Skip to main content

Endophenotype Strategy in Epilepsy Genetics

  • Chapter
  • 692 Accesses

Despite being largely genetically determined, the genes involved in idiopathic generalized epilepsies (IGE) are mostly unknown. The difficulties in pinpointing the genes for common IGEs lie mainly in their underlying complex inheritance patterns and genetic heterogeneity within phenotype definitions. The different IGE syndromes are distinguished by combinations of absences, myoclonic seizures and generalized tonic-clonic seizures with characteristic ranges of age-at-onset. Photosensitivity or photoparoxysmal EEG response (PPR) is found in up to 50% of IGE syndromes, including myoclonic epilepsies and absence epilepsies. This increased co-morbidity of PPR with IGE compared to 1.4% in the general population, suggests that PPR may be involved in the predisposition for IGE. Consequently, it has been hypothesized that PPR may constitute a potential endophenotype for IGE, which could be useful to dissect the complexity of the IGEs. The criteria for using PPRs as a valid and useful endophenotype will be discussed, and examples given of its use in genome-wide linkage and association screens in large collections of multiplex PPR families and cases. Endophenotype approaches in epilepsy genetics, such as a PPR or imaging, offer great promise as an alternative or complement to the studies of categorical disease phenotypes.

Keywords

  • Epilepsy
  • photosensitivity
  • photoparox-ysmal response
  • PPR
  • endophenotype
  • genetics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-2298-1_6
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-2298-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gowers WR. Epilepsy and other chronic convulsive diseases: their causes, symptoms and treatment. 2nd ed. New York: Wood, 1901.

    Google Scholar 

  2. Swinkels WA, Kuyk J, van Dyck R, Spinhoven P. Psychiatric comorbidity in epilepsy. Epilepsy Behav 2005;7(1):37–50.

    PubMed  CAS  CrossRef  Google Scholar 

  3. Berkovic SF, Howell RA, Hay DA, Hopper JL. Epilepsies in twins: genetics of the major epilepsy syndromes. Ann. Neurol 1998;43(4):435–45.

    PubMed  CAS  CrossRef  Google Scholar 

  4. Beck-Mannagetta G, Janz D. Syndrome-related genetics in generalized epilepsy. Epilepsy Res Suppl 1991;4:105–11.

    PubMed  CAS  Google Scholar 

  5. Miller LL, Pellock JM, DeLorenzo RJ, Meyer JM, Corey LA. Univariate genetic analyses of epilepsy and seizures in a population-based twin study: the Virginia Twin Registry. Genet Epidemiol 1998;15(1):33–49.

    PubMed  CAS  CrossRef  Google Scholar 

  6. Mulley JC, Scheffer IE, Harkin LA, Berkovic SF, Dibbens LM. Susceptibility genes for complex epilepsy. Hum Mol Genet 2005;14 Spec No. 2:R243–9.

    PubMed  CAS  CrossRef  Google Scholar 

  7. Hempelmann A, Taylor KP, Heils A, et al. Exploration of the genetic architecture of idiopathic generalized epilepsies. Epilepsia 2006;47(10):1682–90.

    PubMed  CAS  CrossRef  Google Scholar 

  8. Ottman R. Analysis of genetically complex epilepsies. Epilepsia 2005;46 Suppl 10:7–14.

    PubMed  CrossRef  Google Scholar 

  9. ILAE. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989;30(4):389–99.

    Google Scholar 

  10. ILAE. Proposal for revised clinical and electroencephalo- graphic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1981;22(4):489–501.

    Google Scholar 

  11. Berkovic SF, Reutens DC, Andermann E, Andermann F. The epilepsies: specific syndromes or a neurobiological continuum? Epileptic seizures and syndromes. London: John Libbey, 1994: 25–37.

    Google Scholar 

  12. Greenberg DA, Durner M, Keddache M, et al. Reproducibility and complications in gene searches: linkage on chromosome 6, heterogeneity, association, and maternal inheritance in juvenile myoclonic epilepsy. Am J Hum Genet 2000;66(2):508–16.

    PubMed  CAS  CrossRef  Google Scholar 

  13. Gottesman, II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatr 2003;160(4):636–45.

    PubMed  CrossRef  Google Scholar 

  14. Leboyer M, Bellivier F, Nosten-Bertrand M, Jouvent R, Pauls D, Mallet J. Psychiatric genetics: search for pheno- types. Trends Neurosci 1998;21(3):102–5.

    PubMed  CAS  CrossRef  Google Scholar 

  15. Lalouel JM, Le Mignon L, Simon M, et al. Genetic analysis of idiopathic hemochromatosis using both qualitative (disease status) and quantitative (serum iron) information. Am J Hum Genet 1985;37(4):700–18.

    PubMed  CAS  Google Scholar 

  16. Utermann G, Hardewig A, Zimmer F. Apolipoprotein E phenotypes in patients with myocardial infarction. Hum Genet 1984;65(3):237–41.

    PubMed  CAS  CrossRef  Google Scholar 

  17. Gottesman, II, Shields J. Genetic theorizing and schizophrenia. Br J Psychiatr 1973;122(566):15–30.

    CAS  CrossRef  Google Scholar 

  18. Schulze TG, McMahon FJ. Defining the phenotype in human genetic studies: forward genetics and reverse pheno- typing. Hum Hered 2004;58(3–4):131–8.

    PubMed  CrossRef  Google Scholar 

  19. Pinto D. Dissecting the genetic basis of idiopathic epilepsies.: Utrecht University, PhD thesis, ISBN 90-393-4191-5, 2006.

    Google Scholar 

  20. Kasteleijn-Nolst Trenité DG. Photosensitivity in epilepsy. Electrophysiological and clinical correlates. Acta Neurol Scand Suppl 1989;125:3–149.

    PubMed  Google Scholar 

  21. Doose H. EEG in childhood epilepsy. 1st ed. Mountrouge: John Libbey Eurotext, 2003.

    Google Scholar 

  22. Wolf P, Goosses R. Relation of photosensitivity to epileptic syndromes. J Neurol Neurosurg Psychiatr 1986;49(12):1386–91.

    PubMed  CAS  CrossRef  Google Scholar 

  23. Guerrini R, Genton P. Epileptic syndromes and visually induced seizures. Epilepsia 2004;45 Suppl 1:14–18.

    PubMed  CrossRef  Google Scholar 

  24. Kasteleijn-Nolst Trenité DG, Silva LCB, Manreza MLG. Prevalence of photo paroxysmal EEG responses in normal children and adolescents in Teofile Otoni, Brazil: 2001–2002. Epilepsia, 2003: 48.

    Google Scholar 

  25. Doose H, Waltz S. Photosensitivity-genetics and clinical significance. Neuropediatrics 1993;24(5):249–55.

    PubMed  CAS  CrossRef  Google Scholar 

  26. Kasteleijn-Nolst Trenité DG, Pinto D, Hirsch E, Takahashi T. Photosensitivity, visual induced seizures and epileptic syndromes. In: Roger J, Bureau M, Dravet C, Genton P, Tassinari CA, Wolf P, eds. Epilepsy syndromes in infancy, childhood and adolescence. 4th ed. Montrouge, France: John Libbey, 2005: 395–420.

    Google Scholar 

  27. Stephani U, Tauer U, Koeleman B, Pinto D, Neubauer BA, Lindhout D. Genetics of Photosensitivity (Photoparoxysmal Response): A Review. Epilepsia 2004;45 Suppl 1:19–23.

    PubMed  CAS  CrossRef  Google Scholar 

  28. de Haan GJ, Pinto D, Bertram E, Trenite DG, Koeleman BP, Lindhout D. Oligogenic inheritance in photosensitive juvenile myoclonic epilepsy? Epileptic Disord 2006;8(1):32–6.

    PubMed  Google Scholar 

  29. de Haan GJ, Pinto D, Carton D, et al. A novel splicing mutation in KCNQ2 in a multigenerational family with BFNC followed for 25 years. Epilepsia 2006;47(5):851–9.

    PubMed  CrossRef  Google Scholar 

  30. Herrlin KM. Epilepsy, light-sensitivity and left-handedness in a family with monozygotic triplets. Pediatrics 1960;25:385–99.

    PubMed  CAS  Google Scholar 

  31. Daly D, Bickford RG. Electroencephalographic studies of identical twins with photo-epilepsy. Electroencephalogr Clin Neurophysiol 1951;3(2):245–9.

    PubMed  CAS  CrossRef  Google Scholar 

  32. Davidson S, Watson CW. Hereditary light sensitive epilepsy. Neurology 1956;6(4):235–61.

    PubMed  CAS  Google Scholar 

  33. Newmark ME, Penry JK. Photosensitivity and epilepsy: a review. New York: Raven Press, 1979.

    Google Scholar 

  34. de Haan GJ, Trenite DK, Stroink H, et al. Monozygous twin brothers discordant for photosensitive epilepsy: first report of possible visual priming in humans. Epilepsia 2005;46(9):1545–9.

    PubMed  CrossRef  Google Scholar 

  35. Doose H, Gerken H, Hien-Volpel KF, Volzke E. Genetics of photosensitive epilepsy. Neuropadiatrie 1969;1(1):56–73.

    PubMed  CAS  CrossRef  Google Scholar 

  36. Waltz S. Photosensitivity and epilepsy: a genetic approach. In: Malafosse A, Genton P, Hirsch E, Marescaux C, Broglin D, Bernasconi R, eds. Idiopathic generalized epilepsies: clinical, experimental and genetic aspects. London: John Libbey, 1994: 317–28.

    Google Scholar 

  37. Rabending G, Klepel H. [Photoconvulsive and photomyoclonic reactions: age-dependent, genetically determined variants of enhanced photosensitivity]. Neuropadiatrie 1970;2(2):164–72.

    PubMed  CAS  CrossRef  Google Scholar 

  38. Watson CW, Marcus EM. The genetics and clinical significance of photogenic cerebral electrical abnormalities, myoclonus, and seizures. Trans Am Neurol Assoc 1962;87:251–3.

    PubMed  CAS  Google Scholar 

  39. Jeavons PM, Harding GF. Photosensitive epilepsy. London: Cambridge University Press, 1975.

    Google Scholar 

  40. Waltz S, Stephani U. Inheritance of photosensitivity. Neuropediatrics 2000;31(2):82–5.

    PubMed  CAS  CrossRef  Google Scholar 

  41. Kasteleijn-Nolst Trenité DG, Binnie CD, Harding GF, et al. Medical technology assessment photic stimulation — standardization of screening methods. Neurophysiol Clin 1999;29(4):318–24.

    CrossRef  Google Scholar 

  42. Kasteleijn-Nolst Trenité DG, Binnie CD, Harding GF, Wilkins A. Photic stimulation: standardization of screening methods. Epilepsia 1999;40 Suppl 4:75–9.

    PubMed  Google Scholar 

  43. Kasteleijn-Nolst Trenité DG, Guerrini R, Binnie CD, Genton P. Visual sensitivity and epilepsy: a proposed terminology and classification for clinical and EEG phenomenology. Epilepsia 2001;42(5):692–701.

    PubMed  CrossRef  Google Scholar 

  44. Pinto D, Westland B, de Haan GJ, et al. Genome-wide linkage scan of epilepsy-related photoparoxysmal electro- encephalographic response: evidence for linkage on chromosomes 7q32 and 16p13. Hum Mol Genet 2005;14(1):171–8.

    PubMed  CAS  CrossRef  Google Scholar 

  45. Tauer U, Lorenz S, Lenzen KP, et al. Genetic dissection of photosensitivity and its relation to idiopathic generalized epilepsy. Ann Neurol 2005;57(6):866–73.

    PubMed  CAS  CrossRef  Google Scholar 

  46. Pinto D, Kasteleijn-Nolst Trenite DG, Cordell HJ, et al. Explorative two-locus linkage analysis suggests a multiplicative interaction between the 7q32 and 16p13 myoclonic seizures-related photosensitivity loci. Genet Epidemiol 2007;31(1):42–50.

    PubMed  CrossRef  Google Scholar 

  47. Winawer MR, Rabinowitz D, Barker-Cummings C, et al. Evidence for distinct genetic influences on generalized and localization-related epilepsy. Epilepsia 2003;44(9):1176–82.

    PubMed  CrossRef  Google Scholar 

  48. Winawer MR, Rabinowitz D, Pedley TA, Hauser WA, Ottman R. Genetic influences on myoclonic and absence seizures. Neurology 2003;61(11):1576–81.

    PubMed  CAS  Google Scholar 

  49. Marini C, Scheffer IE, Crossland KM, et al. Genetic architecture of idiopathic generalized epilepsy: clinical genetic analysis of 55 multiplex families. Epilepsia 2004;45(5):467–78.

    PubMed  CrossRef  Google Scholar 

  50. Posthuma D, de Geus EJ, Neale MC, et al. Multivariate genetic analysis of brain structure in an extended twin design. Behav Genet 2000;30(4):311–9.

    PubMed  CAS  CrossRef  Google Scholar 

  51. Thompson PM, Cannon TD, Narr KL, et al. Genetic influences on brain structure. Nat Neurosci 2001;4(12):1253–8.

    PubMed  CAS  CrossRef  Google Scholar 

  52. Baare WF, Hulshoff Pol HE, Boomsma DI, et al. Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex 2001;11(9):816–24.

    PubMed  CAS  CrossRef  Google Scholar 

  53. Koepp MJ. Juvenile myoclonic epilepsy — a generalized epilepsy syndrome? Acta Neurol Scand Suppl 2005;181:57–62.

    PubMed  CAS  CrossRef  Google Scholar 

  54. Meschaks A, Lindstrom P, Halldin C, Farde L, Savic I. Regional reductions in serotonin 1A receptor binding in juvenile myoclonic epilepsy. Arch Neurol 2005;62(6):946–50.

    PubMed  CrossRef  Google Scholar 

  55. Woermann FG, Free SL, Koepp MJ, Sisodiya SM, Duncan JS. Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. Brain 1999;122 (Pt 11):2101–8.

    PubMed  CrossRef  Google Scholar 

  56. Mory SB, Li LM, Guerreiro CA, Cendes F. Thalamic dysfunction in juvenile myoclonic epilepsy: a proton MRS study. Epilepsia 2003;44(11):1402–05.

    PubMed  CAS  CrossRef  Google Scholar 

  57. Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 2005;6(10):782–92.

    PubMed  CAS  CrossRef  Google Scholar 

  58. Scherer SW, Lee C, Birney E, et al. Challenges and standards in integrating surveys of structural variation. Nat Genet 2007;39(7 Suppl):S7–15.

    PubMed  CAS  CrossRef  Google Scholar 

  59. Pinto D, Marshall C, Feuk L, Scherer SW. Copy-number variation in control population cohorts. Hum Mol Genet 2007;16 Spec No. 2:R168–73.

    PubMed  CAS  CrossRef  Google Scholar 

  60. Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 2007;39(7 Suppl):S16–21.

    PubMed  CAS  CrossRef  Google Scholar 

  61. Singleton AB, Farrer M, Johnson J, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science 2003;302(5646):841.

    PubMed  CAS  CrossRef  Google Scholar 

  62. Rovelet-Lecrux A, Hannequin D, Raux G, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 2006;38(1):24–6.

    PubMed  CAS  CrossRef  Google Scholar 

  63. Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism. Science 2007;316(5823):445–9.

    PubMed  CAS  CrossRef  Google Scholar 

  64. Weiss LA, Shen Y, Korn JM, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008;358(7):667–75.

    PubMed  CAS  CrossRef  Google Scholar 

  65. Marshall CR, Noor A, Vincent JB, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008;82(2):477–88.

    PubMed  CAS  CrossRef  Google Scholar 

  66. Walsh T, McClellan JM, McCarthy SE, et al. Rare structural variants disrupt multiple genes in neurodevelop- mental pathways in schizophrenia. Science 2008; 320(5875):539–43.

    PubMed  CAS  CrossRef  Google Scholar 

  67. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008;40(7):880–5.

    PubMed  CAS  CrossRef  Google Scholar 

  68. Lupski JR. Genomic rearrangements and sporadic disease. Nat Genet 2007;39(7 Suppl):S43–7.

    PubMed  CAS  CrossRef  Google Scholar 

  69. Battaglia A, Guerrini R. Chromosomal disorders associated with epilepsy. Epileptic Disord 2005;7(3):181–92.

    PubMed  Google Scholar 

  70. Burczynski ME, Dorner AJ. Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies. Pharmacogenomics 2006;7(2):187–202.

    PubMed  CAS  CrossRef  Google Scholar 

  71. Chen Y, Lu J, Pan H, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003;54(2):239–43.

    PubMed  CAS  CrossRef  Google Scholar 

  72. Heron SE, Phillips HA, Mulley JC, et al. Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol 2004;55(4):595–6.

    PubMed  CAS  CrossRef  Google Scholar 

  73. Khosravani H, Altier C, Simms B, et al. Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 2004;279(11):9681–4.

    PubMed  CAS  CrossRef  Google Scholar 

  74. Khosravani H, Bladen C, Parker DB, Snutch TP, McRory JE, Zamponi GW. Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy. Ann Neurol 2005;57(5):745–9.

    PubMed  CAS  CrossRef  Google Scholar 

  75. Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 2004;13(13):1315–9.

    PubMed  CAS  CrossRef  Google Scholar 

  76. Beck C, Moulard B, Steinlein O, et al. A nonsense mutation in the alpha4 subunit of the nicotinic acetylcholine receptor (CHRNA4) cosegregates with 20q-linked benign neonatal familial convulsions (EBNI). Neurobiol Dis 1994;1(1–2):95–9.

    PubMed  CAS  CrossRef  Google Scholar 

  77. Steinlein OK, Mulley JC, Propping P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 1995;11(2):201–3.

    PubMed  CAS  CrossRef  Google Scholar 

  78. Hirose S, Iwata H, Akiyoshi H, et al. A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology 1999;53(8):1749–53.

    PubMed  CAS  Google Scholar 

  79. Saenz A, Galan J, Caloustian C, et al. Autosomal dominant nocturnal frontal lobe epilepsy in a Spanish family with a Ser252Phe mutation in the CHRNA4 gene. Arch Neurol 1999;56(8):1004–9.

    PubMed  CAS  CrossRef  Google Scholar 

  80. Steinlein OK, Magnusson A, Stoodt J, et al. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet 1997;6(6):943–7.

    PubMed  CAS  CrossRef  Google Scholar 

  81. De Fusco M, Becchetti A, Patrignani A, et al. The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet 2000;26(3):275–6.

    PubMed  CrossRef  Google Scholar 

  82. Phillips HA, Favre I, Kirkpatrick M, et al. CHRNB2 is the second acetylcholine receptor subunit associated with auto- somal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet 2001;68(1):225–31.

    PubMed  CAS  CrossRef  Google Scholar 

  83. McLellan A, Phillips HA, Rittey C, et al. Phenotypic comparison of two Scottish families with mutations in different genes causing autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia 2003;44(4):613–7.

    PubMed  CrossRef  Google Scholar 

  84. Richards MC, Heron SE, Spendlove HE, et al. Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J Med Genet 2004;41(3):e35.

    PubMed  CAS  CrossRef  Google Scholar 

  85. Schwake M, Pusch M, Kharkovets T, Jentsch TJ. Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem 2000;275(18):13343–8.

    PubMed  CAS  CrossRef  Google Scholar 

  86. Biervert C, Schroeder BC, Kubisch C, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998;279(5349):403–6.

    PubMed  CAS  CrossRef  Google Scholar 

  87. de Haan GJ, Pinto D, Carton D, et al. A novel splicing mutation in KCNQ2 in a multigenerational family with BFNC followed over 25 years. Epilepsia 2005;in press.

    Google Scholar 

  88. Moulard B, Picard F, le Hellard S, et al. Ion channel variation causes epilepsies. Brain Res Brain Res Rev 2001;36(2–3):275–84.

    PubMed  CAS  CrossRef  Google Scholar 

  89. Singh NA, Westenskow P, Charlier C, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 2003;126(Pt 12):2726–37.

    PubMed  CrossRef  Google Scholar 

  90. Hirose S, Zenri F, Akiyoshi H, et al. A novel mutation of KCNQ3 (c.925T->C) in a Japanese family with benign familial neonatal convulsions. Ann Neurol 2000;47(6):822–6.

    CrossRef  Google Scholar 

  91. Charlier C, Singh NA, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998;18(1):53–5.

    PubMed  CAS  CrossRef  Google Scholar 

  92. Ryan SG, Wiznitzer M, Hollman C, Torres MC, Szekeresova M, Schneider S. Benign familial neonatal convulsions: evidence for clinical and genetic heterogeneity. Ann Neurol 1991;29(5):469–73.

    PubMed  CAS  CrossRef  Google Scholar 

  93. Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000;24(4):343–5.

    PubMed  CAS  CrossRef  Google Scholar 

  94. Escayg A, Heils A, MacDonald BT, Haug K, Sander T, Meisler MH. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus–and prevalence of variants in patients with epilepsy. Am J Hum Genet 2001;68(4):866–73.

    PubMed  CAS  CrossRef  Google Scholar 

  95. Wallace RH, Scheffer IE, Barnett S, et al. Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet 2001;68(4):859–65.

    PubMed  CAS  CrossRef  Google Scholar 

  96. Pineda-Trujillo N, Carrizosa J, Cornejo W, et al. A novel SCN1A mutation associated with severe GEFS+ in a large South American pedigree. Seizure 2005;14(2):123–8.

    PubMed  CAS  CrossRef  Google Scholar 

  97. Claes L, Ceulemans B, Audenaert D, et al. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat 2003;21(6):615–21.

    PubMed  CAS  CrossRef  Google Scholar 

  98. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001;68(6):1327–32.

    PubMed  CAS  CrossRef  Google Scholar 

  99. Wallace RH, Hodgson BL, Grinton BE, et al. Sodium channel alpha1-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms. Neurology 2003;61(6):765–9.

    PubMed  CAS  Google Scholar 

  100. Fujiwara T, Sugawara T, Mazaki-Miyazaki E, et al. Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain 2003;126(Pt 3) :531–46.

    PubMed  CrossRef  Google Scholar 

  101. Ohmori I, Ohtsuka Y, Ouchida M, et al. Is phenotype difference in severe myoclonic epilepsy in infancy related to SCN1A mutations? Brain Dev 2003;25(7):488–93.

    PubMed  CrossRef  Google Scholar 

  102. Sugawara T, Mazaki-Miyazaki E, Fukushima K, et al. Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy. Neurology 2002;58(7):1122–4.

    PubMed  CAS  Google Scholar 

  103. Nabbout R, Gennaro E, Dalla Bernardina B, et al. Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology 2003;60(12):1961–7.

    PubMed  CAS  Google Scholar 

  104. Fukuma G, Oguni H, Shirasaka Y, et al. Mutations of neuronal voltage-gated Na+ channel alpha 1 subunit gene SCN1A in core severe myoclonic epilepsy in infancy (SMEI) and in borderline SMEI (SMEB). Epilepsia 2004;45(2):140–8.

    PubMed  CAS  CrossRef  Google Scholar 

  105. Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet 1998;19(4):366–70.

    PubMed  CAS  CrossRef  Google Scholar 

  106. Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U S A 2001;98(11):6384–9.

    PubMed  CAS  CrossRef  Google Scholar 

  107. Cossette P, Liu L, Brisebois K, et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002;31(2):184–9.

    PubMed  CAS  CrossRef  Google Scholar 

  108. Kananura C, Haug K, Sander T, et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol 2002;59(7):1137–41.

    PubMed  CrossRef  Google Scholar 

  109. Baulac S, Huberfeld G, Gourfinkel-An I, et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 2001;28(1):46–8.

    PubMed  CAS  CrossRef  Google Scholar 

  110. Wallace RH, Marini C, Petrou S, et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001;28(1):49–52.

    PubMed  CAS  CrossRef  Google Scholar 

  111. Harkin LA, Bowser DN, Dibbens LM, et al. Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 2002;70(2):530–6.

    PubMed  CAS  CrossRef  Google Scholar 

  112. Escayg A, De Waard M, Lee DD, et al. Coding and non- coding variation of the human calcium-channel beta4-sub- unit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000;66(5):1531–9.

    PubMed  CAS  CrossRef  Google Scholar 

  113. Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996;87(3):543–52.

    PubMed  CAS  CrossRef  Google Scholar 

  114. Jouvenceau A, Eunson LH, Spauschus A, et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 2001;358(9284):801–7.

    PubMed  CAS  CrossRef  Google Scholar 

  115. Chioza B, Wilkie H, Nashef L, et al. Association between the alpha(1a) calcium channel gene CACNA1A and idio- pathic generalized epilepsy. Neurology 2001;56(9):1245–6.

    PubMed  CAS  Google Scholar 

  116. Haug K, Warnstedt M, Alekov AK, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 2003;33(4):527–32.

    PubMed  CAS  CrossRef  Google Scholar 

  117. Moore T, Hecquet S, McLellann A, et al. Polymorphism analysis of JRK/JH8, the human homologue of mouse jerky, and description of a rare mutation in a case of CAE evolving to JME. Epilepsy Res 2001;46(2):157–67.

    PubMed  CAS  CrossRef  Google Scholar 

  118. Nakayama J, Fu YH, Clark AM, et al. A nonsense mutation of the MASS1 gene in a family with febrile and afebrile seizures. Ann Neurol 2002;52(5):654–7.

    PubMed  CAS  CrossRef  Google Scholar 

  119. Berkovic SF, Izzillo P, McMahon JM, et al. LGI1 mutations in temporal lobe epilepsies. Neurology 2004;62(7):1115–9.

    PubMed  CAS  Google Scholar 

  120. Gu W, Brodtkorb E, Steinlein OK. LGI1 is mutated in familial temporal lobe epilepsy characterized by aphasic seizures. Ann Neurol 2002;52(3):364–7.

    PubMed  CAS  CrossRef  Google Scholar 

  121. Kalachikov S, Evgrafov O, Ross B, et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 2002;30(3):335–41.

    PubMed  CrossRef  Google Scholar 

  122. Fertig E, Lincoln A, Martinuzzi A, Mattson RH, Hisama FM. Novel LGI1 mutation in a family with autosomal dominant partial epilepsy with auditory features. Neurology 2003;60(10):1687–90.

    PubMed  Google Scholar 

  123. Pisano T, Marini C, Brovedani P, et al. Abnormal phonologic processing in familial lateral temporal lobe epilepsy due to a new LGI1 mutation. Epilepsia 2005;46(1):118–23.

    PubMed  CAS  CrossRef  Google Scholar 

  124. Ottman R, Winawer MR, Kalachikov S, et al. LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 2004;62(7):1120–6.

    PubMed  CAS  Google Scholar 

  125. Suzuki T, Delgado-Escueta AV, Aguan K, et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 2004;36(8):842–9.

    PubMed  CAS  CrossRef  Google Scholar 

  126. Combi R, Dalpra L, Ferini-Strambi L, Tenchini ML. Frontal lobe epilepsy and mutations of the corticotropin- releasing hormone gene. Ann Neurol 2005.

    Google Scholar 

  127. Wilkins AJ, Baker A, Amin D, et al. Treatment of photosensitive epilepsy using coloured glasses. Seizure 1999;8(8):444–9.

    PubMed  CAS  CrossRef  Google Scholar 

  128. Capovilla G, Gambardella A, Rubboli G, et al. Effectiveness of a commercial available blue lens in photosensitive epileptic patients: the results of a large multicenter Italian study. Epilepsia 2005;46(Suppl.6):61.

    Google Scholar 

  129. Willoughby JO, Fitzgibbon SP, Pope KJ, et al. Persistent abnormality detected in the non-ictal electroencephalogram in primary generalised epilepsy. J Neurol Neurosurg Psychiatr 2003;74(1):51–5.

    PubMed  CAS  CrossRef  Google Scholar 

  130. Pinto D, de Haan GJ, Janssen GA, et al. Evidence for linkage between juvenile myoclonic epilepsy-related idiopathic generalized epilepsy and 6p11–12 in Dutch families. Epilepsia 2004;45(3):211–7.

    PubMed  CrossRef  Google Scholar 

  131. Peiffer A, Thompson J, Charlier C, et al. A locus for febrile seizures (FEB3) maps to chromosome 2q23–24. Ann Neurol 1999;46(4):671–8.

    PubMed  CAS  CrossRef  Google Scholar 

  132. Lopes-Cendes I, Scheffer IE, Berkovic SF, Rousseau M, Andermann E, Rouleau GA. A new locus for generalized epilepsy with febrile seizures plus maps to chromosome 2. Am J Hum Genet 2000;66(2):698–701.

    PubMed  CAS  CrossRef  Google Scholar 

  133. Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 1997;120 (Pt 3):479–90.

    Google Scholar 

  134. Baulac S, Gourfinkel-An I, Picard F, et al. A second locus for familial generalized epilepsy with febrile seizures plus maps to chromosome 2q21-q33. Am J Hum Genet 1999;65(4):1078–85.

    PubMed  CAS  CrossRef  Google Scholar 

  135. Moulard B, Guipponi M, Chaigne D, Mouthon D, Buresi C, Malafosse A. Identification of a new locus for generalized epilepsy with febrile seizures plus (GEFS+) on chromosome 2q24-q33. Am J Hum Genet 1999;65(5):1396–400.

    PubMed  CAS  CrossRef  Google Scholar 

  136. Greenberg DA, Durner M, Shinnar S, et al. Association of HLA class II alleles in patients with juvenile myoclo- nic epilepsy compared with patients with other forms of adolescent-onset generalized epilepsy. Neurology 1996;47(3):750–5.

    PubMed  CAS  Google Scholar 

  137. Durner M, Sander T, Greenberg DA, Johnson K, Beck-Mannagetta G, Janz D. Localization of idiopathic generalized epilepsy on chromosome 6p in families of juvenile myoclonic epilepsy patients. Neurology 1991;41(10):1651–5.

    PubMed  CAS  Google Scholar 

  138. Durner M, Zhou G, Fu D, et al. Evidence for linkage of adolescent-onset idiopathic generalized epilepsies to chromosome 8-and genetic heterogeneity. Am J Hum Genet 1999;64(5):1411–9.

    PubMed  CAS  CrossRef  Google Scholar 

  139. Pal DK, Evgrafov OV, Tabares P, Zhang F, Durner M, Greenberg DA. BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am J Hum Genet 2003;73(2):261–70.

    PubMed  CAS  CrossRef  Google Scholar 

  140. Bai D, Alonso ME, Medina MT, et al. Juvenile myoclonic epilepsy: linkage to chromosome 6p12 in Mexico families. Am J Med Genet 2002;113(3):268–74.

    PubMed  CrossRef  Google Scholar 

  141. Lenzen KP, Heils A, Hempelmann A, et al. Molecular genetic dissection of seizure-type related susceptibility loci of idiopathic generalized epilepsy. Epilepsia 2005;46 (Suppl 6):60.

    Google Scholar 

  142. Elmslie F V, Rees M, Williamson MP, et al. Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum Mol Genet 1997;6(8):1329–34.

    PubMed  CAS  CrossRef  Google Scholar 

  143. Whitehouse WP, Rees M, Curtis D, et al. Linkage analysis of idiopathic generalized epilepsy (IGE) and marker loci on chromosome 6p in families of patients with juvenile myoclonic epilepsy: no evidence for an epilepsy locus in the HLA region. Am J Hum Genet 1993;53(3):652–62.

    PubMed  CAS  Google Scholar 

  144. Mas C, Taske N, Deutsch S, et al. Association of the con- nexin36 gene with juvenile myoclonic epilepsy. J Med Genet 2004;41(7):e93.

    PubMed  CAS  CrossRef  Google Scholar 

  145. Zara F, Gennaro E, Stabile M, et al. Mapping of a locus for a familial autosomal recessive idiopathic myoclonic epilepsy of infancy to chromosome 16p13. Am J Hum Genet 2000;66(5):1552–7.

    PubMed  CAS  CrossRef  Google Scholar 

  146. Takahashi T, Tsukahara Y. Photoparoxysmal response elicited by flickering dot pattern stimulation and its optimal spatial frequency of provocation. Electroencephalogr Clin Neurophysiol 1998;106(1):40–3.

    PubMed  CAS  CrossRef  Google Scholar 

  147. Lewis JA. Eye closure as a motor trigger for seizures. Neurology 1972;22(11):1145–50.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pinto, D., Trenité, D.KN., Lindhout, D. (2009). Endophenotype Strategy in Epilepsy Genetics. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2298-1_6

Download citation