Skip to main content

Hypoxic Pulmonary Vasoconstriction – Invited Article

  • Chapter
Arterial Chemoreceptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 648))

Abstract

Hypoxic pulmonary vasoconstriction (HPV) is an adaptive mechanism that in the face of localised alveolar hypoxia diverts blood away from poorly ventilated regions of the lung, thereby preserving ventilation/perfusion matching. HPV has been recognised for many years, but although the underlying mechanisms are known to reside within the arteries themselves, their precise nature remains unclear. There is a growing consensus that mitochondria act as the oxygen sensor, and that Ca2+ release from ryanodine-sensitive stores and Rho kinase-mediated Ca2+ sensitisation are critical for sustained vasoconstriction, though Ca2+ entry via both voltage-dependent and/or -independent pathways has also been implicated. There is, however, controversy regarding the signalling pathways that link the oxygen sensor to its effectors, with three main hypotheses. The AMP-activated protein kinase (AMPK) hypothesis proposes that hypoxic inhibition of mitochondrial function increases the AMP/ATP ratio and thus activates AMPK, which in turn mediates cADPR-dependent mobilisation of ryanodine-sensitive sarcoplasmic reticulum Ca2+ stores. In contrast the two other hypotheses invoke redox signalling, albeit in mutually incompatible ways. The Redox hypothesis proposes that hypoxia suppresses mitochondrial generation of reactive oxygen species (ROS) and causes the cytosol to become more reduced, with subsequent inhibition of KV channels, depolarisation and voltage-dependent Ca2+ entry. In direct contrast the ROS hypothesis proposes that hypoxia causes an apparently paradoxical increase in mitochondrial ROS generation, and it is this increase in ROS that acts as the signalling moiety. In this article we describe our current understanding of HPV, and evidence in support of these models of oxygen-sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V & Ward JP. (2006). Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol 570, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Chandel NS & Schumacker PT. (2000). Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol 88, 1880–1889.

    Article  PubMed  CAS  Google Scholar 

  • Dipp M & Evans AM. (2001). Cyclic ADP-ribose is the primary trigger for hypoxic pulmonary vasoconstriction in the rat lung in situ. Circ Res 89, 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Dipp M, Nye PC & Evans AM. (2001). Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle. Am J Physiol Lung Cell Mol Physiol 281, L318–325.

    PubMed  CAS  Google Scholar 

  • Duchen MR & Biscoe TJ. (1992). Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol 450, 13–31.

    PubMed  CAS  Google Scholar 

  • Evans AM. (2006). AMP-activated protein kinase and the regulation of Ca2+ signalling in O2-sensing cells. J Physiol 574, 113–123.

    Article  PubMed  CAS  Google Scholar 

  • Evans AM, Mustard KJ, Wyatt CN, Peers C, Dipp M, Kumar P, Kinnear NP & Hardie DG. (2005). Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? J Biol Chem 280, 41504–41511.

    Article  PubMed  CAS  Google Scholar 

  • Hambraeus-Jonzon K, Bindslev L, Mellgard AJ & Hedenstierna G. (1997). Hypoxic pulmonary vasoconstriction in human lungs. A stimulus-response study. Anesthesiology 86, 308–315.

    Article  PubMed  CAS  Google Scholar 

  • Leach RM, Hill HM, Snetkov VA, Robertson TP & Ward JP. (2001). Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J Physiol 536, 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Leach RM, Robertson TP, Twort CH & Ward JP. (1994). Hypoxic vasoconstriction in rat pulmonary and mesenteric arteries. Am J Physiol 266, L223–231.

    PubMed  CAS  Google Scholar 

  • Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R & Archer SL. (2002). Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 90, 1307–1315.

    Article  PubMed  CAS  Google Scholar 

  • Moudgil R, Michelakis ED & Archer SL. (2005). Hypoxic pulmonary vasoconstriction. J Appl Physiol 98, 390–403.

    Article  PubMed  CAS  Google Scholar 

  • Ng LC, Wilson SM & Hume JR. (2005). Mobilization of SR stores by hypoxia leads to consequent activation of capacitative Ca2+ entry in isolated canine pulmonary arterial smooth muscle cells. J Physiol 563, 409–419.

    Article  PubMed  CAS  Google Scholar 

  • Post J, Weir EK, Archer SL & Hume J. (1993). Redox regulation of K+ channels and hypoxic pulmonary vasoconstriction. In Ion Flux in Pulmonary Vascular Control, ed. Weir EK, Hume J & Reeves J. Futura Publishing Company, New York.

    Google Scholar 

  • Quintero M, Colombo SL, Godfrey A & Moncada S. (2006). Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci U S A 103, 5379–5384.

    Article  PubMed  CAS  Google Scholar 

  • Robertson T, Hashmi-Hill M, Vandenplas ML & Lewis SJ. (2005). Endothelium-dependent activation of Rho-kinase during hypoxic pulmonary vasoconstriction in rat intrapulmonary arteries. FASEB J 19, A1277.

    Google Scholar 

  • Robertson TP, Aaronson PI & Ward JP. (1995). Hypoxic vasoconstriction and intracellular Ca2+ in pulmonary arteries: evidence for PKC-independent Ca2+ sensitization. Am J Physiol 268, H301–307.

    PubMed  CAS  Google Scholar 

  • Robertson TP, Dipp M, Ward JP, Aaronson PI & Evans AM. (2000a). Inhibition of sustained hypoxic vasoconstriction by Y-27632 in isolated intrapulmonary arteries and perfused lung of the rat. Br J Pharmacol 131, 5–9.

    Google Scholar 

  • Robertson TP, Hague D, Aaronson PI & Ward JP. (2000b). Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J Physiol 525 Pt 3, 669–680.

    Google Scholar 

  • Robertson TP, Ward JP & Aaronson PI. (2001). Hypoxia induces the release of a pulmonary-selective, Ca2+-sensitising, vasoconstrictor from the perfused rat lung. Cardiovasc Res 50, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Turrens JF. (2003). Mitochondrial formation of reactive oxygen species. J Physiol 552, 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Wang QS, Zheng YM, Dong L, Ho YS, Guo Z & Wang YX. (2007). Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes. Free Radical Biology & Medicine 42, 642–653.

    Article  CAS  Google Scholar 

  • Wang Z, Jin N, Ganguli S, Swartz DR, Li L & Rhoades RA. (2001). Rho-kinase activation is involved in hypoxia-induced pulmonary vasoconstriction. Am J Respir Cell Mol Biol 25, 628–635.

    PubMed  CAS  Google Scholar 

  • Ward JP. (2008). Oxygen sensors in context. Biochim Biophys Acta 1777, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Ward JP, Snetkov VA & Aaronson PI. (2004). Calcium, mitochondria and oxygen sensing in the pulmonary circulation. Cell Calcium 36, 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Waypa GB, Chandel NS & Schumacker PT. (2001). Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 88, 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  • Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW & Schumacker PT. (2006). Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res 99, 970–978.

    Article  PubMed  CAS  Google Scholar 

  • Waypa GB & Schumacker PT. (2005). Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing. J Appl Physiol 98, 404–414.

    Article  PubMed  CAS  Google Scholar 

  • Weir EK & Archer SL. (1995). The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J 9, 183–189.

    PubMed  CAS  Google Scholar 

  • Weissmann N, Tadic A, Hanze J, Rose F, Winterhalder S, Nollen M, Schermuly RT, Ghofrani HA, Seeger W & Grimminger F. (2000). Hypoxic vasoconstriction in intact lungs: a role for NADPH oxidase- derived H2O2? Am J Physiol Lung Cell Mol Physiol 279, L683–690.

    PubMed  CAS  Google Scholar 

  • Wilson HL, Dipp M, Thomas JM, Lad C, Galione A & Evans AM. (2001). ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor. A primary role for cyclic ADP-ribose in hypoxic pulmonary vasoconstriction. J Biol Chem 276, 11180–11188.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mark Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mark Evans, A., Ward, J.P. (2009). Hypoxic Pulmonary Vasoconstriction – Invited Article . In: Gonzalez, C., Nurse, C.A., Peers, C. (eds) Arterial Chemoreceptors. Advances in Experimental Medicine and Biology, vol 648. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2259-2_40

Download citation

Publish with us

Policies and ethics