tannin in skins and seeds of Cabernet-Sauvignon, Syrah, and pinot noir berries during ripening. Am J Enol Vitic 53:54-59Google Scholar
  39. Hemingway RW, Laks P (1985) Condensed tannins: a proposed route to 2R,3R-(2,3-cis)- proanthocyanidins. J Chem Soc Chem Commun 746-747Google Scholar
  40. Hsieh K, Huang AH (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum- derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19:582-596PubMedCrossRefGoogle Scholar
  41. Ibrahim RK (1992) Immunolocalization of flavonoid conjugates and their enzymes. In: Stafford HA, Ibrahim RK (eds) Phenolic Metabolism in Plants. Plenum Press, New YorkGoogle Scholar
  42. Iriti M, Rossoni M, Borgo M, Ferrara L, Faoro F (2005) Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: Primary versus secondary metabolism J Agric Food Chem 53:9133-9139Google Scholar
  43. Jacques D, Haslam E (1974) Biosynthesis of plant proanthocyanidins. J Chem Soc Chem Commun 231-232Google Scholar
  44. Jaillon O, Aury JM, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463-7PubMedCrossRefGoogle Scholar
  45. Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M (2008) Expression of multi-copy flavonoid pathway genes coincides with anthocyanin, flavonol and flavan-3-ol accumulation of grapevine. Vitis 47:135-140Google Scholar
  46. Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19:6150-61PubMedCrossRefGoogle Scholar
  47. Kennedy JA, Hayasaka Y, Vidal S, Waters EJ, Jones GP (2001) Composition of grape skin proanthocyanidins at different stages of berry development. J Agric Food Chem 49:5348-5355PubMedCrossRefGoogle Scholar
  48. Kennedy JA, Matthews MA, Waterhouse AL (2002) Effect of maturity and vine water status on grape skin and wine flavonoids. Am J Enol Vitic 53:268-274Google Scholar
  49. Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104-114PubMedCrossRefGoogle Scholar
  50. Klein M, Weissenbock G, Dufaud A, Gaillard C, Kreuz K, Martinoia E (1996) Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J Biol Chem 271:29666-29671PubMedCrossRefGoogle Scholar
  51. Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924-933PubMedCrossRefGoogle Scholar
  52. Kortekamp, A (2006) Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiol Biochem 44:58-67PubMedCrossRefGoogle Scholar
  53. Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405-430PubMedCrossRefGoogle Scholar
  54. Lo Piero AR, Puglisi I, Petrone GJ (2006) Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-Transferase from orange fruit [Citrus sinensis L. (Osbeck)]. J Agric Food Chem 54:9227-9233PubMedCrossRefGoogle Scholar
  55. Mané C, Souquet JM, Ollé D, Verriès C, Véran F, Mazerolles G, Cheynier V, Fulcrand H (2007) Optimization of simultaneous flavanol, phenolic acid and anthocyanin extraction from grapes using an experimental design; application to the characterization of Champagne grape varieties. J Agric Food Chem 55:7224-7233PubMedCrossRefGoogle Scholar
  56. Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023-2038PubMedCrossRefGoogle Scholar
  57. Marrs K, Alfenito M, Lloyd A, Walbot V (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397-400PubMedCrossRefGoogle Scholar
  58. Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83PubMedCrossRefGoogle Scholar
  59. Monagas M, Gomez-Cordoves C, Bartolomé B, Laureano, Ricardo da Silva J (2003) Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. cv Graciano, Tempranillo, and Cabernet Sauvignon. J Agric Food Chem 51:6475-6481PubMedCrossRefGoogle Scholar
  60. Mueller L, Goodman C, Silady R, Walbot V (2000) AN9, a petunia Glutathione S-Transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561-1570PubMedCrossRefGoogle Scholar
  61. Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099-2114PubMedCrossRefGoogle Scholar
  62. Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A (2002) Influence of pre- and postvéraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv Syrah. Am J Enol Vitic 53:261-267Google Scholar
  63. Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145:601-15PubMedCrossRefGoogle Scholar
  64. Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. PNAS 105:14210-14205PubMedCrossRefGoogle Scholar
  65. Paolocci F, Robbins MP, Madeo L, Arcioni S, Martens S, Damiani F (2007) Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. Structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus. Plant Physiol 143:504-516PubMedCrossRefGoogle Scholar
  66. Passos CP, Cardoso SM, Rosario M, Domingues M, Domingues RM, Domingues P, Silva CM, Coimbra MA (2007) Evidence for galloylated type-A procyanidins in grape seeds. Food Chem 105:1457-1467CrossRefGoogle Scholar
  67. Pastor des Rio JL, Kennedy JA (2006) Development of proanthocyanidins in Vitis vinifera L. cv Pinot noir grapes and extraction into wine. Am J Enol Vitic 57:125-132Google Scholar
  68. Petit P, Granier T, d’Estaintot BL, Manigand C, Bathany K, Schmitter JM, Lauvergeat V, Hamdi S, Gallois B (2007) Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis. J Mol Biol 368:1345-57PubMedCrossRefGoogle Scholar
  69. Pfeiffer J, Kuhnel C, Brandt J, Duy D, Punyasiri P, Forkmann G, Fischer T (2006) Biosynthesis of flavan-3-ols by leucoanthocyanidin 4-reductases and anthocyanidin reductases in leaves of grape (Vitis vinifera L.), apple (Malus domestica Borkh.) and other crops. Plant Physiol Biochem 44:323-334PubMedCrossRefGoogle Scholar
  70. Porter LJ (1988) Flavans and proanthocyanidins. In: Harborne JB (ed), The Flavonoids: Advances in Research Since 1980. Chapman and Hall, New YorkGoogle Scholar
  71. Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell17:2966-80PubMedCrossRefGoogle Scholar
  72. Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29-36PubMedCrossRefGoogle Scholar
  73. Remy-Tanneau S, Le Guerneve C, Meudec E, Cheynier V (2003) Characterization of a colorless anthocyanin-flavan-3-ol dimer containing both carbon-carbon and ether interflavanoid linkages by NMR and mass spectrometries. J Agric Food Chem 51(12): 3592-3597PubMedCrossRefGoogle Scholar
  74. Ribéreau-Gayon P (1964) Les composés phénoliques du raisin et du vin II. Les flavonosides et les anthocyanosides. Ann Physiol Vég 6:211-242Google Scholar
  75. Ricardo da Silva JM, Rigaud J, Cheynier V, Cheminat A, Moutounet M (1991) Procyanidin dimers and trimers from grape seeds. Phytochemistry 30:1259-1264CrossRefGoogle Scholar
  76. Roby G, Harbertson JF, Douglas AA, Matthews MA (2004) Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Aust J Grape Wine Res 10:100-107CrossRefGoogle Scholar
  77. Rodriguez M, Romero Peces R, Chacon Vozmediano JL, Martinez Gascueña, Garcia Romero E (2006) Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in warm climate. J Food Compos Anal 19:687-693CrossRefGoogle Scholar
  78. Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96-107PubMedCrossRefGoogle Scholar
  79. Sagasser M, Lu GH, Hahlbrock K, Weisshaar B (2002) A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev 16:138-49PubMedCrossRefGoogle Scholar
  80. Salas E, Atanasova V, Poncet-Legrand C, Meudec E, Mazauric JP, Cheynier V (2004) Demonstration of the occurrence of flavanol-anthocyanin adducts in wine and in model solutions. Anal Chim Acta 513: 325-332CrossRefGoogle Scholar
  81. Souquet JM, Cheynier V, Brossaud F, Moutounet M (1996) Polymeric proanthocyanidins from grape skins. Phytochemistry 43:509-512CrossRefGoogle Scholar
  82. Souquet JM, Labarbe B, Le Guernevé C, Cheynier V, Moutounet M (2000) Phenolic composition of grape stems. J Agric Food Chem 48:1076-1080PubMedCrossRefGoogle Scholar
  83. Souquet JM, Veran F, Mané C, Cheynier V (2006) Optimization of extraction conditions on phenolic yields from the different parts of grape clusters - Quantitative distribution of their proanthocyanidins. Proc XXIIIrd International Conference of polyphenols, Winnipeg, Manitoba, CanadaGoogle Scholar
  84. Stafford HA, Lester HH (1984) The conversion of (+)-dihydroquercetin and flavan-3,4-cis-diol (leucocyanidin) to (+)-catechin by reductases extracted from cell suspension of Douglas fir. Plant Physiol 76:184-186PubMedCrossRefGoogle Scholar
  85. Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647-31656PubMedCrossRefGoogle Scholar
  86. Terrier N, Sauvage FX, Ageorges A, Romieu C (2001) Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213:20-28PubMedCrossRefGoogle Scholar
  87. Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin J-P, Dedaldechamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:820-831CrossRefGoogle Scholar
  88. Tesnière C, Torregrosa L, Pradal M, Souquet JM, Gilles C, Dos Santos K, Chatelet P, Günata Z (2006) Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves. J Exp Bot 57:91-99PubMedCrossRefGoogle Scholar
  89. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 19:e1326CrossRefGoogle Scholar
  90. Verriès C, Guiraud JL, Souquet JM, Vialet S, Terrier N, Ollé D (2008) Validation of an extraction method on whole pericarp of grape berry (Vitis vinifera L. cv Syrah) to study biochemical and molecular aspects of flavan-3-ol synthesis during berry development. J Agric Food Chem 56:5896-5904PubMedCrossRefGoogle Scholar
  91. Vidal S, Cartalade D, Souquet JM, Fulcrand H, Cheynier V (2002) Changes in proanthocyanidin chain-length in wine-like model solutions. J Agric Food Chem 50:2261-2266PubMedCrossRefGoogle Scholar
  92. Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772-785PubMedCrossRefGoogle Scholar
  93. Weinges K, Bahr W, Ebert W, Goritz K, Marx HD (1969a) Konstitution, entstehung und bedeutung der flavonoid-gerbstoffe. Fortschr Chem Org Naturist 27:158-260Google Scholar
  94. Weinges K, Ebert W, Huthwelker, Mattauch, Perner (1969b) Oxydative kupplung von phenolen, II. Konstitution und bildungsmechanismus des dehydro-dicatechins A. Liebigs Ann Chem 726:114-124Google Scholar
  95. Weinges K, Piretti MV (1971) Isolierung des C30H26O12-procyanidins B1 aus Wientrauben. Liebigs Ann Chem 748:218-220CrossRefGoogle Scholar
  96. Winkel BS (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85-107PubMedCrossRefGoogle Scholar
  97. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485-93PubMedCrossRefGoogle Scholar
  98. Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396-99PubMedCrossRefGoogle Scholar
  99. Xie DY, Sharma SB, Dixon RA (2004) Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Arch Biochem Biophys 422:91-102PubMedCrossRefGoogle Scholar
  100. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301-307PubMedCrossRefGoogle Scholar
  101. Young DA, Young E, Roux DG, Brandt EV, Ferreira D (1987) Synthesis of (+)-catechin and (+)- mesquitol, conformation of bis (+)-catechins. J Chem Soc, Perkin Transactions 1:2345-2351CrossRefGoogle Scholar
  102. Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859-69PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • N. Terrier
    • 1
  • D. Ollé
    • 1
  • C. Verriès
    • 1
  • V. Cheynier
    • 1
  1. 1.Unité Mixte de Recherche Sciences pour l’ŒnologieINRA-Montpellier SupAgro 2F-34060 Montpellier Cedex 1France

Personalised recommendations