Skip to main content

Expression Engineering – The IE2 Promoter/Enhancer from Mouse CMV

  • Chapter
  • First Online:

Part of the book series: Cell Engineering ((CEEN,volume 6))

Abstract

Cell engineering aims at changing the gene expression program of a specific host cell line for instance by molecular techniques. A widely used strategy is the overexpression of artificially introduced foreign genes. This is achieved by combining the DNA encoding the respective protein of interest with constitutive or regulated promoter sequences, and transfecting the host cell with such recombinant vectors. This approach is taken in a majority of engineering strategies, and a still growing toolbox of different expression governing sequences is becoming available. Some fine examples for such sequences, acting on different aspects of cell engineering, are reviewed throughout this book. Here we introduce the mouse CMV IE2 promoter/enhancer sequence as a new and extremely powerful tool for overexpression of genes of interest. This promoter/enhancer sequence withstands the comparison with established promoter/enhancer combinations commonly used for cell engineering, and often exceeds their performance. We highlight the usefulness of mouse CMV IE2 sequences for the expression of recombinant monoclonal antibodies in connection with the ‘related’ mouse CMV IE1 promoter/enhancer region. This strategy allows us to achieve high expression levels for the production of therapeutic proteins in serum-free mammalian cell culture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addison CL, Hitt M, Kunsken D, Graham, FL (1997). Comparison of the human versus murine cytomegalovirus immediate early gene promoters for transgene expression by adenoviral vectors. J Gen Vir 78:1653–1661

    CAS  Google Scholar 

  • Ando K, Hirao S, Kabe Y, Ogura Y, Sato I, Yamaguchi Y, Wada T, Handa H (2008) A new APE1/Ref-1-dependent pathway leading to reduction of NF-κB and AP-1, and activation of their DNA-binding activity. Nucl Acids Res 36:4327–4336

    Article  PubMed  CAS  Google Scholar 

  • Apostolou E, Thanos D (2008) Virus infection induces NF-κB-dependent interchromosomal associations mediating monoallelic IFN-β gene expression. Cell 134:85–96

    Article  PubMed  CAS  Google Scholar 

  • Bartlett J, Blagojevic J, Carter D, Eskiw C, Fromaget M, Job C, Shamsher M, Faro-Trindale I, Xu M, Cook PJ (2006) Specialized transcription factories. Biochem Soc Symp 73:67–75

    PubMed  CAS  Google Scholar 

  • Benedict CA, Angulo A, Patterson G, Ha S, Huang H, Messerle M, Ware CF, Ghazal P (2004) Neutrality of the canonical NF-κB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro. J Virol 78:741–750

    Article  PubMed  CAS  Google Scholar 

  • Binnie A, Castelo-Branco P, Monks J, Proudfoot NJ (2006) Homologous gene sequences mediate transcription-domain formation. J Cell Sci 119:3876–3887

    Article  PubMed  CAS  Google Scholar 

  • Bird AP, Wolffe AP (1999) Methylation-induced repression – belts, braces, and chromatin. Cell 99:451–454

    Article  PubMed  CAS  Google Scholar 

  • Boshart M, Weber F, Jahn G, Dorsch-Häsler K, Fleckenstein B, Schaffner W (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530

    Article  PubMed  CAS  Google Scholar 

  • Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322

    Article  PubMed  CAS  Google Scholar 

  • Cardin RD, Abens GB, Stoddart CA, Mocarski ES (1995) Murine cytomegalovirus IE2, an activator of gene expression, is dispensable for growth and latency in mice. Virology 209:236–241

    Article  PubMed  CAS  Google Scholar 

  • Chatellard P, Pankiewicz R, Meier E, Durrer L, Sauvage C, Imhof MO (2007) The IE2 promoter/enhancer region from mouse CMV provides high levels of therapeutic protein expression in mammalian cells. Biotech Bioeng 96:106–117

    Article  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genetics 2:292–301

    Article  CAS  Google Scholar 

  • de Felipe P, Luke GA, Hughes LE, Gani D, Halpin C, Ryan MD (2006) E unum pluribus: multiple proteins from a self-processing polyprotein. Trends Biotech 24:68–75

    Article  CAS  Google Scholar 

  • Dorsch-Häsler K, Keil GM, Weber F, Jasin M, Schaffner W, Koszinowski UH (1985) A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci USA 82:8325–8329

    Article  PubMed  Google Scholar 

  • Eszterhas SK, Bouhassira EE, Martin DIK, Fiering S (2002) Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 22:469–479

    Article  PubMed  CAS  Google Scholar 

  • Faisst S, Meyer S (1992) Compilation of vertebrate-encoded transcription factors. Nucl Acids Res 20:3–26

    Article  PubMed  CAS  Google Scholar 

  • Francastel C, Walters MC, Groudine M, Martin DIK (1999) A functional enhancer suppresses silencing of a transgene and prevents its localization close to centromeric heterochromatin. Cell 99:259–269

    Article  PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  PubMed  CAS  Google Scholar 

  • Garrick D, Fiering S, Martin DIK, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nature Gen 18:56–59

    Article  CAS  Google Scholar 

  • Gierman HJ, Indemans MHG, Koster J, Goetze S, Seppen J, Geerts D, van Driel R, Versteeg R (2007) Domain-wide regulation of gene expression in the human genome. Genome Res 17:1286–1295

    Article  PubMed  CAS  Google Scholar 

  • Goetze S, Mateos-Langerak J, van Driel R (2007) Three-dimensional genome organisation in interphase and its relation to genome function. Sem Cell Dev Biol 18:707–714

    Article  CAS  Google Scholar 

  • Gruh I, Wunderlich S, Winkler M, Schwanke K, Heinke J, Blömer U, Ruhparwar A, Rohde B, Li R-K, Haverich A, Martin U (2008) Human CMV immediate-early enhancer: a useful tool to enhance cell-type-specific expression from lentiviral vectors. J Gene Med 10:21–32

    Article  PubMed  CAS  Google Scholar 

  • Grzimek NKA, Dreis D, Schmalz S, Reddehase MJ (2001) Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs. J Virol 75:2692–2705

    Article  PubMed  CAS  Google Scholar 

  • Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

    Article  PubMed  CAS  Google Scholar 

  • Gustems M, Borst E, Benedict CA, Perez C, Messerle M, Ghazal P, Angulo A (2006) Regulation of the transcription and replication cycle of human cytomegalovirus is insensitive to genetic elimination of the cognate NF-κB binding sites in the enhancer. J Virol 80:9899–9904

    Article  PubMed  CAS  Google Scholar 

  • Handwerger KE, Gall JG (2006) Subnuclear organelles: new insights into form and function. Trends Cell Biol 16:19–26

    Article  PubMed  CAS  Google Scholar 

  • Heard E, Bickmore W (2007) The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol 19:311–316

    Article  PubMed  CAS  Google Scholar 

  • Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel A, Kel O, Ignatieva E, Ananko E, Podkolodnaya O, Kolpakov F et al (1998) Databases on transcriptional regulation: TRANSFAC, TRRD, and COMPEL. Nucl Acids Res 26:364–370

    Article  Google Scholar 

  • Hummel M, Abecassis MM (2002) A model for reactivation of CMV from latency. J Clin Virol 25:S123–S136

    Article  PubMed  Google Scholar 

  • Irarrazabal CE, Williams CK, Ely MA, Birrer MJ, Garcia-Perez A, Burg MB, Ferraris JD (2008) Activator protein-1 contributes to high NaCl-induced increase in tonicity-responsive enhancer/osmotic response element-binding protein transactivating activity. J Biol Chem 283:2554–2563

    Article  PubMed  CAS  Google Scholar 

  • Kalwy S, Rance J, Young R (2006) Toward more efficient protein expression. Mol Biotechnol 34:151–156

    Article  PubMed  CAS  Google Scholar 

  • Kaufman RJ (2004) Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem Sci 29:152–158

    Article  PubMed  CAS  Google Scholar 

  • Kim Y-S, Risser R (1993) TAR-independent transactivation of the murine cytomegalovirus major immediate-early promoter by the Tat protein. J Virol 67:239–248

    PubMed  CAS  Google Scholar 

  • Kim TK, Lagrange T, Wang YH, Griffith JD, Reinberg D, Ebright RH (1997) Trajectory of DNA in the RNA polymerase II transcription preinitiation complex. Proc Natl Acad Sci USA 94:12268–12273

    Article  PubMed  CAS  Google Scholar 

  • Kim S-Y, Lee J-H, Shin H-S, Kang H-J, Kim Y-S (2002) The human elongation factor 1 alpha (EF-1α) first intron highly enhances expression of foreign genes from the murine cytomegalovirus promoter. J Biotech 93:183–187

    Article  CAS  Google Scholar 

  • Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A high-resolution map of active promoters in the human genome. Nature 436:876–880

    Article  PubMed  CAS  Google Scholar 

  • Kingston RE (1997) Introduction of DNA into mammalian cells. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, Chapter 9, Boston.

    Google Scholar 

  • Kobr M, Chatellard P, Imhof MO (2008) Expression vector engineering for cell line development – new roles for ‘old’ sequences. BioProcessing J 7:16–20

    CAS  Google Scholar 

  • Koutroubas G, Merika M, Thanos D (2008) Bypassing the requirements for epigenetic modifications in gene transcritpion by increasing enhancer strength. Mol Cell Biol 29:926–938

    Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of expression in three dimensions. Nat Rev Genetics 8:104–115

    Article  CAS  Google Scholar 

  • Lashmit PE, Lundquist CA, Meier JL, Stinski MF (2004) A cellular repressor inhibits human cytomegalovirus transcription from the UL127 promoter. J Virol 78:5113–5123

    Article  PubMed  CAS  Google Scholar 

  • Latchman DS (1991) Eukaryotic transcription factors. London, Academic Press

    Google Scholar 

  • Lee J, Klase Z, Gao X, Caldwell JS, Stinski MF, Kashanchi F, Chao S-H (2007) Cellular homeoproteins, SATB1 and CDP, bind to the unique region between the human cytomegalovirus UL127 and major immediate-early genes. Virology 366:117–125

    Article  PubMed  CAS  Google Scholar 

  • Lemon B, Tjian R (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 14:2551–2569

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Cashion LM, Twu JJ (1997) A systematic comparison of relative promoter/enhancer activities in mammalian cell lines. Anal Biochem 246:150–152

    Article  PubMed  CAS  Google Scholar 

  • Makrides SC (1999) Components for vectors for gene transfer and expression in mammalian cells. Prot Express Purif 17:183–202

    Article  CAS  Google Scholar 

  • McBurney MW, Mai T, Yang X, Jardine K (2002) Evidence for repeat-induced gene silencing in cultured mammalian cells: inactivation of tandem repeats of transfected genes. Exp Cell Res 274:1–8

    Article  PubMed  CAS  Google Scholar 

  • Meier JL, Stinski MF (1996) Regulation of human cytomegalovirus immediate-early gene expression. Intervirology 39:331–342

    PubMed  CAS  Google Scholar 

  • Meier JL, Stinski MF (2006) Major immediate-early enhancer and its gene products. In: Reddehase MJ, Reddehase MJ (eds) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Wymondham, pp 151–166

    Google Scholar 

  • Mellor J (2005) The dynamics of chromatin remodeling at promoters. Mol Cell 19:147–157

    Article  PubMed  CAS  Google Scholar 

  • Messerle M, Keil GM, Koszinowski UH (1991) Structure and expression of murine cytomegalovirus immediate-early gene 2. J Virol 65:1638–1643

    PubMed  CAS  Google Scholar 

  • Messerle M, Bühler B, Keil GM, Koszinowski UH (1992) Structural organization, expression, and functional characterization of the murine cytomegalovirus immediate-early gene 3. J Virol 66:27–36

    PubMed  CAS  Google Scholar 

  • Migliaccio AR, Bengra C, Ling J, Pi W, Li C, Zeng S, Keskintepe M, Whitney B, Sanchez M, Migliaccio G, Tuan D (2000) Stable and unstable transgene integration sites in the human genome: extinction of the green fluorescent protein transgene in K562 cells. Gene 256:197–214

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JA, Fraser P (2008) Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev 22:20–25

    Article  PubMed  CAS  Google Scholar 

  • Mountford PS, Smith AG (1995) Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis. Trends Genet 11:179–184

    Article  PubMed  CAS  Google Scholar 

  • Müller WG, Rieder D, Karpova TS, John S, Trajanoski Z, McNally JG (2007) Organization of chromatin and histone modifications at a transcription site. J Cell Biol 177:957–967

    Article  PubMed  CAS  Google Scholar 

  • Pikaart MJ, Recillas-Targa F, Felsenfeld G (1998) Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev 12:2852–2862

    Article  PubMed  CAS  Google Scholar 

  • Powers C, Früh K (2008) Rhesus CMV: an emerging animal model for human CMV. Med Microbiol Immunol 197:109–115

    Article  PubMed  Google Scholar 

  • Ragoczy T, Bender MA, Telling A, Byron R, Groudine M (2006) The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genetics 16:276–277

    Article  CAS  Google Scholar 

  • Rozenberg JM, Shlyakhtenko A, Glass K, Rishi V, Myakishev MV, FitzGerald PC, Vinson C (2008) All and only CpG containing sequences are enriched in promoters abundantly bound by RNA polymerase II in multiple tissues. BMC Genomics 9:67–79

    Article  PubMed  CAS  Google Scholar 

  • Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucl Acids Res 32:D91–D94

    Article  PubMed  CAS  Google Scholar 

  • Sanford GR, Burns WH (1996) Rat Cytomegalovirus has a unique immediate early gene enhancer. Virology 222:310–317

    Article  Google Scholar 

  • Sawicki JA, Morris RJ, Monks B, Sakai K, Miyazaki J (1998) A composite CMV-IE enhancer/beta-actin promoter is ubiquitously expressed in mouse cutaneous epithelium. Exp Cell Res 244:367–369

    Article  PubMed  CAS  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two different classes of promoters. Proc Natl Acad Sci USA 103:1412–1417

    Article  PubMed  CAS  Google Scholar 

  • Schlatter S, Stansfield SH, Dinnis D, Racher AJ, Birch JR, James DC (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 21:122–133

    Article  PubMed  CAS  Google Scholar 

  • Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21:3027–3043

    Article  PubMed  CAS  Google Scholar 

  • Schones DE, Cui K, Cuddapah S, Roh T-Y, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898

    Article  PubMed  CAS  Google Scholar 

  • Simon CO, Seckert CK, Dreis D, Reddehase MJ, Grzimek NKA (2005) Role for tumor necrosis factor alpha in murine cytomegalovirus transcriptional reactivation in latently infected lungs. J Virol 79:326–340

    Article  PubMed  CAS  Google Scholar 

  • Simon CO, Kühnapfel B, Reddehase MJ, Grzimek NK (2007) Murine cytomegalovirus major immediate-early enhancer region operating as a genetic switch in bidirectional gene pair transcription. J Virol 81:7805–7810

    Article  PubMed  CAS  Google Scholar 

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Ann Rev Biochem 72:449–479

    Article  PubMed  CAS  Google Scholar 

  • Stamminger T, Fleckenstein B (1990) Immediate-early transcription regulation of human cytomegalovirus. Curr Top Microbiol Immunol 154:3–19

    PubMed  CAS  Google Scholar 

  • Szutorisz H, Dillon N, Tora L (2005) The role of enhancers as centres for general transcription factor recruitment. Trends Biochem Sci 30:593–599

    Article  PubMed  CAS  Google Scholar 

  • Trojer P, Reinberg D (2007) Facultative Heterochromatin: is there a distinctive molecular signature? Mol Cell 28:1–13

    Article  PubMed  CAS  Google Scholar 

  • Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M, Weiss MJ, Dekker J, Blobel GA (2005) Proximity among distant regulatory elements at the β-globin locus requires ATA-1 and FOG-1. Mol Cell 17:453–462

    Article  PubMed  CAS  Google Scholar 

  • Venugopal R, Jaiswal AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17:3145–3156

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Koopman P (2002) Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev 12:441–446

    Article  PubMed  CAS  Google Scholar 

  • Wong AW, Scales SJ, Reilly DE (2007) DNA internalized via caveolae requires microtubule-dependent, Rab7-independent transport to the late endocytic pathway for delivery to the nucleus. J Biol Chem 282:22953–22963

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Bringmann P, McClary J, Jones PP, Manzana W, Zhu Y, Wang S, Liu Y, Harvey S, Madlansacay MR et al (2006) High levels of protein expression using different mammalian CMV promoters in several cell lines. Prot Express Purif 45:115–124

    Article  CAS  Google Scholar 

  • Xu M, Cook PR (2008) Similar active genes cluster in specialized transcription factories. J Cell Biol 181:615–623

    Article  PubMed  CAS  Google Scholar 

  • Xu Z-L, Mizuguchi H, Ishii-Watabe A, Uchida E, Mayumi T, Hayakawa T (2001) Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 272:149–156

    Article  PubMed  CAS  Google Scholar 

  • Zhou G-L, Xin L, Song W, Di L-J, Liu G, Wu X-S, Liu D-P, Liang C-C (2006) Active chromatin hub of the mouse α-globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol 26:5096–5105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Merck Serono Biotechnology Center Cell Sciences group for their constant help with experiments and support for generating the reported data. Our special thanks go to the Process Development Analytics group. Christine Power and Mark Ibberson provided essential information on expressed CHO cell sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus O. Imhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Imhof, M.O. et al. (2009). Expression Engineering – The IE2 Promoter/Enhancer from Mouse CMV. In: Al-Rubeai, M. (eds) Cell Line Development. Cell Engineering, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2245-5_2

Download citation

Publish with us

Policies and ethics