Skip to main content

Cellular immunotherapy (CI), where have we been and where are we going?

  • Chapter
  • 1017 Accesses

Previous reviews have detailed the development of cellular therapies using immunologically nonspecific lymphokine activated killer cells (LAK), activated killer monocytes (AKM), and eventually tumor specific tumor infiltrating lymphocytes (TIL). The innovations in large scale cell culture methodologies and the developments in immune assessment approaches have made the therapies more widespread as well as more effective against a variety of tumor histologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CI:

Cellular Immunotherapy

NSCLC:

Non-small cell lung cancer

DC:

dendritic cell

TIL:

tumor infiltrating lymphocyte

LAK:

lymphokine activated killer cell

MHC:

major histocompatibility complex

IL-2:

Interleukin-2

GM-CSF:

granulocyte macrophage colony stimulating factor

TCR:

T cell receptor

LDTA:

lymphocyte defined tumor antigens

MLTC:

Mixed lymphocyte tumor cell culture

References

  1. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985 Dec 5;313(23):1485–92.

    CAS  PubMed  Google Scholar 

  2. Yannelli JR. The preparation of effector cells for use in the adoptive cellular immunotherapy of human cancer. J Immunol Methods 1991 May 17;139(1):1–16.

    CAS  PubMed  Google Scholar 

  3. West WH, Tauer KW, Yannelli JR, Marshall GD, Orr DW, Thurman GB, et al. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 1987 Apr 9;316(15):898–905.

    CAS  PubMed  Google Scholar 

  4. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and inter-leukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987 Apr 9;316(15):889–97.

    CAS  PubMed  Google Scholar 

  5. Muul LM, Spiess PJ, Director EP, Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol 1987 Feb 1;138(3):989–95.

    CAS  PubMed  Google Scholar 

  6. Topalian SL, Solomon D, Rosenberg SA. Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol 1989 May 15;142(10):3714–25.

    CAS  PubMed  Google Scholar 

  7. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986 Sep 19;233(4770):1318–21.

    CAS  PubMed  Google Scholar 

  8. Pockaj BA, Sherry RM, Wei JP, Yannelli JR, Carter CS, Leitman SF, et al. Localization of 111indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy: Augmentation with cyclophosphamide and correlation with response. Cancer 1994 Mar 15;73(6):1731–7.

    CAS  PubMed  Google Scholar 

  9. Kammula US, Lee KH, Riker AI, Wang E, Ohnmacht GA, Rosenberg SA, et al. Functional analysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. J Immunol 1999 Dec 15;163(12):6867–75.

    CAS  PubMed  Google Scholar 

  10. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999 Dec 6;190(11):1669–78.

    CAS  PubMed  Google Scholar 

  11. Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M, et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med 2000 Dec 4;192(11):1637–44.

    CAS  PubMed  Google Scholar 

  12. Apostolopoulos V, Yu M, Corper AL, Teyton L, Pietersz GA, McKenzie IF, et al. Crystal structure of a non-canonical low-affinity peptide complexed with MHC class I: a new approach for vaccine design. J Mol Biol 2002 May 17;318(5):1293–305.

    CAS  PubMed  Google Scholar 

  13. Reinherz EL, Tan K, Tang L, Kern P, Liu J, Xiong Y, et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 1999 Dec 3;286(5446):1913–21.

    CAS  PubMed  Google Scholar 

  14. Jardetzky T. Not just another Fab: the crystal structure of a TcR-MHC-peptide complex. Structure 1997 Feb 15;5(2):159–63.

    CAS  PubMed  Google Scholar 

  15. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994 Mar 17;368(6468):215–21.

    CAS  PubMed  Google Scholar 

  16. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001 Jun 15;61(12):4766–72.

    CAS  PubMed  Google Scholar 

  17. Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol 2002 Dec 1;169(11):6210–7.

    CAS  PubMed  Google Scholar 

  18. Lieberman J. Mechanisms of granule-mediated cytotoxicity. Curr Opin Immunol 2003 Oct;15(5):513–5.

    CAS  Google Scholar 

  19. Clark R, Griffiths GM. Lytic granules, secretory lysosomes and disease. Curr Opin Immunol 2003 Oct;15(5):516–21.

    CAS  PubMed  Google Scholar 

  20. Catalfamo M, Henkart PA. Perforin and the granule exocytosis cytotoxicity pathway. Curr Opin Immunol 2003 Oct;15(5):522–7.

    CAS  PubMed  Google Scholar 

  21. Borczuk AC, Gorenstein L, Walter KL, Assaad AA, Wang L, Powell CA. Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol 2003 Nov;163(5):1949–60.

    CAS  PubMed  Google Scholar 

  22. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988 Dec 22;319(25):1676–80.

    CAS  PubMed  Google Scholar 

  23. Maleckar JR, Friddell CS, Sferruzza A, Thurman GB, Lewko WM, West WH, et al. Activation and expansion of tumor-derived activated cells for therapeutic use. J Natl Cancer Inst 1989 Nov 1;81(21):1655–60.

    CAS  PubMed  Google Scholar 

  24. Aebersold P, Hyatt C, Johnson S, Hines K, Korcak L, Sanders M, et al. Lysis of autologous melanoma cells by tumor-infiltrating lymphocytes: association with clinical response. J Natl Cancer Inst 1991 Jul 3;83(13):932–7.

    CAS  PubMed  Google Scholar 

  25. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL, et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci U S A 1994 Apr 26;91(9):3515–9.

    CAS  PubMed  Google Scholar 

  26. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A 1994 Jul 5;91(14):6458–62.

    CAS  PubMed  Google Scholar 

  27. Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994 Jul 1;180(1):347–52.

    CAS  PubMed  Google Scholar 

  28. Topalian SL. MHC class II restricted tumor antigens and the role of CD4+ T cells in cancer immunotherapy. Curr Opin Immunol 1994 Oct;6(5):741–5.

    CAS  PubMed  Google Scholar 

  29. Topalian SL, Rivoltini L, Mancini M, Markus NR, Robbins PF, Kawakami Y, et al. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci U S A 1994 Sep 27;91(20):9461–5.

    CAS  PubMed  Google Scholar 

  30. Robbins PF, el-Gamil M, Li YF, Topalian SL, Rivoltini L, Sakaguchi K, et al. Cloning of a new gene encoding an antigen recognized by melanoma-specific HLA-A24-restricted tumor-infiltrating lymphocytes. J Immunol 1995 Jun 1;154(11):5944–50.

    CAS  PubMed  Google Scholar 

  31. Wang RF, Robbins PF, Kawakami Y, Kang XQ, Rosenberg SA. Identification of a gene encoding a melanoma tumor antigen recognized by HLA-A31-restricted tumor-infiltrating lymphocytes. J Exp Med 1995 Feb 1;181(2):799–804.

    CAS  PubMed  Google Scholar 

  32. Wang RF, Appella E, Kawakami Y, Kang X, Rosenberg SA. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 1996 Dec 1;184(6):2207–16.

    CAS  PubMed  Google Scholar 

  33. Wang RF, Parkhurst MR, Kawakami Y, Robbins PF, Rosenberg SA. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med 1996 Mar 1;183(3):1131–40.

    CAS  PubMed  Google Scholar 

  34. Topalian SL, Gonzales MI, Parkhurst M, Li YF, Southwood S, Sette A, et al. Melanoma-specific CD4+ T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. J Exp Med 1996 May 1;183(5):1965–71.

    CAS  PubMed  Google Scholar 

  35. Yannelli JR, Hyatt C, McConnell S, Hines K, Jacknin L, Parker L, et al. Growth of tumor-infiltrating lymphocytes from human solid cancers: summary of a 5-year experience. Int J Cancer 1996 Feb 8;65(4):413–21.

    CAS  PubMed  Google Scholar 

  36. Yannelli JR, McConnell S, Parker L, Nishimura M, Robbins P, Yang J, et al. Melanoma tumor-infiltrating lymphocytes derived from four distinct anatomic sites obtained from a single patient: comparison of functional reactivity and melanoma antigen recognition. J Immunother Emphasis Tumor Immunol 1995 Nov;18(4):263–71.

    CAS  PubMed  Google Scholar 

  37. Van den Eynde BJ, van der Bruggen P. T cell defined tumor antigens. Curr Opin Immunol 1997 Oct;9(5):684–93.

    PubMed  Google Scholar 

  38. Yang S, Darrow TL, Seigler HF. Generation of primary tumor-specific cytotoxic T lymphocytes from autologous and human lymphocyte antigen class I-matched allogeneic peripheral blood lymphocytes by B7 gene-modified melanoma cells. Cancer Res 1997 Apr 15;57(8):1561–8.

    CAS  PubMed  Google Scholar 

  39. Hom SS, Topalian SL, Simonis T, Mancini M, Rosenberg SA. Common expression of melanoma tumor-associated antigens recognized by human tumor infiltrating lymphocytes: analysis by human lymphocyte antigen restriction. J Immunother 1991 Jun;10(3):153–64.

    CAS  PubMed  Google Scholar 

  40. Hom SS, Schwartzentruber DJ, Rosenberg SA, Topalian SL. Specific release of cytokines by lymphocytes infiltrating human melanomas in response to shared melanoma antigens. J Immunother 1993 Jan;13(1):18–30.

    CAS  Google Scholar 

  41. Frederiksen KS, Lundsgaard D, Freeman JA, Hughes SD, Holm TL, Skrumsager BK, et al. IL-21 induces in vivo immune activation of NK cells and CD8(+) T cells in patients with metastatic melanoma and renal cell carcinoma. Cancer Immunol Immunother 2008 Oct;57(10):1439–49.

    CAS  PubMed  Google Scholar 

  42. Bercovici N, Haicheur N, Massicard S, Vernel-Pauillac F, Adotevi O, Landais D, et al. Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. J Immunother 2008 Jan;31(1):101–12.

    PubMed  Google Scholar 

  43. Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 2001 Mar;50(1):3–15.

    CAS  PubMed  Google Scholar 

  44. Rosenberg SA. Progress in human tumour immunology and immu-notherapy. Nature 2001 May 17;411(6835):380–4.

    CAS  PubMed  Google Scholar 

  45. Stevanovic S. Identification of tumour-associated T-cell epitopes for vaccine development. Nat Rev Cancer 2002 Jul;2(7):514–20.

    CAS  PubMed  Google Scholar 

  46. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA, Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002 Sep 19;298:850–854.

    CAS  PubMed  Google Scholar 

  47. Houghton AN, Gold JS, Blachere NE. Immunity against cancer: lessons learned from melanoma. Curr Opin Immunol 2001 Apr;13(2):134–40.

    CAS  PubMed  Google Scholar 

  48. Lee SY, Jeoung D. The reverse proteomics for identification of tumor antigens. J Microbiol Biotechnol 2007 Jun;17(6):879–90.

    CAS  PubMed  Google Scholar 

  49. Parmiani G, Russo V, Marrari A, Cutolo G, Casati C, Pilla L, et al. Universal and stemness-related tumor antigens: potential use in cancer immunotherapy. Clin Cancer Res 2007 Oct 1;13(19):5675–9.

    CAS  PubMed  Google Scholar 

  50. Elsner HA, Eiz-Vesper B, Blasczyk R, Bade-Doding C. Allele-specific peptide presentation of human leukocyte antigens: implications for tumor immunotherapy. Anticancer Res 2007 Jul–Aug; 27(4A):2075–7.

    CAS  PubMed  Google Scholar 

  51. Adler AJ. Mechanisms of T cell tolerance and suppression in cancer mediated by tumor-associated antigens and hormones. Curr Cancer Drug Targets 2007 eb;7(1):3–14.

    CAS  PubMed  Google Scholar 

  52. Tarhini AA, Kirkwood JM, Gooding WE, Moschos S, Agarwala SS, A phase 2 trial of sequential temozolomide chemotherapy followed by high-dose interleukin 2 immunotherapy for metastatic melanoma. Cancer 2008 Aug 21;113:1632–1640.

    CAS  PubMed  Google Scholar 

  53. Zhang L, Dermawan KT, Jin ML, Xiong SD, Chu YW, Does chemotherapy augment anti-tumor immunotherapy by preferential impairment of regulatory T cells? Med Hypotheses 2008 Aug 6;71:802–804.

    CAS  PubMed  Google Scholar 

  54. Chareyron S, Alamir M, Mixed immunotherapy and chemotherapy of tumors: feedback design and model updating schemes. J Theor Biol 2009;258:444–454.

    CAS  PubMed  Google Scholar 

  55. Ramakrishnan R, Antonia S, Gabrilovich DI. Combined modality immunotherapy and chemotherapy: a new perspective. Cancer Immunol Immunother 2008 Oct;57(10):1523–9.

    CAS  PubMed  Google Scholar 

  56. Bellone M, Mondino A, Corti A. Vascular targeting, chemotherapy and active immunotherapy: teaming up to attack cancer. Trends Immunol 2008 May;29(5):235–41.

    CAS  PubMed  Google Scholar 

  57. Royer PJ, Bougras G, Ebstein F, Leveque L, Tanguy-Royer S, Simon T, et al. Efficient monocyte-derived dendritic cell generation in patients with acute myeloid leukemia after chemotherapy treatment: application to active immunotherapy. Exp Hematol 2008 Mar;36(3):329–39.

    CAS  PubMed  Google Scholar 

  58. Dillman RO, Oldham RK, Barth NM, Cohen RJ, Minor DR, Birch R, et al. Continuous interleukin-2 and tumor-infiltrating lymphocytes as treatment of advanced melanoma. A national biotherapy study group trial. Cancer 1991 Jul 1;68(1):1–8.

    CAS  PubMed  Google Scholar 

  59. Oldham RK, Dillman RO, Yannelli JR, Barth NM, Maleckar JR, Sferruzza A, et al. Continuous infusion interleukin-2 and tumor-derived activated cells as treatment of advanced solid tumors: a National Biotherapy Study Group Trial. Mol Biother 1991 Jun;3(2):68–73.

    CAS  PubMed  Google Scholar 

  60. Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleu-kin 2. J Natl Cancer Inst 1994 Aug 3;86(15):1159–66.

    CAS  PubMed  Google Scholar 

  61. Horton SA, Oldham RK, Yannelli JR. Generation of human lym-phokine-activated killer cells following brief exposure to high dose interleukin 2. Cancer Res 1990 Mar 15;50(6):1686–92.

    CAS  PubMed  Google Scholar 

  62. Schwartzentruber DJ, Hom SS, Dadmarz R, White DE, Yannelli JR, Steinberg SM, et al. In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2. J Clin Oncol 1994 Jul;12(7):1475–83.

    CAS  PubMed  Google Scholar 

  63. Yannelli JR, Hyatt C, Johnson S, Hwu P, Rosenberg SA. Characterization of human tumor cell lines transduced with the cDNA encoding either tumor necrosis factor alpha (TNF-a) or interleukin-2 (IL-2). J Immunol Methods 1993 May 5;161(1):77–90.

    CAS  PubMed  Google Scholar 

  64. Benlalam H, Labarriere N, Linard B, Derre L, Diez E, Pandolfino MC, et al. Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma infil-trating lymphocytes (TIL): implications for immunotherapy. Eur J Immunol 2001 Jul;31(7):2007–15.

    CAS  PubMed  Google Scholar 

  65. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 2003 Jul–Aug;26(4):332–42.

    PubMed  Google Scholar 

  66. Dudley ME, Wunderlich JR, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 2002 May–Jun;25(3):243–51.

    CAS  PubMed  Google Scholar 

  67. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005 Apr 1;23(10):2346–57.

    CAS  PubMed  Google Scholar 

  68. Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, Wunderlich JR, Robbins PF, Rosenberg SA, Dudley ME, Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother 2008 Sep 5;31:742–751.

    CAS  PubMed  Google Scholar 

  69. Gohara R, Nakao M, Ogata Y, Isomoto H, Oizumi K, Itoh K. Histocompatibility leukocyte antigen-A2402-restricted cytotoxic T lymphocytes recognizing adenocarcinoma in tumor-infiltrating lymphocytes of patients with colon cancer. Jpn J Cancer Res 1997 Feb;88(2):198–204.

    CAS  PubMed  Google Scholar 

  70. Hom SS, Rosenberg SA, Topalian SL. Specific immune recognition of autologous tumor by lymphocytes infiltrating colon carcinomas: analysis by cytokine secretion. Cancer Immunol Immunother 1993;36(1):1–8.

    CAS  PubMed  Google Scholar 

  71. Toh U, Yamana H, Nakao M, Imai Y, Seki N, Takasu H, et al. HLA class I-restricted and tumor-specific cytotoxic T lymphocytes from metastatic lymph nodes of esophageal cancers. Cell Immunol 1997 May 1;177(2):137–43.

    CAS  PubMed  Google Scholar 

  72. Schwartzentruber DJ, Solomon D, Rosenberg SA, Topalian SL. Characterization of lymphocytes infiltrating human breast cancer: specific immune reactivity detected by measuring cytokine secretion. J Immunother 1992 Jul;12(1):1–12.

    CAS  PubMed  Google Scholar 

  73. Linehan DC, Goedegebuure PS, Peoples GE, Rogers SO, Eberlein TJ. Tumor-specific and HLA-A2-restricted cytolysis by tumor-associated lymphocytes in human metastatic breast cancer. J Immunol 1995 Nov 1;155(9):4486–91.

    CAS  PubMed  Google Scholar 

  74. Baxevanis CN, Dedoussis GV, Papadopoulos NG, Missitzis I, Stathopoulos GP, Papamichail M. Tumor specific cytolysis by tumor infiltrating lymphocytes in breast cancer. Cancer 1994 Aug 15;74(4):1275–82.

    CAS  PubMed  Google Scholar 

  75. Dadmarz R, Sgagias MK, Rosenberg SA, Schwartzentruber DJ. CD4+ T lymphocytes infiltrating human breast cancer recognise autologous tumor in an MHC-class-II restricted fashion. Cancer Immunol Immunother 1995 Jan;40(1):1–9.

    CAS  PubMed  Google Scholar 

  76. Schultze JL, Seamon MJ, Michalak S, Gribben JG, Nadler LM. Autologous tumor infiltrating T cells cytotoxic for follicular lymphoma cells can be expanded in vitro. Blood 1997 May 15;89(10):3806–16.

    CAS  PubMed  Google Scholar 

  77. Freedman RS, Platsoucas CD. Immunotherapy for peritoneal ovarian carcinoma metastasis using ex vivo expanded tumor infiltrating lymphocytes. Cancer Treat Res 1996;82:115–46.

    CAS  PubMed  Google Scholar 

  78. Apiranthitou-Drogari M, Paganin C, Bernasconi S, Losa G, Maneo A, Colombo N, et al. In search of specific cytotoxic T lymphocytes infiltrating or accompanying human ovarian carcinoma. Cancer Immunol Immunother 1992;35(4):289–95.

    CAS  PubMed  Google Scholar 

  79. Brouwenstijn N, Gaugler B, Kruse KM, van der Spek CW, Mulder A, Osanto S, et al. Renal-cell carcinoma-specific lysis by cytotoxic T-lymphocyte clones isolated from peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Int J Cancer 1996 Oct 9;68(2):177–82.

    CAS  PubMed  Google Scholar 

  80. Finke JH, Rayman P, Hart L, Alexander JP, Edinger MG, Tubbs RR, et al. Characterization of tumor-infiltrating lymphocyte subsets from human renal cell carcinoma: specific reactivity defined by cytotoxicity, interferon-gamma secretion, and proliferation. J Immunother Emphasis Tumor Immunol 1994 Feb;15(2):91–104.

    CAS  PubMed  Google Scholar 

  81. Steger GG, Pierce WC, Figlin R, Czernin J, Kaboo R, DeKernion JB, et al. Patterns of cytokine release of unselected and CD8+ selected renal cell carcinoma tumor-infiltrating lymphocytes (TIL). Evidence for enhanced specific killing of tumor necrosis factor-secreting/IL-6 nonsecreting TIL in vitro and correlation with complete response in vivo. Clin Immunol Immunopathol 1994 Aug;72(2):237–47.

    CAS  PubMed  Google Scholar 

  82. Koo AS, Tso CL, Shimabukuro T, Peyret C, deKernion JB, Belldegrun A. Autologous tumor-specific cytotoxicity of tumor-infiltrating lymphocytes derived from human renal cell carcinoma. J Immunother 1991 Oct;10(5):347–54.

    CAS  PubMed  Google Scholar 

  83. Seki N, Hoshino T, Kikuchi M, Hayashi A, Itoh K. HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer. Cell Immunol 1997 Feb 1;175(2):101–10.

    CAS  PubMed  Google Scholar 

  84. Yannelli JR, Hirscowitz E, Wroblewski JM. Growth and functional reactivity of lymphocytes obtained from three anatomic compartments in patients with non-small-cell lung cancer (NSCLC). Cancer Biother Radiopharm 2003 Oct;18(5):735–49.

    PubMed  Google Scholar 

  85. Dreno B, Nguyen JM, Khammari A, Pandolfino MC, Tessier MH, Bercegeay S, et al. Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage III melanoma. Cancer Immunol Immunother 2002 Nov;51(10):539–46.

    CAS  PubMed  Google Scholar 

  86. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999 Oct 14;401(6754):708–12.

    CAS  PubMed  Google Scholar 

  87. Geginat J, Lanzavecchia A, Sallusto F, Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 2003 Feb 6;101:4260–4266.

    CAS  PubMed  Google Scholar 

  88. Geginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J Exp Med 2001 Dec 17;194(12):1711–9.

    CAS  PubMed  Google Scholar 

  89. Young MR, Wright MA, Lozano Y, Matthews JP, Benefield J, Prechel MM. Mechanisms of immune suppression in patients with head and neck cancer: influence on the immune infiltrate of the cancer. Int J Cancer 1996 Jul 29;67(3):333–8.

    CAS  PubMed  Google Scholar 

  90. Spellman JE, Gollnick SO, Zhang PJ, Tomasi TB. Cytokine production by human soft tissue sarcomas: implications for immunosuppression within the tumour bed. Surg Oncol 1996 Oct–Dec;5(5–6):237–44.

    CAS  PubMed  Google Scholar 

  91. Avradopoulos K, Mehta S, Blackinton D, Wanebo HJ. Interleukin-10 as a possible mediator of immunosuppressive effect in patients with squamous cell carcinoma of the head and neck. Ann Surg Oncol 1997 Mar;4(2):184–90.

    CAS  PubMed  Google Scholar 

  92. Hishii M, Nitta T, Ishida H, Ebato M, Kurosu A, Yagita H, et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 1995 Dec;37(6):1160–6; discussion 6–7.

    CAS  PubMed  Google Scholar 

  93. Armstrong L, Jordan N, Millar A. Interleukin 10 (IL-10) regulation of tumour necrosis factor alpha (TNF-alpha) from human alveolar macrophages and peripheral blood monocytes. Thorax 1996 Feb;51(2):143–9.

    CAS  PubMed  Google Scholar 

  94. Dix AR, Brooks WH, Roszman TL, Morford LA. Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 1999 Dec;100(1–2):216–32.

    CAS  PubMed  Google Scholar 

  95. Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH. CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 2002 Apr 1;99(7):2468–76.

    CAS  PubMed  Google Scholar 

  96. Crowley NJ, Darrow TL, Seigler HF. Generation of autologous tumor-specific cytotoxic T-cells using HLA-A region matched allogeneic melanoma. Curr Surg 1989 Sep–Oct;46(5):393–6.

    CAS  PubMed  Google Scholar 

  97. Crowley NJ, Slingluff CL, Jr., Darrow TL, Seigler HF. Generation of human autologous melanoma-specific cytotoxic T-cells using HLA-A2-matched allogeneic melanomas. Cancer Res 1990 Feb 1;50(3):492–8.

    CAS  PubMed  Google Scholar 

  98. Crowley NJ, Darrow TL, Quinn-Allen MA, Seigler HF. MHC-restricted recognition of autologous melanoma by tumor-specific cytotoxic T cells. Evidence for restriction by a dominant HLA-A allele. J Immunol 1991 Mar 1;146(5):1692–9.

    CAS  Google Scholar 

  99. Stevens EJ, Jacknin L, Robbins PF, Kawakami Y, el Gamil M, Rosenberg SA, et al. Generation of tumor-specific CTLs from melanoma patients by using peripheral blood stimulated with allogeneic melanoma tumor cell lines. Fine specificity and MART-1 melanoma antigen recognition. J Immunol 1995 Jan 15;154(2):762–71.

    CAS  Google Scholar 

  100. Celis E, Tsai V, Crimi C, DeMars R, Wentworth PA, Chesnut RW, et al. Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci U S A 1994 Mar 15;91(6):2105–9.

    CAS  PubMed  Google Scholar 

  101. Sule-Suso J, Arienti F, Melani C, Colombo MP, Parmiani G. A B7–1-transfected human melanoma line stimulates proliferation and cytotoxicity of autologous and allogeneic lymphocytes. Eur J Immunol 1995 Oct;25(10):2737–42.

    CAS  PubMed  Google Scholar 

  102. Bixby DL, Yannelli JR. CD80 expression in an HLA-A2-positive human non-small cell lung cancer cell line enhances tumor-specific cytotoxicity of HLA-A2-positive T cells derived from a normal donor and a patient with non-small cell lung cancer. Int J Cancer 1998 Dec 9;78(6):685–94.

    CAS  PubMed  Google Scholar 

  103. Bain C, Merrouche Y, Puisieux I, Duc A, Colombo MP, Favrot M. B7.1 gene transduction of human renal-cell-carcinoma cell lines restores the proliferative response and cytotoxic function of allogeneic T cells. Int J Cancer 1996 Sep 17;67(6):769–76.

    CAS  PubMed  Google Scholar 

  104. Schendel DJ, Frankenberger B, Jantzer P, Cayeux S, Nobetaner E, Willimsky G, et al. Expression of B7.1 (CD80) in a renal cell carcinoma line allows expansion of tumor-associated cytotoxic T lymphocytes in the presence of an alloresponse. Gene Ther 2000 Dec;7(23):2007–14.

    CAS  PubMed  Google Scholar 

  105. Wang YC, Zhu L, McHugh R, Graham SD, Jr., Hillyer CD, Dillehay D, et al. Induction of autologous tumor-specific cyto-toxic T-lymphocyte activity against a human renal carcinoma cell line by B7–1 (CD8O) costimulation. J Immunother Emphasis Tumor Immunol 1996 Jan;19(1):1–8.

    PubMed  Google Scholar 

  106. Heemskerk B, Liu K, Dudley ME, Johnson LA, Kaiser A, Downey S, et al. Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum Gene Ther 2008 May;19(5):496–510.

    CAS  PubMed  Google Scholar 

  107. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immu-notherapy. Nat Rev Cancer 2008 Apr;8(4):299–308.

    CAS  PubMed  Google Scholar 

  108. Johnson LA, Heemskerk B, Powell DJ, Jr., Cohen CJ, Morgan RA, Dudley ME, et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 2006 Nov 1;177(9):6548–59.

    CAS  PubMed  Google Scholar 

  109. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006 Oct 6;314(5796):126–9.

    CAS  PubMed  Google Scholar 

  110. Hughes MS, Yu YY, Dudley ME, Zheng Z, Robbins PF, Li Y, et al. Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum Gene Ther 2005 Apr;16(4):457–72.

    CAS  PubMed  Google Scholar 

  111. Hwu P, Yannelli J, Kriegler M, Anderson WF, Perez C, Chiang Y, et al. Functional and molecular characterization of tumor-infil-trating lymphocytes transduced with tumor necrosis factor-alpha cDNA for the gene therapy of cancer in humans. J Immunol 1993 May 1;150(9):4104–15.

    CAS  PubMed  Google Scholar 

  112. Treisman J, Hwu P, Yannelli JR, Shafer GE, Cowherd R, Samid D, et al. Upregulation of tumor necrosis factor-alpha production by retrovirally transduced human tumor-infiltrating lymphocytes using trans-retinoic acid. Cell Immunol 1994 Jul;156(2):448–57.

    CAS  PubMed  Google Scholar 

  113. Rosenberg SA, Anderson WF, Blaese M, Hwu P, Yannelli JR, Yang JC, et al. The development of gene therapy for the treatment of cancer. Ann Surg 1993 Oct;218(4):455–63; discussion 63–4.

    CAS  PubMed  Google Scholar 

  114. van den Eynde B. [Identification of cancer antigens of relevance for specific cancer immunotherapy]. Bull Mem Acad R Med Belg 2001;156(10–12):548–55.

    Google Scholar 

  115. Van den Eynde BJ, Boon T. Tumor antigens recognized by T lymphocytes. Int J Clin Lab Res 1997;27(2):81–6.

    PubMed  Google Scholar 

  116. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991 Dec 13;254(5038):1643–7.

    PubMed  Google Scholar 

  117. Coulie PG, Weynants P, Lehmann F, Herman J, Brichard V, Wolfel T, et al. Genes coding for tumor antigens recognized by human cytolytic T lymphocytes. J Immunother 1993 Aug;14(2):104–9.

    CAS  Google Scholar 

  118. Noppen C, Levy F, Burri L, Zajac P, Remmel E, Schaefer C, et al. Naturally processed and concealed HLA-A2.1-restricted epitopes from tumor-associated antigen tyrosinase-related protein-2. Int J Cancer 2000 Jul 15;87(2):241–6.

    CAS  PubMed  Google Scholar 

  119. Dannull J, Diener PA, Prikler L, Furstenberger G, Cerny T, Schmid U, et al. Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer. Cancer Res 2000 Oct 1;60(19):5522–8.

    CAS  PubMed  Google Scholar 

  120. Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S. Identification of human telomerase reverse tran-scriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood 2001 May 1;97(9):2903–7.

    CAS  PubMed  Google Scholar 

  121. Kao H, Marto JA, Hoffmann TK, Shabanowitz J, Finkelstein SD, Whiteside TL, et al. Identification of cyclin B1 as a shared human epithelial tumor-associated antigen recognized by T cells. J Exp Med 2001 Nov 5;194(9):1313–23.

    CAS  PubMed  Google Scholar 

  122. Vonderheide RH, Anderson KS, Hahn WC, Butler MO, Schultze JL, Nadler LM. Characterization of HLA-A3-restricted cytotoxic T lymphocytes reactive against the widely expressed tumor antigen telomerase. Clin Cancer Res 2001 Nov;7(11):3343–8.

    CAS  PubMed  Google Scholar 

  123. Schroers R, Huang XF, Hammer J, Zhang J, Chen SY. Identification of HLA DR7-restricted epitopes from human telomerase reverse transcriptase recognized by CD4+ T-helper cells. Cancer Res 2002 May 1;62(9):2600–5.

    CAS  PubMed  Google Scholar 

  124. Engelhard VH, Appella E, Benjamin DC, Bodnar WM, Cox AL, Chen Y, et al. Mass spectrometric analysis of peptides associated with the human class I MHC molecules HLA-A2.1 and HLA-B7 and identification of structural features that determine binding. Chem Immunol 1993;57:39–62.

    Google Scholar 

  125. Slingluff CL, Jr., Cox AL, Henderson RA, Hunt DF, Engelhard VH. Recognition of human melanoma cells by HLA-A2.1-restricted cytotoxic T lymphocytes is mediated by at least six shared peptide epitopes. J Immunol 1993 Apr 1;150(7):2955–63.

    CAS  PubMed  Google Scholar 

  126. Slingluff CL, Jr., Cox AL, Stover JM, Jr., Moore MM, Hunt DF, Engelhard VH. Cytotoxic T-lymphocyte response to autologous human squamous cell cancer of the lung: epitope reconstitution with peptides extracted from HLA-Aw68. Cancer Res 1994 May 15;54(10):2731–7.

    CAS  PubMed  Google Scholar 

  127. Skipper JC, Gulden PH, Hendrickson RC, Harthun N, Caldwell JA, Shabanowitz J, et al. Mass-spectrometric evaluation of HLA-A*0201-associated peptides identifies dominant naturally processed forms of CTL epitopes from MART-1 and gp100. Int J Cancer 1999 Aug 27;82(5):669–77.

    CAS  PubMed  Google Scholar 

  128. Park S, Lim Y, Lee D, Cho B, Bang YJ, Sung S, et al. Identification and characterization of a novel cancer/testis antigen gene CAGE-1. Biochim Biophys Acta 2003 Jan 27;1625(2):173–82.

    CAS  PubMed  Google Scholar 

  129. Nakatsura T, Senju S, Ito M, Nishimura Y, Itoh K. Cellular and humoral immune responses to a human pancreatic cancer antigen, coactosin-like protein, originally defined by the SEREX method. Eur J Immunol 2002 Mar;32(3):826–36.

    CAS  PubMed  Google Scholar 

  130. Jager E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jager D, et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human his-tocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998 Jan 19;187(2):265–70.

    CAS  PubMed  Google Scholar 

  131. Levy F, Burri L, Morel S, Peitrequin AL, Levy N, Bachi A, et al. The final N-terminal trimming of a subaminoterminal proline-containing HLA class I-restricted antigenic peptide in the cytosol is mediated by two peptidases. J Immunol 2002 Oct 15;169(8):4161–71.

    CAS  PubMed  Google Scholar 

  132. Le Naour F. Contribution of proteomics to tumor immunology. Proteomics 2001 Oct;1(10):1295–302.

    PubMed  Google Scholar 

  133. Wang T, Hopkins D, Schmidt C, Silva S, Houghton R, Takita H, et al. Identification of genes differentially over-expressed in lung squamous cell carcinoma using combination of cDNA subtraction and microarray analysis. Oncogene 2000 Mar 16;19(12):1519–28.

    CAS  PubMed  Google Scholar 

  134. Mathiassen S, Lauemoller SL, Ruhwald M, Claesson MH, Buus S. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity. Eur J Immunol 2001 Apr;31(4):1239–46.

    CAS  PubMed  Google Scholar 

  135. Brichard V, Van Pel A, Wolfel T, Wolfel C, De Plaen E, Lethe B, et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1993 Aug 1;178(2):489–95.

    CAS  PubMed  Google Scholar 

  136. Coulie PG, Brichard V, Van Pel A, Wolfel T, Schneider J, Traversari C, et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1994 Jul 1;180(1):35–42.

    CAS  PubMed  Google Scholar 

  137. Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, et al. A mutated beta-catenin gene encodes a melanoma-spe-cific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 1996 Mar 1;183(3):1185–92.

    CAS  PubMed  Google Scholar 

  138. Visseren MJ, van der Burg SH, van der Voort EI, Brandt RM, Schrier PI, van der Bruggen P, et al. Identification of HLA-A*0201-restricted CTL epitopes encoded by the tumor-specific MAGE-2 gene product. Int J Cancer 1997 Sep 26;73(1):125–30.

    CAS  PubMed  Google Scholar 

  139. Gaugler B, Van den Eynde B, van der Bruggen P, Romero P, Gaforio JJ, De Plaen E, et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 1994 Mar 1;179(3):921–30.

    CAS  PubMed  Google Scholar 

  140. Boel P, Wildmann C, Sensi ML, Brasseur R, Renauld JC, Coulie P, et al. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 1995 Feb;2(2):167–75.

    CAS  PubMed  Google Scholar 

  141. Panelli MC, Bettinotti MP, Lally K, Ohnmacht GA, Li Y, Robbins P, et al. A tumor-infiltrating lymphocyte from a melanoma metastasis with decreased expression of melanoma differentiation antigens recognizes MAGE-12. J Immunol 2000 Apr 15;164(8):4382–92.

    CAS  PubMed  Google Scholar 

  142. Van den Eynde B, Peeters O, De Backer O, Gaugler B, Lucas S, Boon T. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med 1995 Sep 1;182(3):689–98.

    PubMed  Google Scholar 

  143. Kang X, Kawakami Y, el-Gamil M, Wang R, Sakaguchi K, Yannelli JR, et al. Identification of a tyrosinase epitope recognized by HLA-A24-restricted, tumor-infiltrating lymphocytes. J Immunol 1995 Aug 1;155(3):1343–8.

    CAS  PubMed  Google Scholar 

  144. Salazar-Onfray F, Nakazawa T, Chhajlani V, Petersson M, Karre K, Masucci G, et al. Synthetic peptides derived from the melano-cyte-stimulating hormone receptor MC1R can stimulate HLA-A2-restricted cytotoxic T lymphocytes that recognize naturally processed peptides on human melanoma cells. Cancer Res 1997 Oct 1;57(19):4348–55.

    CAS  PubMed  Google Scholar 

  145. Chiari R, Foury F, De Plaen E, Baurain JF, Thonnard J, Coulie PG. Two antigens recognized by autologous cytolytic T lymphocytes on a melanoma result from a single point mutation in an essential housekeeping gene. Cancer Res 1999 Nov 15;59(22):5785–92.

    CAS  PubMed  Google Scholar 

  146. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995 Sep 1;269(5228):1281–4.

    CAS  PubMed  Google Scholar 

  147. Mandruzzato S, Brasseur F, Andry G, Boon T, van der Bruggen P. A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 1997 Aug 29;186(5):785–93.

    CAS  PubMed  Google Scholar 

  148. Gueguen M, Patard JJ, Gaugler B, Brasseur F, Renauld JC, Van Cangh PJ, et al. An antigen recognized by autologous CTLs on a human bladder carcinoma. J Immunol 1998 Jun 15;160(12):6188–94.

    CAS  PubMed  Google Scholar 

  149. Brossart P, Heinrich KS, Stuhler G, Behnke L, Reichardt VL, Stevanovic S, et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 1999 Jun 15;93(12):4309–17.

    CAS  PubMed  Google Scholar 

  150. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000 Nov 1;96(9):3102–8.

    CAS  PubMed  Google Scholar 

  151. Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 1995 Jul 5;87(13):982–90.

    CAS  PubMed  Google Scholar 

  152. Ropke M, Hald J, Guldberg P, Zeuthen J, Norgaard L, Fugger L, et al. Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc Natl Acad Sci U S A 1996 Dec 10;93(25):14704–7.

    CAS  PubMed  Google Scholar 

  153. Fisk B, Savary C, Hudson JM, O'Brian CA, Murray JL, Wharton JT, et al. Changes in an HER-2 peptide upregulating HLA-A2 expression affect both conformational epitopes and CTL recognition: implications for optimization of antigen presentation and tumor-specific CTL induction. J Immunother Emphasis Tumor Immunol 1995 Nov;18(4):197–209.

    CAS  PubMed  Google Scholar 

  154. Fisk B, Blevins TL, Wharton JT, Ioannides CG. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 1995 Jun 1;181(6):2109–17.

    CAS  PubMed  Google Scholar 

  155. Shichijo S, Nakao M, Imai Y, Takasu H, Kawamoto M, Niiya F, et al. A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T lymphocytes. J Exp Med 1998 Feb 2;187(3):277–88.

    CAS  PubMed  Google Scholar 

  156. Nishizaka S, Gomi S, Harada K, Oizumi K, Itoh K, Shichijo S. A new tumor-rejection antigen recognized by cytotoxic T lymphocytes infiltrating into a lung adenocarcinoma. Cancer Res 2000 Sep 1;60(17):4830–7.

    CAS  PubMed  Google Scholar 

  157. Kawano K, Gomi S, Tanaka K, Tsuda N, Kamura T, Itoh K, et al. Identification of a new endoplasmic reticulum-resident protein recognized by HLA-A24-restricted tumor-infiltrating lymphocytes of lung cancer. Cancer Res 2000 Jul 1;60(13): 3550–8.

    Google Scholar 

  158. Fauroux CM, Lee M, Cullis PM, Douglas KT, Gore MG, Freeman S. Stereochemistry at phosphorus of the reaction catalyzed by myo-inositol monophosphatase. J Med Chem 2002 Mar 14;45(6):1363–73.

    CAS  PubMed  Google Scholar 

  159. Yoshikawa T, Padigaru M, Karkera JD, Sharma M, Berrettini WH, Esterling LE, et al. Genomic structure and novel variants of myo-inositol monophosphatase 2 (IMPA2). Mol Psychiatry 2000 Mar;5(2):165–71.

    CAS  PubMed  Google Scholar 

  160. Rao VV, Schnittger S, Hansmann I. G protein Gs alpha (GNAS 1), the probable candidate gene for Albright hereditary osteo-dystrophy, is assigned to human chromosome 20q12-q13.2. Genomics 1991 May;10(1):257–61.

    CAS  PubMed  Google Scholar 

  161. Wroblewski JM, Yannelli JR. Identification of HLA-CW3, GNAS and IMPA as cytotoxic T-lymphocyte (CTL) target antigens using an allogeneic mixed lymphocyte tumor cell culture (MLTC) system and subsequent cDNA library screening. Cancer Biother Radiopharm 2007 Apr;22(2):206–22.

    CAS  PubMed  Google Scholar 

  162. Hemmila MR, Chang AE. Clinical implications of the new biology in the development of melanoma vaccines. J Surg Oncol 1999 Apr;70(4):263–74.

    CAS  PubMed  Google Scholar 

  163. Moingeon P. Cancer vaccines. Vaccine 2001 Jan 8;19(11–12): 1305–26.

    CAS  PubMed  Google Scholar 

  164. Jager E, Jager D, Knuth A. Clinical cancer vaccine trials. Curr Opin Immunol 2002 Apr;14(2):178–82.

    CAS  PubMed  Google Scholar 

  165. Apostolopoulos V, Weiner DB, Gong J. Cancer vaccines: methods for inducing immunity. Expert Rev Vaccines 2008 Sep;7(7):861–2.

    PubMed  Google Scholar 

  166. Chekhun VF. Cancer vaccines. Exp Oncol 2008 Jun;30(2):90.

    CAS  PubMed  Google Scholar 

  167. Emens LA. Cancer vaccines: on the threshold of success. Expert Opin Emerg Drugs 2008 Jun;13(2):295–308.

    CAS  PubMed  Google Scholar 

  168. de Gruijl TD, van den Eertwegh AJ, Pinedo HM, Scheper RJ. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother 2008 Oct;57(10):1569–77.

    CAS  PubMed  Google Scholar 

  169. Reichert JM, Wenger JB. Development trends for new cancer therapeutics and vaccines. Drug Discov Today 2008 Jan;13(1–2):30–7.

    CAS  PubMed  Google Scholar 

  170. Bodey B, Bodey B, Jr., Siegel SE, Kaiser HE. Failure of cancer vaccines: the significant limitations of this approach to immuno-therapy. Anticancer Res 2000 Jul–Aug;20(4):2665–76.

    CAS  PubMed  Google Scholar 

  171. Razzaque A, Dye E, Puri RK. Characterization of tumor vaccines during product development. Vaccine 2000 Nov 8;19(6):644–7.

    CAS  PubMed  Google Scholar 

  172. Restifo NP, Esquivel F, Kawakami Y, Yewdell JW, Mule JJ, Rosenberg SA, et al. Identification of human cancers deficient in antigen processing. J Exp Med 1993 Feb 1;177(2):265–72.

    CAS  PubMed  Google Scholar 

  173. Restifo NP, Kawakami Y, Marincola F, Shamamian P, Taggarse A, Esquivel F, et al. Molecular mechanisms used by tumors to escape immune recognition: immunogenetherapy and the cell biology of major histocompatibility complex class I. J Immunother 1993 Oct;14(3):182–90.

    CAS  Google Scholar 

  174. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. Loss of functional beta 2-micro-globulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 1996 Jan 17;88(2):100–8.

    CAS  PubMed  Google Scholar 

  175. Lewko WM, Ladd P, Hubbard D, He YJ, Vaghmar R, Husseini S, et al. Tumor acquisition, propagation, and preservation. The culture of human colorectal cancer. Cancer 1989 Oct 15;64(8):1600–7.

    CAS  Google Scholar 

  176. Lewko WM, Vaghmar R, Hubbard D, Moore M, He YJ, Chang L, et al. Cultured cell lines from human breast cancer biopsies and xenografts. Breast Cancer Res Treat 1990 Dec;17(2):121–9.

    CAS  PubMed  Google Scholar 

  177. Pass HI, Stevens EJ, Oie H, Tsokos MG, Abati AD, Fetsch PA, et al. Characteristics of nine newly derived mesothelioma cell lines. Ann Thorac Surg 1995 Apr;59(4):835–44.

    CAS  PubMed  Google Scholar 

  178. Oie HK, Russell EK, Carney DN, Gazdar AF. Cell culture methods for the establishment of the NCI series of lung cancer cell lines. J Cell Biochem Suppl 1996;24:24–31.

    CAS  PubMed  Google Scholar 

  179. Sgagias MK, Nieroda C, Yannelli JR, Cowan KH, Danforth DN, Jr. Upregulation of DF3, in association with ICAM-1 and MHC class II by IFN-gamma in short-term human mammary carcinoma cell cultures. Cancer Biother Radiopharm 1996 Jun;11(3):177–85.

    CAS  PubMed  Google Scholar 

  180. Lahn M, Kohler G, Schmoor C, Dengler W, Veelken H, Brennscheidt U, et al. Processing of tumor tissues for vaccination with autologous tumor cells. Eur Surg Res 1997;29(4):292–302.

    CAS  PubMed  Google Scholar 

  181. Dillman RO, Beutel LD, Barth NM, de Leon C, O'Connor AA, DePriest C, et al. Irradiated cells from autologous tumor cell lines as patient-specific vaccine therapy in 125 patients with metastatic cancer: induction of delayed-type hypersensitivity to autologous tumor is associated with improved survival. Cancer Biother Radiopharm 2002 Feb;17(1):51–66.

    PubMed  Google Scholar 

  182. Berd D, Maguire HC, Jr., McCue P, Mastrangelo MJ. Treatment of metastatic melanoma with an autologous tumor-cell vaccine: clinical and immunologic results in 64 patients. J Clin Oncol 1990 Nov;8(11):1858–67.

    CAS  PubMed  Google Scholar 

  183. Berd D, Kairys J, Dunton C, Mastrangelo MJ, Sato T, Maguire HC, Jr. Autologous, hapten-modified vaccine as a treatment for human cancers. Semin Oncol 1998 Dec;25(6):646–53.

    CAS  PubMed  Google Scholar 

  184. McCune CS, O'Donnell RW, Marquis DM, Sahasrabudhe DM. Renal cell carcinoma treated by vaccines for active specific immu-notherapy: correlation of survival with skin testing by autologous tumor cells. Cancer Immunol Immunother 1990;32(1):62–6.

    CAS  PubMed  Google Scholar 

  185. Wroblewski JM, Bixby DL, Borowski C, Yannelli JR. Characterization of human non-small cell lung cancer (NSCLC) cell lines for expression of MHC, co-stimulatory molecules and tumor-associated antigens. Lung Cancer 2001 Aug–Sep;33(2–3):181–94.

    CAS  PubMed  Google Scholar 

  186. Morton DL, Foshag LJ, Hoon DS, Nizze JA, Famatiga E, Wanek LA, et al. Prolongation of survival in metastatic melanoma after active specific immunotherapy with a new polyvalent melanoma vaccine. Ann Surg 1992 Oct;216(4):463–82.

    CAS  PubMed  Google Scholar 

  187. Morton DL, Hoon DS, Nizze JA, Foshag LJ, Famatiga E, Wanek LA, et al. Polyvalent melanoma vaccine improves survival of patients with metastatic melanoma. Ann N Y Acad Sci 1993 Aug 12;690:120–34.

    CAS  PubMed  Google Scholar 

  188. Elliott GT, McLeod RA, Perez J, Von Eschen KB. Interim results of a phase II multicenter clinical trial evaluating the activity of a therapeutic allogeneic melanoma vaccine (theraccine) in the treatment of disseminated malignant melanoma. Semin Surg Oncol 1993 May–Jun;9(3):264–72.

    CAS  PubMed  Google Scholar 

  189. Mitchell MS. Combinations of anticancer drugs and immunother-apy. Cancer Immunol Immunother 2003 Nov;52(11):686–92.

    CAS  PubMed  Google Scholar 

  190. Sondak VK, Sosman JA. Results of clinical trials with an allo-genic melanoma tumor cell lysate vaccine: Melacine. Semin Cancer Biol 2003 Dec;13(6):409–15.

    CAS  PubMed  Google Scholar 

  191. Chan AD, Morton DL. Active immunotherapy with allogeneic tumor cell vaccines: present status. Semin Oncol 1998 Dec;25(6):611–22.

    CAS  PubMed  Google Scholar 

  192. Newton DA, Acierno PM, Brescia FJ, Brown EA, Gattoni-Celli S. Semi-allogeneic vaccines for patients with cancer and AIDS. J Immunother 2002 Jul–Aug;25(4):334–41.

    PubMed  Google Scholar 

  193. Rosenberg SA. Gene therapy for cancer. Jama 1992 Nov 4;268(17):2416–9.

    CAS  PubMed  Google Scholar 

  194. Nelson WG, Simons JW, Mikhak B, Chang JF, DeMarzo AM, Carducci MA, et al. Cancer cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer as vaccines for the treatment of genitourinary malignancies. Cancer Chemother Pharmacol 2000;46 Suppl:S67–72.

    CAS  PubMed  Google Scholar 

  195. Tani K, Nakazaki Y, Hase H, Takahashi K, Azuma M, Ohata J, et al. Progress reports on immune gene therapy for stage IV renal cell cancer using lethally irradiated granulocyte-macrophage colony-stimulating factor-transduced autologous renal cancer cells. Cancer Chemother Pharmacol 2000;46(Suppl):S73–6.

    CAS  PubMed  Google Scholar 

  196. Qian HN, Liu GZ, Cao SJ, Feng J, Ye X. The experimental study of ovarian carcinoma vaccine modified by human B7–1 and IFN-gamma genes. Int J Gynecol Cancer 2002 Jan–Feb; 12(1):80–5.

    PubMed  Google Scholar 

  197. O'Rourke MG, Schmidt CW, O'Rourke TR, Ellem KA. Immunotherapy, including gene therapy, for metastatic melanoma. Aust N Z J Surg 1997 Dec;67(12):834–41.

    PubMed  Google Scholar 

  198. Schadendorf D, Paschen A, Sun Y. Autologous, allogeneic tumor cells or genetically engineered cells as cancer vaccine against melanoma. Immunol Lett 2000 Sep 15;74(1):67–74.

    CAS  PubMed  Google Scholar 

  199. Antonia SJ, Seigne J, Diaz J, Muro-Cacho C, Extermann M, Farmelo MJ, et al. Phase I trial of a B7–1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma. J Urol 2002 May;167(5):1995–2000.

    CAS  PubMed  Google Scholar 

  200. Arienti F, Sule-Suso J, Belli F, Mascheroni L, Rivoltini L, Melani C, et al. Limited antitumor T cell response in melanoma patients vaccinated with interleukin-2 gene-transduced allogeneic melanoma cells. Hum Gene Ther 1996 Oct 20;7(16):1955–63.

    CAS  PubMed  Google Scholar 

  201. Belli F, Arienti F, Sule-Suso J, Clemente C, Mascheroni L, Cattelan A, et al. Active immunization of metastatic melanoma patients with interleukin-2-transduced allogeneic melanoma cells: evaluation of efficacy and tolerability. Cancer Immunol Immunother 1997 Jun;44(4):197–203.

    CAS  PubMed  Google Scholar 

  202. Haight AE, Bowman LC, Ng CY, Vanin EF, Davidoff AM. Humoral response to vaccination with interleukin-2-expressing allogeneic neuroblastoma cells after primary therapy. Med Pediatr Oncol 2000 Dec;35(6):712–5.

    CAS  PubMed  Google Scholar 

  203. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993 Apr 15;90(8):3539–43.

    CAS  PubMed  Google Scholar 

  204. Arellano M, E KW. Granulocyte-macrophage-colony-stimulating factor and other cytokines: as adjuncts to cancer immunotherapy, stem cell transplantation, and vaccines. Curr Hematol Rep 2004 Nov;3(6):424–31.

    PubMed  Google Scholar 

  205. Powell A, Creaney J, Broomfield S, Van Bruggen I, Robinson B. Recombinant GM-CSF plus autologous tumor cells as a vaccine for patients with mesothelioma. Lung Cancer 2006 May;52(2):189–97.

    PubMed  Google Scholar 

  206. Leong SP, Enders-Zohr P, Zhou YM, Stuntebeck S, Habib FA, Allen RE, Jr., et al. Recombinant human granulocyte mac-rophage-colony stimulating factor (rhGM-CSF) and autologous melanoma vaccine mediate tumor regression in patients with metastatic melanoma. J Immunother 1999 Mar;22(2):166–74.

    CAS  PubMed  Google Scholar 

  207. Murata S, Ladle BH, Kim PS, Lutz ER, Wolpoe ME, Ivie SE, et al. OX40 costimulation synergizes with GM-CSF whole-cell vaccination to overcome established CD8+ T cell tolerance to an endogenous tumor antigen. J Immunol 2006 Jan 15;176(2):974–83.

    CAS  PubMed  Google Scholar 

  208. Barrio MM, de Motta PT, Kaplan J, von Euw EM, Bravo AI, Chacon RD, et al. A phase I study of an allogeneic cell vaccine (VACCIMEL) with GM-CSF in melanoma patients. J Immunother 2006 Jul–Aug;29(4):444–54.

    CAS  PubMed  Google Scholar 

  209. Ullenhag GJ, Frodin JE, Jeddi-Tehrani M, Strigard K, Eriksson E, Samanci A, et al. Durable carcinoembryonic antigen (CEA)-specific humoral and cellular immune responses in colorectal carcinoma patients vaccinated with recombinant CEA and granu-locyte/macrophage colony-stimulating factor. Clin Cancer Res 2004 May 15;10(10):3273–81.

    CAS  PubMed  Google Scholar 

  210. Nemunaitis J, Sterman D, Jablons D, Smith JW, 2nd, Fox B, Maples P, et al. Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst 2004 Feb 18;96(4):326–31.

    CAS  PubMed  Google Scholar 

  211. Nemunaitis J. GVAX (GMCSF gene modified tumor vaccine) in advanced stage non small cell lung cancer. J Control Release 2003 Aug 28;91(1–2):225–31.

    CAS  PubMed  Google Scholar 

  212. Ellem KA, O'Rourke MG, Johnson GR, Parry G, Misko IS, Schmidt CW, et al. A case report: immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma cells for immunotherapy. Cancer Immunol Immunother 1997 Mar;44(1):10–20.

    CAS  PubMed  Google Scholar 

  213. Dranoff G, Soiffer R, Lynch T, Mihm M, Jung K, Kolesar K, et al. A phase I study of vaccination with autologous, irradiated melanoma cells engineered to secrete human granulocyte-mac-rophage colony stimulating factor. Hum Gene Ther 1997 Jan 1;8(1):111–23.

    CAS  PubMed  Google Scholar 

  214. Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci U S A 1998 Oct 27;95(22):13141–6.

    CAS  PubMed  Google Scholar 

  215. Simons JW, Mikhak B, Chang JF, DeMarzo AM, Carducci MA, Lim M, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-mac-rophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 1999 Oct 15;59(20):5160–8.

    CAS  PubMed  Google Scholar 

  216. Simons JW. Bioactivity of human GM-CSF gene therapy in met-astatic renal cell carcinoma and prostate cancer. Hinyokika Kiyo 1997 Nov;43(11):821–2.

    CAS  PubMed  Google Scholar 

  217. Simons JW, Jaffee EM, Weber CE, Levitsky HI, Nelson WG, Carducci MA, et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-mac-rophage colony-stimulating factor gene transfer. Cancer Res 1997 Apr 15;57(8):1537–46.

    CAS  PubMed  Google Scholar 

  218. Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells: the near future. Int J Cancer 2001 Nov15;94(4):459–73.

    CAS  PubMed  Google Scholar 

  219. Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 2000 Mar 6;191(5):795–804.

    CAS  PubMed  Google Scholar 

  220. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996 Jan;2(1):52–8.

    CAS  PubMed  Google Scholar 

  221. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002 Mar 1;99(5):1517–26.

    CAS  PubMed  Google Scholar 

  222. Triozzi PL, Khurram R, Aldrich WA, Walker MJ, Kim JA, Jaynes S. Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer 2000 Dec 15;89(12):2646–54.

    CAS  PubMed  Google Scholar 

  223. Padley DJ, Dietz AB, Gastineau DA, Vuk-Pavlovic S. Mature myeloid dendritic cells for clinical use prepared from CD14+ cells isolated by immunomagnetic adsorption. J Hematother Stem Cell Res 2001 Jun;10(3):427–9.

    CAS  PubMed  Google Scholar 

  224. Rains N, Cannan RJ, Chen W, Stubbs RS. Development of a dendritic cell (DC)-based vaccine for patients with advanced colorectal cancer. Hepatogastroenterology 2001 Mar–Apr;48 (38):347–51.

    CAS  PubMed  Google Scholar 

  225. Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001 Feb 1;61(3):842–7.

    CAS  PubMed  Google Scholar 

  226. Hernando JJ, Park TW, Kubler K, Offergeld R, Schlebusch H, Bauknecht T. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol Immunother 2002 Mar;51(1):45–52.

    CAS  PubMed  Google Scholar 

  227. Bachleitner-Hofmann T, Stift A, Friedl J, Pfragner R, Radelbauer K, Dubsky P, et al. Stimulation of autologous antitumor T-cell responses against medullary thyroid carcinoma using tumor lysate-pulsed dendritic cells. J Clin Endocrinol Metab 2002 Mar;87(3):1098–104.

    CAS  PubMed  Google Scholar 

  228. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998 Mar;4(3):328–32.

    CAS  PubMed  Google Scholar 

  229. Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, et al. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 1999 Feb 1;223(1):1–15.

    CAS  PubMed  Google Scholar 

  230. Panelli MC, Wunderlich J, Jeffries J, Wang E, Mixon A, Rosenberg SA, et al. Phase 1 study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J Immunother 2000 Jul–Aug;23(4):487–98.

    CAS  PubMed  Google Scholar 

  231. Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study. Blood 1999 Apr 1;93(7):2411–9.

    CAS  PubMed  Google Scholar 

  232. Yannelli JR, Sturgill J, Foody T, Hirschowitz E, The large scale generation of dendritic cells for the immunization of patients with non-small cell lung cancer (NSCLC). Lung Cancer 2005;47:337–350.

    PubMed  Google Scholar 

  233. Murphy G, Tjoa B, Ragde H, Kenny G, Boynton A. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate 1996 Dec;29 (6):371–80.

    CAS  PubMed  Google Scholar 

  234. Murphy GP, Tjoa BA, Simmons SJ, Jarisch J, Bowes VA, Ragde H, et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 1999 Jan 1;38(1):73–8.

    CAS  PubMed  Google Scholar 

  235. Murphy GP, Tjoa BA, Simmons SJ, Ragde H, Rogers M, Elgamal A, et al. Phase II prostate cancer vaccine trial: report of a study involving 37 patients with disease recurrence following primary treatment. Prostate 1999 Apr 1;39(1):54–9.

    CAS  PubMed  Google Scholar 

  236. Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, et al. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol 1999 Mar;161(3):777–82.

    CAS  PubMed  Google Scholar 

  237. Merad M, Angevin E, Wolfers J, Flament C, Lorenzi I, Triebel F, et al. Generation of monocyte-derived dendritic cells from patients with renal cell cancer: modulation of their functional properties after therapy with biological response modifiers (IFN-alpha plus IL-2 and IL-12). J Immunother 2000 May–Jun;23(3):369–78.

    CAS  PubMed  Google Scholar 

  238. Claxton DF, McMannis J, Champlin R, Choudhury A. Therapeutic potential of leukemia-derived dendritic cells: preclinical and clinical progress. Crit Rev Immunol 2001;21(1–3):147–55.

    CAS  PubMed  Google Scholar 

  239. Nencioni A, Brossart P. New perspectives in dendritic cell-based cancer immunotherapy. BioDrugs 2001;15(10):667–79.

    CAS  PubMed  Google Scholar 

  240. Steinman R, Hoffman L, Pope M. Maturation and migration of cutaneous dendritic cells. J Invest Dermatol 1995 Jul;105(1 Suppl):2S–7S.

    CAS  PubMed  Google Scholar 

  241. Mosca PJ, Hobeika AC, Clay TM, Nair SK, Thomas EK, Morse MA, et al. A subset of human monocyte-derived dendritic cells expresses high levels of interleukin-12 in response to combined CD40 ligand and interferon-gamma treatment. Blood 2000 Nov 15;96(10):3499–504.

    CAS  PubMed  Google Scholar 

  242. Hart DN. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 1997 Nov 1;90(9):3245–87.

    CAS  PubMed  Google Scholar 

  243. Satthaporn S, Eremin O. Dendritic cells (II): Role and therapeutic implications in cancer. J R Coll Surg Edinb 2001 Jun;46(3):159–67.

    CAS  PubMed  Google Scholar 

  244. Satthaporn S, Eremin O. Dendritic cells (I): Biological functions. J R Coll Surg Edinb 2001 Feb;46(1):9–19.

    CAS  PubMed  Google Scholar 

  245. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001 Jan 15;193(2):233–8.

    CAS  PubMed  Google Scholar 

  246. Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA . Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 1998 Oct 16;282(5388):480–3.

    CAS  PubMed  Google Scholar 

  247. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granu-locyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994 Apr 1;179(4):1109–18.

    CAS  PubMed  Google Scholar 

  248. Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N. Improved methods for the generation of dendritic cells from non-proliferating progenitors in human blood. J Immunol Methods 1996 Sep 27;196(2):121–35.

    CAS  PubMed  Google Scholar 

  249. Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol 1995 Apr 15;154(8):3821–35.

    CAS  PubMed  Google Scholar 

  250. Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994 Jul 1;180(1):83–93.

    CAS  PubMed  Google Scholar 

  251. Kato K, Takaue Y, Wakasugi H. T-cell-conditioned medium efficiently induces the maturation and function of human dendritic cells. J Leukoc Biol 2001 Dec;70(6):941–9.

    CAS  PubMed  Google Scholar 

  252. Ebner S, Ratzinger G, Krosbacher B, Schmuth M, Weiss A, Reider D, et al. Production of IL-12 by human monocyte-derived dendritic cells is optimal when the stimulus is given at the onset of maturation, and is further enhanced by IL-4. J Immunol 2001 Jan 1;166(1):633–41.

    CAS  PubMed  Google Scholar 

  253. Spisek R, Bretaudeau L, Barbieux I, Meflah K, Gregoire M, Standardized generation of fully mature p70 IL-12 secreting monocyte-derived dendritic cells for clinical use. Cancer Immunol Immunother 2001 Oct;50:417–427.

    CAS  PubMed  Google Scholar 

  254. Santegoets SJ, van den Eertwegh AJ, van de Loosdrecht AA, Scheper RJ, de Gruijl TD. Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J Leukoc Biol 2008 Jul 29.

    Google Scholar 

  255. Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL, et al. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 2001 Dec 15;167(12):7150–6.

    CAS  PubMed  Google Scholar 

  256. Fong L, Brockstedt D, Benike C, Wu L, Engleman EG. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 2001 Mar 15;166(6):4254–9.

    CAS  PubMed  Google Scholar 

  257. Tjoa BA, Erickson SJ, Bowes VA , Ragde H, Kenny GM, Cobb OE, et al. Follow-up evaluation of prostate cancer patients infused with autologous dendritic cells pulsed with PSMA pep-tides. Prostate 1997 Sep 1;32(4):272–8.

    CAS  PubMed  Google Scholar 

  258. Tjoa BA, Simmons SJ, Bowes VA, Ragde H, Rogers M, Elgamal A, et al. Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate 1998 Jun 15;36(1):39–44.

    CAS  PubMed  Google Scholar 

  259. Tjoa BA, Murphy GP. Development of dendritic-cell based prostate cancer vaccine. Immunol Lett 2000 Sep 15;74(1):87–93.

    CAS  PubMed  Google Scholar 

  260. Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 2000 Mar;6(3):332–6.

    CAS  PubMed  Google Scholar 

  261. Lau R, Wang F, Jeffery G, Marty V, Kuniyoshi J, Bade E, et al. Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother 2001 Jan–Feb;24(1):66–78.

    CAS  PubMed  Google Scholar 

  262. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 2001 Sep 1;61(17):6451–8.

    CAS  PubMed  Google Scholar 

  263. Hirschowitz EA, Foody T, Hidalgo GE, Yannelli JR, Immunization of NSCLC patients with antigen-pulsed immature autologous dendritic cells. Lung Cancer 2007 May 15;57:365–372.

    PubMed  Google Scholar 

  264. Hirschowitz EA, Foody T, Kryscio R, Dickson L, Sturgill J, Yannelli J. Autologous dendritic cell vaccines for non-small-cell lung cancer. J Clin Oncol 2004 Jul 15;22(14):2808–15.

    PubMed  Google Scholar 

  265. Jonuleit H, Schmitt E, Steinbrink K, Enk AH. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol 2001 Jul;22(7):394–400.

    CAS  PubMed  Google Scholar 

  266. Sakaguchi S. Naturally Arising CD4+ Regulatory T Cells for Immunologic Self-Tolerance and Negative Control of Immune Responses. Annu Rev Immunol 2004 Apr;22:531–62.

    CAS  PubMed  Google Scholar 

  267. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immu-nologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004;22:531–62.

    CAS  PubMed  Google Scholar 

  268. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999 Nov 15;163(10):5211–8.

    CAS  PubMed  Google Scholar 

  269. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling auto-immunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001 Aug;182:18–32.

    CAS  PubMed  Google Scholar 

  270. Hori S, Sakaguchi S. Foxp3: a critical regulator of the development and function of regulatory T cells. Microbes Infect 2004 Jul;6(8):745–51.

    CAS  PubMed  Google Scholar 

  271. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003 Apr;4(4):330–6.

    CAS  PubMed  Google Scholar 

  272. Ramsdell F. Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity 2003 Aug;19(2):165–8.

    CAS  PubMed  Google Scholar 

  273. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY, Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007 Jan 21;445: 936–940.

    CAS  PubMed  Google Scholar 

  274. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, Macisaac KD, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007 Jan 21.

    Google Scholar 

  275. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003 Feb;9(2):606–12.

    PubMed  Google Scholar 

  276. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, et al. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002 May 1;168(9):4272–6.

    CAS  PubMed  Google Scholar 

  277. O'Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. Nat Med 2004 Aug;10(8):801–5.

    PubMed  Google Scholar 

  278. Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 2005 Jan 11;102(2):419–24.

    CAS  PubMed  Google Scholar 

  279. Cederbom L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 2000 Jun;30(6):1538–43.

    CAS  PubMed  Google Scholar 

  280. Wang HY, Peng G, Guo Z, Shevach EM, Wang RF. Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. J Immunol 2005 Mar 1;174(5):2661–70.

    CAS  PubMed  Google Scholar 

  281. Javia LR, Rosenberg SA. CD4+CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J Immunother 2003 Jan–Feb;26(1):85–93.

    CAS  PubMed  Google Scholar 

  282. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002 Sep 1;169(5):2756–61.

    CAS  PubMed  Google Scholar 

  283. Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 2004 Mar 1;103(5):1755–62.

    CAS  PubMed  Google Scholar 

  284. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004 Sep;10(9):942–9.

    CAS  PubMed  Google Scholar 

  285. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001 Sep 17;194(6): 823–32.

    CAS  PubMed  Google Scholar 

  286. Furuichi Y, Tokuyama H, Ueha S, Kurachi M, Moriyasu F, Kakimi K. Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+ T cell response primed by DNA immunization. World J Gastroenterol 2005 Jun 28;11(24):3772–7.

    PubMed  Google Scholar 

  287. Best A, Hidalgo G, Mitchell K, Yannelli JR, Issues concerning the large scale cryopreservation of peripheral blood mononuclear cells (PBMC) for immunotherapy trials. Cryobiology 2007 Feb 28;54:294–297.

    CAS  PubMed  Google Scholar 

  288. Keilholz U, Weber J, Finke JH, Gabrilovich DI, Kast WM, Disis ML, et al. Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J Immunother 2002 Mar–Apr;25(2):97–138.

    PubMed  Google Scholar 

Download references

Acknowledgments

This Chapter is dedicated to the many patients who have given themselves for these studies. Additionally, on a local level, this Chapter is dedicated to Dr. Bonnie Sigafus whose tireless dedication to patients with lung cancer has increased funding to scientists in need. Dr. Sigafus recently passed on but her memory will always remain.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yannelli, J.R. (2009). Cellular immunotherapy (CI), where have we been and where are we going?. In: Oldham, R.K., Dillman, R.O. (eds) Principles of Cancer Biotherapy. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2289-9_15

Download citation

Publish with us

Policies and ethics