Gowers WR. Epilepsy and other chronic convulsive diseases: their causes, symptoms and treatment. 2nd ed. New York: Wood, 1901.
Google Scholar
Swinkels WA, Kuyk J, van Dyck R, Spinhoven P. Psychiatric comorbidity in epilepsy. Epilepsy Behav 2005;7(1):37–50.
PubMed
CAS
CrossRef
Google Scholar
Berkovic SF, Howell RA, Hay DA, Hopper JL. Epilepsies in twins: genetics of the major epilepsy syndromes. Ann. Neurol 1998;43(4):435–45.
PubMed
CAS
CrossRef
Google Scholar
Beck-Mannagetta G, Janz D. Syndrome-related genetics in generalized epilepsy. Epilepsy Res Suppl 1991;4:105–11.
PubMed
CAS
Google Scholar
Miller LL, Pellock JM, DeLorenzo RJ, Meyer JM, Corey LA. Univariate genetic analyses of epilepsy and seizures in a population-based twin study: the Virginia Twin Registry. Genet Epidemiol 1998;15(1):33–49.
PubMed
CAS
CrossRef
Google Scholar
Mulley JC, Scheffer IE, Harkin LA, Berkovic SF, Dibbens LM. Susceptibility genes for complex epilepsy. Hum Mol Genet 2005;14 Spec No. 2:R243–9.
PubMed
CAS
CrossRef
Google Scholar
Hempelmann A, Taylor KP, Heils A, et al. Exploration of the genetic architecture of idiopathic generalized epilepsies. Epilepsia 2006;47(10):1682–90.
PubMed
CAS
CrossRef
Google Scholar
Ottman R. Analysis of genetically complex epilepsies. Epilepsia 2005;46 Suppl 10:7–14.
PubMed
CrossRef
Google Scholar
ILAE. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989;30(4):389–99.
Google Scholar
ILAE. Proposal for revised clinical and electroencephalo- graphic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1981;22(4):489–501.
Google Scholar
Berkovic SF, Reutens DC, Andermann E, Andermann F. The epilepsies: specific syndromes or a neurobiological continuum? Epileptic seizures and syndromes. London: John Libbey, 1994: 25–37.
Google Scholar
Greenberg DA, Durner M, Keddache M, et al. Reproducibility and complications in gene searches: linkage on chromosome 6, heterogeneity, association, and maternal inheritance in juvenile myoclonic epilepsy. Am J Hum Genet 2000;66(2):508–16.
PubMed
CAS
CrossRef
Google Scholar
Gottesman, II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatr 2003;160(4):636–45.
PubMed
CrossRef
Google Scholar
Leboyer M, Bellivier F, Nosten-Bertrand M, Jouvent R, Pauls D, Mallet J. Psychiatric genetics: search for pheno- types. Trends Neurosci 1998;21(3):102–5.
PubMed
CAS
CrossRef
Google Scholar
Lalouel JM, Le Mignon L, Simon M, et al. Genetic analysis of idiopathic hemochromatosis using both qualitative (disease status) and quantitative (serum iron) information. Am J Hum Genet 1985;37(4):700–18.
PubMed
CAS
Google Scholar
Utermann G, Hardewig A, Zimmer F. Apolipoprotein E phenotypes in patients with myocardial infarction. Hum Genet 1984;65(3):237–41.
PubMed
CAS
CrossRef
Google Scholar
Gottesman, II, Shields J. Genetic theorizing and schizophrenia. Br J Psychiatr 1973;122(566):15–30.
CAS
CrossRef
Google Scholar
Schulze TG, McMahon FJ. Defining the phenotype in human genetic studies: forward genetics and reverse pheno- typing. Hum Hered 2004;58(3–4):131–8.
PubMed
CrossRef
Google Scholar
Pinto D. Dissecting the genetic basis of idiopathic epilepsies.: Utrecht University, PhD thesis, ISBN 90-393-4191-5, 2006.
Google Scholar
Kasteleijn-Nolst Trenité DG. Photosensitivity in epilepsy. Electrophysiological and clinical correlates. Acta Neurol Scand Suppl 1989;125:3–149.
PubMed
Google Scholar
Doose H. EEG in childhood epilepsy. 1st ed. Mountrouge: John Libbey Eurotext, 2003.
Google Scholar
Wolf P, Goosses R. Relation of photosensitivity to epileptic syndromes. J Neurol Neurosurg Psychiatr 1986;49(12):1386–91.
PubMed
CAS
CrossRef
Google Scholar
Guerrini R, Genton P. Epileptic syndromes and visually induced seizures. Epilepsia 2004;45 Suppl 1:14–18.
PubMed
CrossRef
Google Scholar
Kasteleijn-Nolst Trenité DG, Silva LCB, Manreza MLG. Prevalence of photo paroxysmal EEG responses in normal children and adolescents in Teofile Otoni, Brazil: 2001–2002. Epilepsia, 2003: 48.
Google Scholar
Doose H, Waltz S. Photosensitivity-genetics and clinical significance. Neuropediatrics 1993;24(5):249–55.
PubMed
CAS
CrossRef
Google Scholar
Kasteleijn-Nolst Trenité DG, Pinto D, Hirsch E, Takahashi T. Photosensitivity, visual induced seizures and epileptic syndromes. In: Roger J, Bureau M, Dravet C, Genton P, Tassinari CA, Wolf P, eds. Epilepsy syndromes in infancy, childhood and adolescence. 4th ed. Montrouge, France: John Libbey, 2005: 395–420.
Google Scholar
Stephani U, Tauer U, Koeleman B, Pinto D, Neubauer BA, Lindhout D. Genetics of Photosensitivity (Photoparoxysmal Response): A Review. Epilepsia 2004;45 Suppl 1:19–23.
PubMed
CAS
CrossRef
Google Scholar
de Haan GJ, Pinto D, Bertram E, Trenite DG, Koeleman BP, Lindhout D. Oligogenic inheritance in photosensitive juvenile myoclonic epilepsy? Epileptic Disord 2006;8(1):32–6.
PubMed
Google Scholar
de Haan GJ, Pinto D, Carton D, et al. A novel splicing mutation in KCNQ2 in a multigenerational family with BFNC followed for 25 years. Epilepsia 2006;47(5):851–9.
PubMed
CrossRef
Google Scholar
Herrlin KM. Epilepsy, light-sensitivity and left-handedness in a family with monozygotic triplets. Pediatrics 1960;25:385–99.
PubMed
CAS
Google Scholar
Daly D, Bickford RG. Electroencephalographic studies of identical twins with photo-epilepsy. Electroencephalogr Clin Neurophysiol 1951;3(2):245–9.
PubMed
CAS
CrossRef
Google Scholar
Davidson S, Watson CW. Hereditary light sensitive epilepsy. Neurology 1956;6(4):235–61.
PubMed
CAS
Google Scholar
Newmark ME, Penry JK. Photosensitivity and epilepsy: a review. New York: Raven Press, 1979.
Google Scholar
de Haan GJ, Trenite DK, Stroink H, et al. Monozygous twin brothers discordant for photosensitive epilepsy: first report of possible visual priming in humans. Epilepsia 2005;46(9):1545–9.
PubMed
CrossRef
Google Scholar
Doose H, Gerken H, Hien-Volpel KF, Volzke E. Genetics of photosensitive epilepsy. Neuropadiatrie 1969;1(1):56–73.
PubMed
CAS
CrossRef
Google Scholar
Waltz S. Photosensitivity and epilepsy: a genetic approach. In: Malafosse A, Genton P, Hirsch E, Marescaux C, Broglin D, Bernasconi R, eds. Idiopathic generalized epilepsies: clinical, experimental and genetic aspects. London: John Libbey, 1994: 317–28.
Google Scholar
Rabending G, Klepel H. [Photoconvulsive and photomyoclonic reactions: age-dependent, genetically determined variants of enhanced photosensitivity]. Neuropadiatrie 1970;2(2):164–72.
PubMed
CAS
CrossRef
Google Scholar
Watson CW, Marcus EM. The genetics and clinical significance of photogenic cerebral electrical abnormalities, myoclonus, and seizures. Trans Am Neurol Assoc 1962;87:251–3.
PubMed
CAS
Google Scholar
Jeavons PM, Harding GF. Photosensitive epilepsy. London: Cambridge University Press, 1975.
Google Scholar
Waltz S, Stephani U. Inheritance of photosensitivity. Neuropediatrics 2000;31(2):82–5.
PubMed
CAS
CrossRef
Google Scholar
Kasteleijn-Nolst Trenité DG, Binnie CD, Harding GF, et al. Medical technology assessment photic stimulation — standardization of screening methods. Neurophysiol Clin 1999;29(4):318–24.
CrossRef
Google Scholar
Kasteleijn-Nolst Trenité DG, Binnie CD, Harding GF, Wilkins A. Photic stimulation: standardization of screening methods. Epilepsia 1999;40 Suppl 4:75–9.
PubMed
Google Scholar
Kasteleijn-Nolst Trenité DG, Guerrini R, Binnie CD, Genton P. Visual sensitivity and epilepsy: a proposed terminology and classification for clinical and EEG phenomenology. Epilepsia 2001;42(5):692–701.
PubMed
CrossRef
Google Scholar
Pinto D, Westland B, de Haan GJ, et al. Genome-wide linkage scan of epilepsy-related photoparoxysmal electro- encephalographic response: evidence for linkage on chromosomes 7q32 and 16p13. Hum Mol Genet 2005;14(1):171–8.
PubMed
CAS
CrossRef
Google Scholar
Tauer U, Lorenz S, Lenzen KP, et al. Genetic dissection of photosensitivity and its relation to idiopathic generalized epilepsy. Ann Neurol 2005;57(6):866–73.
PubMed
CAS
CrossRef
Google Scholar
Pinto D, Kasteleijn-Nolst Trenite DG, Cordell HJ, et al. Explorative two-locus linkage analysis suggests a multiplicative interaction between the 7q32 and 16p13 myoclonic seizures-related photosensitivity loci. Genet Epidemiol 2007;31(1):42–50.
PubMed
CrossRef
Google Scholar
Winawer MR, Rabinowitz D, Barker-Cummings C, et al. Evidence for distinct genetic influences on generalized and localization-related epilepsy. Epilepsia 2003;44(9):1176–82.
PubMed
CrossRef
Google Scholar
Winawer MR, Rabinowitz D, Pedley TA, Hauser WA, Ottman R. Genetic influences on myoclonic and absence seizures. Neurology 2003;61(11):1576–81.
PubMed
CAS
Google Scholar
Marini C, Scheffer IE, Crossland KM, et al. Genetic architecture of idiopathic generalized epilepsy: clinical genetic analysis of 55 multiplex families. Epilepsia 2004;45(5):467–78.
PubMed
CrossRef
Google Scholar
Posthuma D, de Geus EJ, Neale MC, et al. Multivariate genetic analysis of brain structure in an extended twin design. Behav Genet 2000;30(4):311–9.
PubMed
CAS
CrossRef
Google Scholar
Thompson PM, Cannon TD, Narr KL, et al. Genetic influences on brain structure. Nat Neurosci 2001;4(12):1253–8.
PubMed
CAS
CrossRef
Google Scholar
Baare WF, Hulshoff Pol HE, Boomsma DI, et al. Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex 2001;11(9):816–24.
PubMed
CAS
CrossRef
Google Scholar
Koepp MJ. Juvenile myoclonic epilepsy — a generalized epilepsy syndrome? Acta Neurol Scand Suppl 2005;181:57–62.
PubMed
CAS
CrossRef
Google Scholar
Meschaks A, Lindstrom P, Halldin C, Farde L, Savic I. Regional reductions in serotonin 1A receptor binding in juvenile myoclonic epilepsy. Arch Neurol 2005;62(6):946–50.
PubMed
CrossRef
Google Scholar
Woermann FG, Free SL, Koepp MJ, Sisodiya SM, Duncan JS. Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. Brain 1999;122 (Pt 11):2101–8.
PubMed
CrossRef
Google Scholar
Mory SB, Li LM, Guerreiro CA, Cendes F. Thalamic dysfunction in juvenile myoclonic epilepsy: a proton MRS study. Epilepsia 2003;44(11):1402–05.
PubMed
CAS
CrossRef
Google Scholar
Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 2005;6(10):782–92.
PubMed
CAS
CrossRef
Google Scholar
Scherer SW, Lee C, Birney E, et al. Challenges and standards in integrating surveys of structural variation. Nat Genet 2007;39(7 Suppl):S7–15.
PubMed
CAS
CrossRef
Google Scholar
Pinto D, Marshall C, Feuk L, Scherer SW. Copy-number variation in control population cohorts. Hum Mol Genet 2007;16 Spec No. 2:R168–73.
PubMed
CAS
CrossRef
Google Scholar
Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 2007;39(7 Suppl):S16–21.
PubMed
CAS
CrossRef
Google Scholar
Singleton AB, Farrer M, Johnson J, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science 2003;302(5646):841.
PubMed
CAS
CrossRef
Google Scholar
Rovelet-Lecrux A, Hannequin D, Raux G, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 2006;38(1):24–6.
PubMed
CAS
CrossRef
Google Scholar
Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism. Science 2007;316(5823):445–9.
PubMed
CAS
CrossRef
Google Scholar
Weiss LA, Shen Y, Korn JM, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008;358(7):667–75.
PubMed
CAS
CrossRef
Google Scholar
Marshall CR, Noor A, Vincent JB, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008;82(2):477–88.
PubMed
CAS
CrossRef
Google Scholar
Walsh T, McClellan JM, McCarthy SE, et al. Rare structural variants disrupt multiple genes in neurodevelop- mental pathways in schizophrenia. Science 2008; 320(5875):539–43.
PubMed
CAS
CrossRef
Google Scholar
Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008;40(7):880–5.
PubMed
CAS
CrossRef
Google Scholar
Lupski JR. Genomic rearrangements and sporadic disease. Nat Genet 2007;39(7 Suppl):S43–7.
PubMed
CAS
CrossRef
Google Scholar
Battaglia A, Guerrini R. Chromosomal disorders associated with epilepsy. Epileptic Disord 2005;7(3):181–92.
PubMed
Google Scholar
Burczynski ME, Dorner AJ. Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies. Pharmacogenomics 2006;7(2):187–202.
PubMed
CAS
CrossRef
Google Scholar
Chen Y, Lu J, Pan H, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003;54(2):239–43.
PubMed
CAS
CrossRef
Google Scholar
Heron SE, Phillips HA, Mulley JC, et al. Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol 2004;55(4):595–6.
PubMed
CAS
CrossRef
Google Scholar
Khosravani H, Altier C, Simms B, et al. Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 2004;279(11):9681–4.
PubMed
CAS
CrossRef
Google Scholar
Khosravani H, Bladen C, Parker DB, Snutch TP, McRory JE, Zamponi GW. Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy. Ann Neurol 2005;57(5):745–9.
PubMed
CAS
CrossRef
Google Scholar
Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 2004;13(13):1315–9.
PubMed
CAS
CrossRef
Google Scholar
Beck C, Moulard B, Steinlein O, et al. A nonsense mutation in the alpha4 subunit of the nicotinic acetylcholine receptor (CHRNA4) cosegregates with 20q-linked benign neonatal familial convulsions (EBNI). Neurobiol Dis 1994;1(1–2):95–9.
PubMed
CAS
CrossRef
Google Scholar
Steinlein OK, Mulley JC, Propping P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 1995;11(2):201–3.
PubMed
CAS
CrossRef
Google Scholar
Hirose S, Iwata H, Akiyoshi H, et al. A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology 1999;53(8):1749–53.
PubMed
CAS
Google Scholar
Saenz A, Galan J, Caloustian C, et al. Autosomal dominant nocturnal frontal lobe epilepsy in a Spanish family with a Ser252Phe mutation in the CHRNA4 gene. Arch Neurol 1999;56(8):1004–9.
PubMed
CAS
CrossRef
Google Scholar
Steinlein OK, Magnusson A, Stoodt J, et al. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet 1997;6(6):943–7.
PubMed
CAS
CrossRef
Google Scholar
De Fusco M, Becchetti A, Patrignani A, et al. The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet 2000;26(3):275–6.
PubMed
CrossRef
Google Scholar
Phillips HA, Favre I, Kirkpatrick M, et al. CHRNB2 is the second acetylcholine receptor subunit associated with auto- somal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet 2001;68(1):225–31.
PubMed
CAS
CrossRef
Google Scholar
McLellan A, Phillips HA, Rittey C, et al. Phenotypic comparison of two Scottish families with mutations in different genes causing autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia 2003;44(4):613–7.
PubMed
CrossRef
Google Scholar
Richards MC, Heron SE, Spendlove HE, et al. Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J Med Genet 2004;41(3):e35.
PubMed
CAS
CrossRef
Google Scholar
Schwake M, Pusch M, Kharkovets T, Jentsch TJ. Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem 2000;275(18):13343–8.
PubMed
CAS
CrossRef
Google Scholar
Biervert C, Schroeder BC, Kubisch C, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998;279(5349):403–6.
PubMed
CAS
CrossRef
Google Scholar
de Haan GJ, Pinto D, Carton D, et al. A novel splicing mutation in KCNQ2 in a multigenerational family with BFNC followed over 25 years. Epilepsia 2005;in press.
Google Scholar
Moulard B, Picard F, le Hellard S, et al. Ion channel variation causes epilepsies. Brain Res Brain Res Rev 2001;36(2–3):275–84.
PubMed
CAS
CrossRef
Google Scholar
Singh NA, Westenskow P, Charlier C, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 2003;126(Pt 12):2726–37.
PubMed
CrossRef
Google Scholar
Hirose S, Zenri F, Akiyoshi H, et al. A novel mutation of KCNQ3 (c.925T->C) in a Japanese family with benign familial neonatal convulsions. Ann Neurol 2000;47(6):822–6.
CrossRef
Google Scholar
Charlier C, Singh NA, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998;18(1):53–5.
PubMed
CAS
CrossRef
Google Scholar
Ryan SG, Wiznitzer M, Hollman C, Torres MC, Szekeresova M, Schneider S. Benign familial neonatal convulsions: evidence for clinical and genetic heterogeneity. Ann Neurol 1991;29(5):469–73.
PubMed
CAS
CrossRef
Google Scholar
Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000;24(4):343–5.
PubMed
CAS
CrossRef
Google Scholar
Escayg A, Heils A, MacDonald BT, Haug K, Sander T, Meisler MH. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus–and prevalence of variants in patients with epilepsy. Am J Hum Genet 2001;68(4):866–73.
PubMed
CAS
CrossRef
Google Scholar
Wallace RH, Scheffer IE, Barnett S, et al. Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet 2001;68(4):859–65.
PubMed
CAS
CrossRef
Google Scholar
Pineda-Trujillo N, Carrizosa J, Cornejo W, et al. A novel SCN1A mutation associated with severe GEFS+ in a large South American pedigree. Seizure 2005;14(2):123–8.
PubMed
CAS
CrossRef
Google Scholar
Claes L, Ceulemans B, Audenaert D, et al. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat 2003;21(6):615–21.
PubMed
CAS
CrossRef
Google Scholar
Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001;68(6):1327–32.
PubMed
CAS
CrossRef
Google Scholar
Wallace RH, Hodgson BL, Grinton BE, et al. Sodium channel alpha1-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms. Neurology 2003;61(6):765–9.
PubMed
CAS
Google Scholar
Fujiwara T, Sugawara T, Mazaki-Miyazaki E, et al. Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain 2003;126(Pt 3) :531–46.
PubMed
CrossRef
Google Scholar
Ohmori I, Ohtsuka Y, Ouchida M, et al. Is phenotype difference in severe myoclonic epilepsy in infancy related to SCN1A mutations? Brain Dev 2003;25(7):488–93.
PubMed
CrossRef
Google Scholar
Sugawara T, Mazaki-Miyazaki E, Fukushima K, et al. Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy. Neurology 2002;58(7):1122–4.
PubMed
CAS
Google Scholar
Nabbout R, Gennaro E, Dalla Bernardina B, et al. Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology 2003;60(12):1961–7.
PubMed
CAS
Google Scholar
Fukuma G, Oguni H, Shirasaka Y, et al. Mutations of neuronal voltage-gated Na+ channel alpha 1 subunit gene SCN1A in core severe myoclonic epilepsy in infancy (SMEI) and in borderline SMEI (SMEB). Epilepsia 2004;45(2):140–8.
PubMed
CAS
CrossRef
Google Scholar
Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet 1998;19(4):366–70.
PubMed
CAS
CrossRef
Google Scholar
Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U S A 2001;98(11):6384–9.
PubMed
CAS
CrossRef
Google Scholar
Cossette P, Liu L, Brisebois K, et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002;31(2):184–9.
PubMed
CAS
CrossRef
Google Scholar
Kananura C, Haug K, Sander T, et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol 2002;59(7):1137–41.
PubMed
CrossRef
Google Scholar
Baulac S, Huberfeld G, Gourfinkel-An I, et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 2001;28(1):46–8.
PubMed
CAS
CrossRef
Google Scholar
Wallace RH, Marini C, Petrou S, et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001;28(1):49–52.
PubMed
CAS
CrossRef
Google Scholar
Harkin LA, Bowser DN, Dibbens LM, et al. Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 2002;70(2):530–6.
PubMed
CAS
CrossRef
Google Scholar
Escayg A, De Waard M, Lee DD, et al. Coding and non- coding variation of the human calcium-channel beta4-sub- unit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000;66(5):1531–9.
PubMed
CAS
CrossRef
Google Scholar
Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996;87(3):543–52.
PubMed
CAS
CrossRef
Google Scholar
Jouvenceau A, Eunson LH, Spauschus A, et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 2001;358(9284):801–7.
PubMed
CAS
CrossRef
Google Scholar
Chioza B, Wilkie H, Nashef L, et al. Association between the alpha(1a) calcium channel gene CACNA1A and idio- pathic generalized epilepsy. Neurology 2001;56(9):1245–6.
PubMed
CAS
Google Scholar
Haug K, Warnstedt M, Alekov AK, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 2003;33(4):527–32.
PubMed
CAS
CrossRef
Google Scholar
Moore T, Hecquet S, McLellann A, et al. Polymorphism analysis of JRK/JH8, the human homologue of mouse jerky, and description of a rare mutation in a case of CAE evolving to JME. Epilepsy Res 2001;46(2):157–67.
PubMed
CAS
CrossRef
Google Scholar
Nakayama J, Fu YH, Clark AM, et al. A nonsense mutation of the MASS1 gene in a family with febrile and afebrile seizures. Ann Neurol 2002;52(5):654–7.
PubMed
CAS
CrossRef
Google Scholar
Berkovic SF, Izzillo P, McMahon JM, et al. LGI1 mutations in temporal lobe epilepsies. Neurology 2004;62(7):1115–9.
PubMed
CAS
Google Scholar
Gu W, Brodtkorb E, Steinlein OK. LGI1 is mutated in familial temporal lobe epilepsy characterized by aphasic seizures. Ann Neurol 2002;52(3):364–7.
PubMed
CAS
CrossRef
Google Scholar
Kalachikov S, Evgrafov O, Ross B, et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 2002;30(3):335–41.
PubMed
CrossRef
Google Scholar
Fertig E, Lincoln A, Martinuzzi A, Mattson RH, Hisama FM. Novel LGI1 mutation in a family with autosomal dominant partial epilepsy with auditory features. Neurology 2003;60(10):1687–90.
PubMed
Google Scholar
Pisano T, Marini C, Brovedani P, et al. Abnormal phonologic processing in familial lateral temporal lobe epilepsy due to a new LGI1 mutation. Epilepsia 2005;46(1):118–23.
PubMed
CAS
CrossRef
Google Scholar
Ottman R, Winawer MR, Kalachikov S, et al. LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 2004;62(7):1120–6.
PubMed
CAS
Google Scholar
Suzuki T, Delgado-Escueta AV, Aguan K, et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 2004;36(8):842–9.
PubMed
CAS
CrossRef
Google Scholar
Combi R, Dalpra L, Ferini-Strambi L, Tenchini ML. Frontal lobe epilepsy and mutations of the corticotropin- releasing hormone gene. Ann Neurol 2005.
Google Scholar
Wilkins AJ, Baker A, Amin D, et al. Treatment of photosensitive epilepsy using coloured glasses. Seizure 1999;8(8):444–9.
PubMed
CAS
CrossRef
Google Scholar
Capovilla G, Gambardella A, Rubboli G, et al. Effectiveness of a commercial available blue lens in photosensitive epileptic patients: the results of a large multicenter Italian study. Epilepsia 2005;46(Suppl.6):61.
Google Scholar
Willoughby JO, Fitzgibbon SP, Pope KJ, et al. Persistent abnormality detected in the non-ictal electroencephalogram in primary generalised epilepsy. J Neurol Neurosurg Psychiatr 2003;74(1):51–5.
PubMed
CAS
CrossRef
Google Scholar
Pinto D, de Haan GJ, Janssen GA, et al. Evidence for linkage between juvenile myoclonic epilepsy-related idiopathic generalized epilepsy and 6p11–12 in Dutch families. Epilepsia 2004;45(3):211–7.
PubMed
CrossRef
Google Scholar
Peiffer A, Thompson J, Charlier C, et al. A locus for febrile seizures (FEB3) maps to chromosome 2q23–24. Ann Neurol 1999;46(4):671–8.
PubMed
CAS
CrossRef
Google Scholar
Lopes-Cendes I, Scheffer IE, Berkovic SF, Rousseau M, Andermann E, Rouleau GA. A new locus for generalized epilepsy with febrile seizures plus maps to chromosome 2. Am J Hum Genet 2000;66(2):698–701.
PubMed
CAS
CrossRef
Google Scholar
Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 1997;120 (Pt 3):479–90.
Google Scholar
Baulac S, Gourfinkel-An I, Picard F, et al. A second locus for familial generalized epilepsy with febrile seizures plus maps to chromosome 2q21-q33. Am J Hum Genet 1999;65(4):1078–85.
PubMed
CAS
CrossRef
Google Scholar
Moulard B, Guipponi M, Chaigne D, Mouthon D, Buresi C, Malafosse A. Identification of a new locus for generalized epilepsy with febrile seizures plus (GEFS+) on chromosome 2q24-q33. Am J Hum Genet 1999;65(5):1396–400.
PubMed
CAS
CrossRef
Google Scholar
Greenberg DA, Durner M, Shinnar S, et al. Association of HLA class II alleles in patients with juvenile myoclo- nic epilepsy compared with patients with other forms of adolescent-onset generalized epilepsy. Neurology 1996;47(3):750–5.
PubMed
CAS
Google Scholar
Durner M, Sander T, Greenberg DA, Johnson K, Beck-Mannagetta G, Janz D. Localization of idiopathic generalized epilepsy on chromosome 6p in families of juvenile myoclonic epilepsy patients. Neurology 1991;41(10):1651–5.
PubMed
CAS
Google Scholar
Durner M, Zhou G, Fu D, et al. Evidence for linkage of adolescent-onset idiopathic generalized epilepsies to chromosome 8-and genetic heterogeneity. Am J Hum Genet 1999;64(5):1411–9.
PubMed
CAS
CrossRef
Google Scholar
Pal DK, Evgrafov OV, Tabares P, Zhang F, Durner M, Greenberg DA. BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am J Hum Genet 2003;73(2):261–70.
PubMed
CAS
CrossRef
Google Scholar
Bai D, Alonso ME, Medina MT, et al. Juvenile myoclonic epilepsy: linkage to chromosome 6p12 in Mexico families. Am J Med Genet 2002;113(3):268–74.
PubMed
CrossRef
Google Scholar
Lenzen KP, Heils A, Hempelmann A, et al. Molecular genetic dissection of seizure-type related susceptibility loci of idiopathic generalized epilepsy. Epilepsia 2005;46 (Suppl 6):60.
Google Scholar
Elmslie F V, Rees M, Williamson MP, et al. Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum Mol Genet 1997;6(8):1329–34.
PubMed
CAS
CrossRef
Google Scholar
Whitehouse WP, Rees M, Curtis D, et al. Linkage analysis of idiopathic generalized epilepsy (IGE) and marker loci on chromosome 6p in families of patients with juvenile myoclonic epilepsy: no evidence for an epilepsy locus in the HLA region. Am J Hum Genet 1993;53(3):652–62.
PubMed
CAS
Google Scholar
Mas C, Taske N, Deutsch S, et al. Association of the con- nexin36 gene with juvenile myoclonic epilepsy. J Med Genet 2004;41(7):e93.
PubMed
CAS
CrossRef
Google Scholar
Zara F, Gennaro E, Stabile M, et al. Mapping of a locus for a familial autosomal recessive idiopathic myoclonic epilepsy of infancy to chromosome 16p13. Am J Hum Genet 2000;66(5):1552–7.
PubMed
CAS
CrossRef
Google Scholar
Takahashi T, Tsukahara Y. Photoparoxysmal response elicited by flickering dot pattern stimulation and its optimal spatial frequency of provocation. Electroencephalogr Clin Neurophysiol 1998;106(1):40–3.
PubMed
CAS
CrossRef
Google Scholar
Lewis JA. Eye closure as a motor trigger for seizures. Neurology 1972;22(11):1145–50.
PubMed
CAS
Google Scholar