Rabbit Cloning

  • Andras Dinnyes
  • Zsuzsanna Polgar
  • Qinggang Meng


Rabbit somatic cell nuclear transfer (SCNT) offers new opportunities for basic research, biomedical and agricultural applications and genome preservation. However, the technology is still in a very early development stage and it is relatively inefficient proving many early expectations premature. The technical steps of SCNT are extremely complex. They are also very sensitive to small changes and fluctuations in technical parameters. Furthermore, the biological background of the reprogramming process is not fully understood. It makes it virtually impossible to optimize a protocol providing “ideal” recipient oocytes and donor cells for the process. In this chapter we will intend to summarize the current status of nuclear transfer technology in rabbits and to give the readers a brief insight of its future use.


nuclear transfer cloning micromanipulation epigenetics parthenogenetic activation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. E. (1958) Egg development in the rabbit. The influence of post-coital ligation on the uterine tube and ovariectomy. J. Endocrinol. 16: 283–294.PubMedCrossRefGoogle Scholar
  2. Adams, C. E. (1960) Prenatal mortality in the rabbit Oryctolagus cuniculus. J. Reprod. Fertil. 1: 36–44.PubMedGoogle Scholar
  3. Adams, C. E. (1970) Maintenance of pregnancy relative to the presence of few embryos in the rabbit. J. Endocrinol. 48: 243–249.PubMedCrossRefGoogle Scholar
  4. Adams, C. E., Hay, M. F., and Lutwak-Mann, C. (1961) The action of various agents upon the rabbit embryo. J. Embryol. Exp. Morphol. 9: 468–491.PubMedGoogle Scholar
  5. Adenot, P.G., Szöllösi, M. S., Chesné, P., Chastant, S., and Renard J. P. (1997) In vivo aging of oocytes influences the behavior of nuclei transferred to enucleated rabbit oocytes. Mol. Reprod. Dev. 46(3): 325–336.PubMedCrossRefGoogle Scholar
  6. al-Hasani, S., Kirsch, J., Diedrich, K., Blanke, S., van, d., V, and Krebs, D. (1989) Successful embryo transfer of cryopreserved and in-vitro fertilized rabbit oocytes. Hum. Reprod. 4: 77–79.PubMedGoogle Scholar
  7. Anderson, J. and Henck, J. W. (1994) Toxicity and Safety Testing. In“The Biology of the Laboratory Rabbit” (Manning, P. J., Ringler, D. H., and Newcomer, C. E., Eds.), pp. 455–466, Academic, San Diego, CA.Google Scholar
  8. Baguisi, A., Behboodi, E., Melican, D. T., Pollock, J. S., Destrempes, M. M., Cammuso, C., Williams, J. L., Nims, S. D., Porter, C. A., Midura, P., Palacios, M. J., Ayres, S. L., Denniston, R. S., Hayes, M. L., Ziomek, C. A., Meade, H. M., Godke, R. A., Gavin, W. G., Overstrom, E. W., and Echelard, Y. (1999) Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17: 456–461.PubMedCrossRefGoogle Scholar
  9. Barnes, F. L. and Eyestone, W. H. (1990) Early cleavage and the maternal zygotic transition in bovine embryos. Theriogenology 33: 141–152.CrossRefGoogle Scholar
  10. Barnes, F. L., Collas, P., Powell, R., King, W. A., Westhusin, M., and Shepherd, D. (1993) Influence of recipient oocyte cell cycle stage on DNA synthesis, nuclear envelope breakdown, chromosome constitution, and development in nuclear transplant bovine embryos. Mol. Reprod. Dev. 36: 33–41.PubMedCrossRefGoogle Scholar
  11. Beatty, R. A. (1958) Variation in the number of crpora lutea and in the number and size of 6-day blastocysts in rabbits subjected to superovulation treatment. J. Endocrinol. 17: 248–260.PubMedCrossRefGoogle Scholar
  12. Besenfelder, U. and Brem, G. (1993) Laparoscopic embryo transfer in rabbits. J. Reprod. Fertil. 99: 53–56.PubMedGoogle Scholar
  13. Besenfelder, U., Strouhal, C., and Brem, G. (1998) A method for endoscopic embryo collection and transfer in the rabbit. Zentralbl. Veterinarmed. A 45: 577–579.PubMedGoogle Scholar
  14. Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., Forsythe, T., Golueke, P., Jurgella, G., Koppang, R., Lesmeister, T., Mallon, K., Mell, G., Misica, P., Pace, M., Pfister-Genskow, M., Strelchenko, N., Voelker, G., Watt, S., Thompson, S., and Bishop, M. (2000) Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18: 1055–1059.PubMedCrossRefGoogle Scholar
  15. Boquest, A. C., Day, B. N., and Prather, R. S. (1999) Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Bio. Reprod. 60: 1013–1019.CrossRefGoogle Scholar
  16. Brophy, B., Smolenski, G., Wheeler, T., Wells, D., L'Huillier, P., Laible, G. (2003) Cloned trans-genic cattle produce milk with higher levels of ß-casein and? -casein. Nat. Biotechnol. 21: 157–162.PubMedCrossRefGoogle Scholar
  17. Brunet-Simon, A., Henrion, G., Renard, J. P., and Duranthon, V. (2001) Onset of zygotic transcription and maternal transcript legacy in the rabbit embryo. Mol. Reprod. Dev. 58: 127–136.PubMedCrossRefGoogle Scholar
  18. Campbell, K. H., Loi, P., Otaegui, P. J., and Wilmut, I. (1996) Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev. Reprod. 1: 40–46.PubMedCrossRefGoogle Scholar
  19. Campbell, K. H. S., McWhir, J., Ritchie, W. A., and Wilmut, I. (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380: 64–66.PubMedCrossRefGoogle Scholar
  20. Capecchi, M. (2000) How close are we to implementing gene targeting in animals other than the mouse. Proc. Natl. Acad. Sci. USA 97: 956–957.PubMedCrossRefGoogle Scholar
  21. Carney, E. W. and Foote, R. H. (1990) Effects of superovulation, embryo recovery, culture system and embryo transfer on development of rabbit embryos in vivo and in vitro. J. Reprod. Fertil. 89: 543–551.PubMedCrossRefGoogle Scholar
  22. Carney, E. W. and Foote, R. H. (1991) Improved development of rabbit one-cell embryos to the hatching blastocyst stage by culture in a defined, protein-free culture medium. J. Reprod. Fertil. 91: 113–123.PubMedGoogle Scholar
  23. Carney, E. W., Tobback, C., Ellington, J. E., and Foote, R. H. (1990) Co-culture of rabbit 2-cell embryos with rabbit oviduct epithelial cells and other somatic cells. Mol. Reprod. Dev. 27: 209–215.PubMedCrossRefGoogle Scholar
  24. Cervera, R. P. and García-Ximénez, F. (2003) Oocyte age and nuclear donor cell type affect the technical efficiency of somatic cloning in rabbits. Zygote 11(2): 151–158PubMedCrossRefGoogle Scholar
  25. Challah-Jacques, M., Chesne, P., and Renard, J. P. (2003). Production of Cloned Rabbits by Somatic Nuclear Transfer. Cloning Stem Cells. 5: 295–299PubMedCrossRefGoogle Scholar
  26. Chang, M. C. (1951) Fertilization capacity of sperm deposited in the fallopian tube. Nat. (Lond.) 168: 697.CrossRefGoogle Scholar
  27. Chang, M. C., Casas, J. H., and Hunt, D. M. (1971) Development of ferret eggs after 2 to 3 days in the rabbit fallopian tube. J. Reprod. Fertil. 25: 129–131.PubMedGoogle Scholar
  28. Chen, T., Zhang, Y. L., Jiang, Y., Liu, S. Z., Schatten, H., Chen, D. Y., and Sun, Q. Y. (2004) The DNA methylation events in normal and cloned rabbit embryos. FEBS Lett. 578: 69–72.PubMedCrossRefGoogle Scholar
  29. Chen, T., Zhang, Y. L., Jiang, Y., Liu, J. H., Schatten, H., Chen, D. Y., and Sun, Q. Y. (2006) Interspecies nuclear transfer reveals that demethylation of specific repetitive sequences is determined by recipient ooplasm but not by donor intrinsic property in cloned embryos. Mol. Reprod. Dev. 73(3): 313–317.PubMedCrossRefGoogle Scholar
  30. Chen, Y., He, Z. X., Liu, A., Wang, K., Mao, W. W., Chu, J. X., Lu, Y., Fang, Z. F., Shi, Y. T., Yang, Q. Z., Chen da, Y., Wang, M. K., Li, J. S., Huang, S. L., Kong, X. Y., Shi, Y. Z., Wang, Z. Q., Xia, J. H., Long, Z. G., Xue, Z. G., Ding, W. X., and Sheng, H. Z. (2003) Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res. 13(4): 251–256PubMedCrossRefGoogle Scholar
  31. Chesné, P., Adenot, P., Boulanger, L., and Renard, J. P. (2001) Somatic nuclear trasnfer in the rabbit. Theriogenology 55: 260 (abst).Google Scholar
  32. Chesné, P., Adenot, P. G., Viglietta, C., Baratte, M., Boulanger, L., and Renard, J. P. (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 20(4): 366–369.PubMedCrossRefGoogle Scholar
  33. Chrenek, P., Vasicek, D., Makarevich, A. V., Jurcik, R., Suvegova, K., Parkanyi, V., Bauer, M., Rafay, J., Batorova, A., Paleyanda, R. K. (2005) Increased transgene integration efficiency upon microinjection of DNA into both pronuclei of rabbit embryos. Transgenic Res. 14(4): 417–28PubMedCrossRefGoogle Scholar
  34. Christians, E., Rao, V. H., and Renard, J. P. (1994) Sequential acquisition of transcriptional control during early embryonic development in the rabbit. Dev. Biol. 164: 160–172.PubMedCrossRefGoogle Scholar
  35. Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., de Leon, F. A. P., and Robl, J. M. (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280: 1256–1258.PubMedCrossRefGoogle Scholar
  36. Collas, P. and Robl, J. M. (1990) Factors affecting the efficiency of nuclear transplantation in the rabbit embryo. Biol. Reprod. 43: 877–884.PubMedCrossRefGoogle Scholar
  37. Collas, P. and Robl, J. M. (1991) Relationship between nuclear remodeling and development in nuclear transplant rabbit embryos. Biol. Reprod. 45: 455–465.PubMedCrossRefGoogle Scholar
  38. Collas, P., Duby, R. T., and Robl, J. M. (1991) In vitro development of rabbit pronuclear embryos in rabbit peritoneal fluid. Biol. Reprod. 44: 1100–1107.PubMedCrossRefGoogle Scholar
  39. Collas, P., Balise, J. J., and Robl, J. M. (1992a) Influence of cell cycle stage of the donor nucleus on development of nuclear transplant rabbit embryos. Biol. Reprod. 46(3): 492–500.CrossRefGoogle Scholar
  40. Collas, P., Pinto-Correia, C., Ponce de Leon, F. A., and Robl, J. M. (1992b) Effect of donor cell cycle stage on chromatin and spindle morphology in nuclear transplant rabbit embryos. Biol. Reprod. 46(3): 501–511.CrossRefGoogle Scholar
  41. Deng, M. and Yang, X. J. (2001) Full term development of rabbit oocytes fertilized by Intracytoplasmic sperm injection. Mol. Reprod. Dev. 59: 38–43.PubMedCrossRefGoogle Scholar
  42. Denker, H. W. and Gerdes, H. J. (1979) The dynamic structure of rabbit blastocyst coverings. I. Transformation during regular preimplantation development. Anat. Embryol. (Berl) 157: 15–34.CrossRefGoogle Scholar
  43. Dinnyes, A., Dai, Y. P., Jiang, S., and Yang, X. Z. (2000) High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol. Reprod. 63: 513–518.PubMedCrossRefGoogle Scholar
  44. Dinnyes, A., Dai, Y., Barber, M., Liu, L., Xu, J., Zhou, P., and Yang, X. (2001a) Development of cloned embryos from adult rabbit fibroblasts: effect of activation treatment and donor cell preparation. Biol. Reprod. 64: 257–263.CrossRefGoogle Scholar
  45. Dinnyes, A., King, T., Wilmut, I., and De Sousa, P. A. (2001b) Sheep somatic cell nuclear transfer: effect of breed and culture system on embryonic and fetal development. Theriogenology 55: 264.Google Scholar
  46. Dinnyes, A., Tian, X. C., and Yang, X. (2002) Cloning of rabbits in “Principles of cloning” (Jose Cibelli, Robert P. Lanza, Keith H.S. Campbell, Michael D. West, Eds.). Academic, San Diego, CA, pp. 343–366CrossRefGoogle Scholar
  47. Dinnyes, A., Tian, X. C., and Yang, X. (2008) Epigenetic Regulation of Foetal Development in Nuclear Transfer Animal Models. Reprod. Domes. Anim. 43: 302–309CrossRefGoogle Scholar
  48. Du, F., Giles, J. R., Foote, R. H., Graves, K. H., Yang, X., and Moreadith, R. W. (1995) Nuclear ransfer of putative rabbit embryonic stem cells leads to normal blastocyst development. J. Reprod. Fertil. 104: 219–223.PubMedCrossRefGoogle Scholar
  49. Edwards, J. A. (1968) The external development of the rabbit and rat embryo. In “Advances in Teratology” (Woollam, D. H. M., Ed.), Academic, New York, pp. 239–262.Google Scholar
  50. Ellington, J. E., Farrell, P. B., Simkin, M. E., Foote, R. H., Goldman, E. E., and McGrath, A. B. (1990) Development and survival after transfer of cow embryos cultured from 1–2-cells to morulae or blastocysts in rabbit oviducts or in a simple medium with bovine oviduct epithelial cells. J. Reprod. Fertil. 89: 293–299.PubMedCrossRefGoogle Scholar
  51. Enright, B. P., Kubota, C., Yang, X., and Tian, X. C. (2003) Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2­-deoxycytidine. Biol Reprod. 69: 896–901.PubMedCrossRefGoogle Scholar
  52. Escriba, M. J. and Garcia-Ximenez, F. (1999) Electroactivation of rabbit oocytes in an hypotonic ulsing medium and parthenogenetic in vitro development without cytochalasin B- diploidizing retreatment. Theriogenology 51: 963–973.PubMedCrossRefGoogle Scholar
  53. Escriba, M. J. and Garcia-Ximenez, F. (2000) Influence of sequence duration and number of electrical pulses upon rabbit oocyte activation and parthenogenetic in vitro development. Anim. eprod. Sci. 59: 99–107.CrossRefGoogle Scholar
  54. Evans, M. J and Kaufman, M. (1981) Establishment in culture of pluripotencial stem cells from ouse embryos. Nature 292: 151–156Google Scholar
  55. Fang, Z. F., Gai, H., Huang, Y. Z., Li, S. G., Chen, X. J., Shi, J. J., Wu, L., Liu, A., Xu, P., and heng, H. Z. (2006) Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic r somatic cell nuclear transfer embryos. Exp. Cell Res. 312(18): 3669–3682.PubMedCrossRefGoogle Scholar
  56. Farrell, P. B. and Foote, R. H. (1995) Beneficial effects of culturing rabbit zygotes to blastocysts in 5% oxygen and 10% carbon dioxide. J. Reprod. Fertil. 103: 127–130.PubMedCrossRefGoogle Scholar
  57. Feussner, E. L., Lightkep, G. E., Hennesy, R. A., Hoberman, A. M., and Christian, M. S. (1992) A decade of rabbit fertility data: study of historical control animals. Teratology 46: 349–365.PubMedCrossRefGoogle Scholar
  58. Fischer, B. (1989) Effects of asynchrony on rabbit blastocyst development. J. Reprod. Fertil. 86: 479–491.PubMedCrossRefGoogle Scholar
  59. Fischer, B., Mootz, U., Denker, H. W., Lambertz, M., and Beier, H. M. (1991) The dynamic structure of rabbit blastocyst coverings. III. Transformation of coverings under non-physiological developmental conditions. Anat. Embryol. (Berl) 183: 17–27.Google Scholar
  60. Fissore, R. A. and Robl, J. M. (1993) Sperm, inositol trisphosphate, and thimerosal-induced intra-cellular Ca2 + elevations in rabbit eggs. Dev. Biol. 159: 122–130.PubMedCrossRefGoogle Scholar
  61. Fissore, R. A. and Robl, J. M. (1994) Mechanism of calcium oscillations in fertilized rabbit eggs. Dev. Biol. 166: 634–642.PubMedCrossRefGoogle Scholar
  62. Foote, R. H. and Carney, E. W. (2000) The rabbit as a model for reproductive and developmental toxicity studies. Reprod. Toxicol. 14: 477–493.PubMedCrossRefGoogle Scholar
  63. Franke, W. W., Schmid, E., Osborn, M., and Weber, K. (1978) Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc. Natl. Acad. Sci. U. S. A 75: 5034–5038.PubMedCrossRefGoogle Scholar
  64. Franke, W. W., Schmid, E., Winter, S., Osborn, M., and Weber, K. (1979) Widespread occurrence of intermediate-sized filaments of the vimentin- type in cultured cells from diverse vertebrates. Exp. Cell. Res. 123: 25–46.PubMedCrossRefGoogle Scholar
  65. Galat, V. V., Lagutina, I. S., Mesina, M. N., Chernich, V. J., and Prokofiev, M. I. (1999) Developmental potential of rabbit nuclear transfer embryos derived from donor fetal fibroblast. Theriogenology 51: 203 (abst.)-203.CrossRefGoogle Scholar
  66. Giles, J. R. and Foote, R. H. (1997) Effects of gas atmosphere, platelet-derived growth factor and leukemia inhibitory factor on cell numbers of rabbit embryos cultured in a protein-free medium. Reprod. Nutr. Dev. 37: 97–104.PubMedCrossRefGoogle Scholar
  67. Giles, J. R., Yang, X., Mark, W., and Foote, R. H. (1993) Pluripotency of cultured rabbit inner cell mass cells detected by isozyme analysis and eye pigmentation of fetuses following injection into blastocysts or morulae. Mol. Reprod. Dev. 36: 130–138.PubMedCrossRefGoogle Scholar
  68. Graves, K. H. and Moreadith, R. W. (1993) Derivation and characterization of putative pluri-potential embryonic stem cells from preimplantation rabbit embryos. Mol. Reprod. Dev. 36(4): 424–433.PubMedCrossRefGoogle Scholar
  69. Grocholova, R., Petr, J., Rozinek, J., and Jilek, F. (1997) The protein phosphatase inhibitor oka-daic acid inhibits exit from metaphase II in parthenogenetically activated pig oocytes. J. Exp. Zool. 277: 49–56.PubMedCrossRefGoogle Scholar
  70. Hafez, E. S. E. (1964) Effects of over-crowding in utero on implantation and fetal development in the rabbit. J. Exp. Zool. 156: 269–288.PubMedCrossRefGoogle Scholar
  71. Hagen, K. W. (1974). Colony Husbandry. In “The Biology of the Laboratory Rabbit” Weisbroth, S. H., Flatt, R. E., and Kraus, A. L., Eds.), Academic, New York, pp. 23–47.Google Scholar
  72. Hammer, R. E., Pursel, V. G., Rexroad, C. E., Wall, R. J., Bolt, D. J., Ebert, K. M., Palmiter, R. D., nd Brinster, R. L. (1985) Production of transgenic rabbits, sheep and pigs by microinjection. ature 315: 680–683.Google Scholar
  73. Harkness, J. E. and Wagner, J. E. (1995) The Biology and Medicine of Rabbits and Rodents. illiam and Wilkins, Baltimore, MD.Google Scholar
  74. Heape, W. (1890) Preliminary note on the transplantation and growth of mammalian ova within a terine foster-mother. Proc. R. Soc. Lond., B. Biol. Sci. 48: 457–459.CrossRefGoogle Scholar
  75. Henrion, G., Renard, J. P., Chesne, P., Oudin, J. F., Maniey, D., Brunet, A., Osborne, H. B., and uranthon, V. (2000) Differential regulation of the translation and the stability of two maternal ranscripts in preimplantation rabbit embryos. Mol. Reprod. Dev. 56: 12–25.PubMedCrossRefGoogle Scholar
  76. Heyman, Y. and Renard, J. P. (1996) Cloning of domestic species. Anim. Reprod. Sci. 42: 27–436.Google Scholar
  77. Heyman, Y., Chesne, P., and Renard, J. P. (1990) Reprogrammation complete de noyaux embryon-naires congeles apres transfert nucleaire chez le lapin. C. R. Acad. Sci. Paris 311: 321–326.Google Scholar
  78. Hornsby, P. J, Yang, L., Gunter, L. E. (1992) Demethylation of satellite I DNA during senescence f bovine adrenocortical cells in culture. Mutat. Res. 275:13–19.PubMedGoogle Scholar
  79. Iannaccone, P. M., Taborn, G. U., Garton, R. L, Caplice, M. D., and Brenin, D. R. (1994) luripotent embryonic stem cells from the rat ae capable of producing chimeras. Dev. Biol. 63: 288–292.CrossRefGoogle Scholar
  80. Inoue, K., Ogonuki, N., Yamamoto, Y., Noguchi, Y., Takeiri, S., Nakata, K, Miki, H., Kurome, M., agashima, H., and Ogura, A. (2002) Improved postimplantation development of rabbit uclear transfer embryos by activation with inositol 1,4,5-trisphosphate. Cloning Stem Cells (4): 311–317.Google Scholar
  81. Jiang, Y., Chen, T., Nan, C. L., Ouyang, Y. C., Sun, Q. Y., and Chen, D. Y. (2005) In vitro culture nd mtDNA fate of ibex-rabbit nuclear transfer embryos. Zygote 13(3): 233–240.PubMedCrossRefGoogle Scholar
  82. Jin, D. I., Kim, D. K., Im, K. S., and Choi, W. S. (2000) Successful pregnancy after transfer of abbit blastocysts grown in vitro from single-cell zygotes. Theriogenology 54: 1109–1116.PubMedCrossRefGoogle Scholar
  83. Joung, S. Y., Kim, H. J., Choi, W. S., Im, K. S., Lee, S. H., Park, C. S., and Jin, D. I. (2004) Effects f transferring in vitro-cultured rabbit embryos to recipient oviducts on mucin coat deposition, mplantation and development. Zygote 12(3): 215–219.PubMedCrossRefGoogle Scholar
  84. Kane, M. T. and Foote, R. H. (1971) Factors affecting blastocyst expansion of rabbit zygotes and oung embryos in defined media. Biol. Reprod. 4: 41–47.PubMedGoogle Scholar
  85. Kanka, J., Hozak, P., Heyman, Y., Chesne, P., Degrolard, J., Renard, J. P., and Flechon, J. E. (1996) ranscriptional activity and nucleolar ultrastructure of embryonic rabbit nuclei after transplantation to enucleated oocytes. Mol. Reprod. Dev. 43: 135–144.PubMedCrossRefGoogle Scholar
  86. Kasai, M., Hamaguchi, Y., Zhu, S. E., Miyake, T., Sakurai, T., and Machida, T. (1992) High urvival of rabbit morulae after vitrification in an ethylene glycol-based solution by a simple ethod. Biol. Reprod. 46: 1042–1046.PubMedCrossRefGoogle Scholar
  87. Kasinathan, P., Knott, J. G., Moreira, P. N., Burnside, A. S., Joseph, J. D., and Robl, J. M. (2001) ffect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer mbryos in vitro. Biol. Reprod. 64: 1487–1493.PubMedCrossRefGoogle Scholar
  88. Kato, Y., Tani, T., Sotomaru, Y., Kurokawa, K., Kato, J., Doguchi, H., Yasue, H., and Tsunoda, Y. (1998) Eight calves cloned from somatic cells of a single adult. Science 282: 2095–2098.PubMedCrossRefGoogle Scholar
  89. Kato, Y., Yabuuchi, A., Motosugi, N., Kato, J., and Tsunoda, Y. (1999) Developmental potential f mouse follicular epithelial cells and cumulus cells after nuclear transfer. Biol. Reprod. 61: 110–1114.CrossRefGoogle Scholar
  90. Kauffman, R. D., Schmidt, P. M., Rall, W. F., and Hoeg, J. M. (1998). Superovulation of rabbits ith FSH alters in vivo development of vitrified morulae. Theriogenology 50: 1081–1092.PubMedCrossRefGoogle Scholar
  91. Kennelly, J. J. and Foote, R. H. (1965) Superovulatory response of pre- and post-puberal rabbits o commercially available gonadotrophins. J. Reprod. Fertil. 9: 131–145.CrossRefGoogle Scholar
  92. Kidder, J. D., Roberts, P. J., Simkin, M. E., Foote, R. H., and Richmond, M. E. (1999) Nonsurgical ollection and nonsurgical transfer of preimplantation embryos in the domestic rabbit (Oryctolagus cuniculus) and domestic ferret (Mustela putorius furo). J. Reprod. Fertil. 116: 35–242.CrossRefGoogle Scholar
  93. Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N. V., Wakayama, S., Bui, H. T., and akayama, T. (2006) Significant improvement of mouse cloning technique by treatment with richostatin A after somatic nuclear transfer. Biochem Biophys Res Commun. 340(1): 183–9.PubMedCrossRefGoogle Scholar
  94. Koyama, H., Suzuki, H., Yang, X., Jiang, S., Foote, R. H. (1994) Analysis of polarity of bovine nd rabbit embryos by scanning electron microscopy. Biol. Reprod. 50: 163–70.PubMedCrossRefGoogle Scholar
  95. Kubota, C., Yamakuchi, H., Todoroki, J., Mizoshita, K., Tabara, N., Barber, M., and Yang, X. Z. (2000) Six cloned calves produced from adult fibroblast cells after long-term culture. Proc. Natl. Acad. Sci. U. S. A 97: 990–995.PubMedCrossRefGoogle Scholar
  96. Lagutina, I. S., Zakhartchenko, V. I., and Prokofiev, M. I. (1999) Nuclear transfer in rabbits and factors affecting it efficiency. Theriogenology 51: 207 (abst).CrossRefGoogle Scholar
  97. Lagutina, I. S., Mezina, M. N., Chernikh, V. J., Prokofiev, M. I., and Galat, V. V. (2000) Developmental potential of rabbit nuclear transfer embryos produced by various fusion/activation protocols. Theriogenology 53: 230 (abst).Google Scholar
  98. Lanza, R. P., Cibelli, J. B., Diaz, F., et al. (2000) Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2: 79–91.PubMedCrossRefGoogle Scholar
  99. Lebas, F. (1970) Description d'une machine a traire les lapines. Ann Zootech 19: 223–228.CrossRefGoogle Scholar
  100. Leiser, R. and Denker, H. W. (1988) The dynamic structure of rabbit blastocyst coverings. II. Ultrastructural evidence for a role of the trophoblast in neozona formation. Anat. Embryol. (Berl) 179: 129–134.CrossRefGoogle Scholar
  101. Li, G. P., Chen, D. Y., Lian, L., Han, Z. M., Zhu, Z. Y., and Seidel, G. E. Jr. (2002) Rabbit cloning: improved fusion rates using cytochalasin B in the fusion buffer. Mol. Reprod. Dev. 61(2): 187–191.PubMedCrossRefGoogle Scholar
  102. Li, J. and Foote, R. H. (1996) Differential sensitivity of one-cell and two-cell rabbit embryos to sodium chloride and total osmolarity during culture into blastocysts. J. Reprod. Fertil. 108: 307–312.PubMedCrossRefGoogle Scholar
  103. Li, J., Foote, R. H., and Simkin, M. (1993) Development of rabbit zygotes cultured in protein-free medium with catalase, taurine, or superoxide dismutase. Biol. Reprod. 49: 33–37.PubMedCrossRefGoogle Scholar
  104. Li, S., Chen, X., Fang, Z., Shi, J., and Sheng, H. Z. (2006) Rabbits generated from fibroblasts through nuclear transfer. Reproduction 131(6): 1085–1090.PubMedCrossRefGoogle Scholar
  105. Liu, J. L., Sung, L. Y., Du, F., Julian, M., Jiang, S., Barber, M., Xu, J., Tian, X. C., and Yang, X. (2004) Differential development of rabbit embryos derived from parthenogenesis and nuclear transfer. Mol. Reprod. Dev. 68(1): 58–64.PubMedCrossRefGoogle Scholar
  106. Liu, L., Ju, J. C., and Yang, X. (1998) Differential inactivation of maturation-promoting factor and mitogen-activated protein kinase following parthenogenetic activation of bovine oocytes. Biol. Reprod. 59: 537–545.PubMedCrossRefGoogle Scholar
  107. Lonergan, P., Dinnyes, A., Fair, T., Yang, X., and Boland, M. (2000) Bovine oocyte and embryo development following meiotic inhibition with butyrolactone I. Mol. Reprod. Dev. 57: 204–209.PubMedCrossRefGoogle Scholar
  108. Meng, Q., Polgar, Z., Liu, J., and Dinnyes, A. (2008) Effect of Trichostatine A treatment on the term development of somatic cell nuclear transfer rabbit embryos Reprod. Fertil. Dev. 20(1): 103CrossRefGoogle Scholar
  109. Marcus, G. E., Shum, F. T., and Goldman, S. L. (1990) A device for collecting milk from rabbits. Lab. Anim. Sci. 40: 219 221.PubMedGoogle Scholar
  110. Maurer, R. R., Hunt, W. L., Van Vleck, L. D., and Foote, R. H. (1968) Developmental potential of superovulated rabbit ova. J. Reprod. Fertil. 15: 171–175.PubMedCrossRefGoogle Scholar
  111. Maurer, R. R. (1978) Advances in Rabbit Embryo Culture. In “Methods in Mammalian Reproduction” (Daniel, J. C., Ed.), Academic, New York, pp. 259–272.Google Scholar
  112. Mitalipov, S. M., White, K. L., Farrar, V. R., Morrey, J., and Reed, W. A. (1999) Development of nuclear transfer and parthenogenetic rabbit embryos activated with inositol 1,4,5-trisphos-phate. Biol. Reprod. 60: 821–827.PubMedCrossRefGoogle Scholar
  113. Modlinski, J. A. and Smorag, Z. (1991) Preimplantation development of rabbit embryos after trasnfer of embryonic nuclei into different cytoplasmic environment. Mol. Reprod. Dev. 28: 361–372.PubMedCrossRefGoogle Scholar
  114. Moens, A., Chastant, S., Chesne, P., Flechon, J. E., Betteridge, K. J., and Renard, J. P. (1996) Differential ability of male and female rabbit fetal germ cell nuclei to be reprogrammed by nuclear transfer. Differentiation 60: 339–345.PubMedCrossRefGoogle Scholar
  115. Murakami, H. and Imai, H. (1996) Successful implantation of in vitro cultured rabbit embryos after uterine transfer: a role for mucin. Mol. Reprod. Dev. 43: 167–170.PubMedCrossRefGoogle Scholar
  116. Nussbaum, D. J. and Prather, R. S. (1995) Differential effects of protein synthesis inhibitors on porcine oocyte activation. Mol. Reprod. Dev. 41: 70–75.PubMedCrossRefGoogle Scholar
  117. Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H., and Perry, A. C. F. (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289: 1188–1190.PubMedCrossRefGoogle Scholar
  118. Orsini, M. W. (1962) Study of ovo-implantation in the hamster, rat, mouse, guinea-pig, and rabbit in cleared uterine tracts. J. Reprod. Fertil. 3: 288–293.PubMedCrossRefGoogle Scholar
  119. Ozil, J. P. (1990) The parthenogenetic development of rabbit oocytes after repetitive pulsatile electrical stimulation. Development 109: 117–127.PubMedGoogle Scholar
  120. Ozil, J. P. and Huneau, D. (2001) Activation of rabbit oocytes: the impact of the Ca2 + signal regime on development. Development 128: 917–928.PubMedGoogle Scholar
  121. Park, C. S., Jeon, B. G., Lee, K. M., Yin, X. J., Cho, S. K., Kong, I. K., Lee, H. J., and Choe, S. Y. (1998) Production of cloned rabbit embryos and offsprings by nuclear transplantation using in vitro matured oocytes. Theriogenology 49: 325 (abst).CrossRefGoogle Scholar
  122. Petters, R. M. and Wells, K. D. (1993) Culture of pig embryos. J. Reprod. Fertil. Suppl. 48: 61–73.PubMedGoogle Scholar
  123. Pinto-Correia, C., Long, C. R., Chang, T., and Robl, J. M. (1995) Factors involved in nuclear reprogramming during early development in the rabbit. Mol. Reprod. Dev. 40: 292–304PubMedCrossRefGoogle Scholar
  124. Piotrowska, K., Modlinski, J. A., Korwin-Kossakowski, M., and Karasiewicz, J. (2000) Effects of preactivation of ooplasts or synchronization of blastomere nuclei in G1 on preimplantation development of rabbit serial nuclear transfer embryos. Biol. Reprod. 63: 677–682.PubMedCrossRefGoogle Scholar
  125. Polejaeva, I. A., Chen, S. H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., Dai, Y. F., Boone, J., Walker, S., Ayares, D. L., Colman, A., and Campbell, K. H. S. (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407: 86–90.PubMedCrossRefGoogle Scholar
  126. Prather, R. S., Mayes, M. A., and Murphy, C. N. (1997) Parthenogenetic activation of pig eggs by exposure to protein kinase inhibitors. Reprod. Fertil. Dev. 9: 539–544.PubMedCrossRefGoogle Scholar
  127. Rao, V. H., Heyman, Y., Chesne, P., and Renard, J. P. (1998) Freezing and recloning of nuclear transfer embryos in rabbit. Theriogenology 49: 328 (abst).CrossRefGoogle Scholar
  128. Renard, J. P., Bui, X. N., and Garnier, V. (1984) Two-step freezing of two-cell rabbit embryos after partial dehydration at room temperature. J. Reprod. Fertil. 71: 573–580.PubMedCrossRefGoogle Scholar
  129. Rideout, W. M., Wakayama, T., Wutz, A., Eggan, K., Jackson-Grusby, L., Dausman, J., Yanagimachi, R., and Jaenisch, R. (2000) Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet. 24(2): 109–110.PubMedCrossRefGoogle Scholar
  130. Rybouchkin, A., Kato, Y., and Tsunoda, Y. (2006) Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol Reprod. 74: 1083–1089PubMedCrossRefGoogle Scholar
  131. Santos, F. and Dean, W. (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127: 643–651.PubMedCrossRefGoogle Scholar
  132. Schnieke, A. E., Kind, A. J., Ritchie, W. A., Mycock, K., Scott, A. R., Ritchie, M., Wilmut, I., Colman, A., and Campbell, K. H. S. (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278: 2130–2133.PubMedCrossRefGoogle Scholar
  133. Schoonjans, L., Albright, G. M., Li, J. L., Collen, D., and Moreadith, R. W. (1996) Pluripotential rabbit embryonic (ES) cells are capable of forming over coat color chimeras following injection into the blastocyst. Mol. Reprod. 45:439–443.CrossRefGoogle Scholar
  134. Schultz, R. M., Davis, W., Jr., Stein, P., and Svoboda, P. (1999) Reprogramming of gene expression during preimplantation development. J. Exp. Zool. 285: 276–282.PubMedCrossRefGoogle Scholar
  135. Shi, L, Miao, Y., Ouyang, Y., Huang, J., Lei, Z., Yang, J., Han, Z., Son, X., Sun, Q., and Chen, D. (2008a) Trichostatin A (TSA) improves the development of rabbit-rabbit intraspe-cies cloned embryos, but not rabbit-human interspecies cloned embryos. Dev Dyn. 273: 640–648.CrossRefGoogle Scholar
  136. Shi, L, Ai, J., Ouyang, Y., Huang, J., Lei, Z., Wang, Q., Yin, S., Han, Z., Sun, Q., and Chen, D. (2008b) Trichostatin A and nuclear reprogramming of cloned rabbit embryos. J Anim Sci. 86: 1106–1113.CrossRefGoogle Scholar
  137. Shi, W., Dirim, F., Wolf, E., Zakhartchenko, V., and Haaf, T. (2004) Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos. Biol. Reprod. 71(1): 340–347.PubMedCrossRefGoogle Scholar
  138. Shiga, K., Fujita, T., Hirose, K., Sasae, Y., and Nagai, T. (1999) Production of calves by transfer of nuclei from cultured somatic cells obtained from Japanese black bulls. Theriogenology 52: 527–535.PubMedCrossRefGoogle Scholar
  139. Smith, L. C. and Wilmut, I. (1989) Influence of nuclear and cytoplasmic activity on the development in vivo of sheep embryos after nuclear transplantation. Biol. Reprod. 40: 1027–1035.PubMedCrossRefGoogle Scholar
  140. Stice, S. L. and Keefer, C. L. (1993) Multiple generational bovine embryo cloning. Biol. Reprod. 48: 715–719.PubMedCrossRefGoogle Scholar
  141. Stice, S. L. and Robl, J. M. (1988) Nuclear reprogramming in nuclear transplant rabbit embryos. Biol. Reprod. 39: 657–664.PubMedCrossRefGoogle Scholar
  142. Stice, S. L. and Robl, J. M. (1990) Activation of mammalian oocytes by a factor obtained from rabbit sperm. Mol. Reprod. Dev. 25: 272–280.PubMedCrossRefGoogle Scholar
  143. Stice, S. L., Keefer, C. L., Maki-Laurila, M., and Matthews, L. (1993) Donor blastomere cell cycle stage affects developmental competence of bovine nuclear transfer embryos. Theriogenology 39: 318 (abst).CrossRefGoogle Scholar
  144. Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Northey, D. L., Schutzkus, V., and First, N. L. (1994) Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev. Biol. 166: 729–739.PubMedCrossRefGoogle Scholar
  145. Swann, K. and Lai, F. A. (1997) A novel signalling mechanism for generating Ca2 + oscillations at fertilization in mammals. Bioessays 19: 371–378.PubMedCrossRefGoogle Scholar
  146. Tan, J. H., Zhou, Q., Li, Z. Y., Sun, X. S., Liu, Z. H., and He, G. X. (1997) Embryo cloning by nuclear transplantation in rabbits. Theriogenology 47: 237 (abst).CrossRefGoogle Scholar
  147. Telford, N. A., Watson, A. J., and Schultz, G. A. (1990) Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26: 90–100.PubMedCrossRefGoogle Scholar
  148. Thompson, E. M., Legouy, E., Christians, E., and Renard, J. P. (1995) Progressive maturation of chromatin structure regulates HSP70.1 gene expression in the preimplantation mouse embryo. Development 121: 3425–3437.PubMedGoogle Scholar
  149. Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., Becker, R. A., and Hearn, J. P. (1995) Isolation of a primate embryonic stem cell line. Proc. Natl.Acad. Sci. USA 92: 7844–7848.PubMedCrossRefGoogle Scholar
  150. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshal, Swiergiel, V. S., and Jones, J. M. (1998) Embryonc stem cell lines derived from human blas-tocyst. Science 282: 1145–1147.PubMedCrossRefGoogle Scholar
  151. Totey, S. M., Singh, G., Taneja, M., Pawshe, C. H., and Talwar, G. P. (1992) In vitro maturation, fertilization and development of follicular oocytes from buffalo (Bubalus bubalis). J. Reprod. Fertil. 95: 597–607.PubMedCrossRefGoogle Scholar
  152. Tsunoda, Y., Soma, T., and Sugie, T. (1982) Effect of post-ovulatory age of recipient on survival of frozen-thawed rabbit morulae. J. Reprod. Fertil. 65: 483–487.PubMedCrossRefGoogle Scholar
  153. Vajta, G. and Gjerris, M. (2006) Science and technology of farm animal cloning: State of the art. Animal Reprod. Sci. 92: 211–230.CrossRefGoogle Scholar
  154. Varian, N. B., Maurer, R. R., and Foote, R. H. (1967) Ovarian response and cleavage rate of ova in control and FSH-primed rabbits receiving varying levels of luteinizing hormone. J. Reprod. Fertil. 13: 67–73.PubMedCrossRefGoogle Scholar
  155. Vignon, X., Chesne, P., Le Bourhis, D., Flechon, J. E., Heyman, Y., and Renard, J. P. (1998) Developmental potential of bovine embryos reconstructed from enucleated matured oocytes fused with cultured somatic cells. C. R. Acad. Sci. Paris 321: 735–745.PubMedGoogle Scholar
  156. Vincent, C., Garnier, V., Heyman, Y., and Renard, J. P. (1989) Solvent effects on cytoskeletal organization and in-vivo survival after freezing of rabbit oocytes. J. Reprod. Fertil. 87: 809–820.PubMedCrossRefGoogle Scholar
  157. Wakayama, T. and Yanagimachi, R. (2001) Mouse cloning with nucleus donor cells of different age and type. Mol. Reprod. Dev. 58: 376–383.PubMedCrossRefGoogle Scholar
  158. Wakayama, T., Perry, A. C. F., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394: 369–374.PubMedCrossRefGoogle Scholar
  159. Wang, F, Kou, Z., Zhang, Y., and Gao, S. (2007) Dynamic Reprogramming of Histone Acetylation and Methylation in the First Cell Cycle of Cloned Mouse Embryos. Biol Reprod. 77: 1007–1016.PubMedCrossRefGoogle Scholar
  160. Wall, R. J., Powell, A. M., Paape, M. J., Kerr, D. E., Bannermann, D. D., Pursel, V. G., Wells, K. D., Talbot, N., and Hawk, H. W. (2005) Genetically enhanced cows resist intramam-mary Staphylococcus aureus infection. Nat. Biotechnol. 23: 445–451.PubMedCrossRefGoogle Scholar
  161. Wang, S., Tang, X., Niu, Y., Chen, H., Li, B., Li, T., Zhang, X., Hu, Z., Zhou, Q., Ji, W. (2006) Generation and characterization of rabbit embryonic stem cells. Stem Cells 25(2): 481–489.PubMedCrossRefGoogle Scholar
  162. Wang, W., Sun, Q., Hosoe, M., and Shioya, Y. (1997) Calcium- and meiotic-spindle-independent activation of pig oocytes by the inhibition of staurosporine-sensitive protein kinases. Zygote 5: 75–82.PubMedGoogle Scholar
  163. Wells, D. N., Misica, P. M., McMillan, W. H., and Tervit, H. R. (1998) Production of cloned bovine fetuses following nuclear transfer using cells from a fetal fibroblast cell line. Theriogenology 49: 330.CrossRefGoogle Scholar
  164. Willadsen, S. M. (1986) Nuclear transplantation in sheep embryos. Nature 320: 63–65.PubMedCrossRefGoogle Scholar
  165. Willadsen, S. M. (1989) Cloning of sheep and cow embryos. Genome 31: 956–962.PubMedGoogle Scholar
  166. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. S. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813.PubMedCrossRefGoogle Scholar
  167. Xu, J., Sung, L.-Y., Zhang, J., Tian, X., Chen, Y. E., Yang, X., and Du, F. (2007) Trichostatin A Improved the Quality of Rabbit Nuclear Transfer Embryos. Reprod Fertil Dev. 19: 165.CrossRefGoogle Scholar
  168. Yang, F., Hao. R., Kessler, B., Brem, G., Wolf, E., and Zakhartchenko, V. (2007) Rabbit somatic cell cloning: effects of donor cell type, histone acetylation status and chimeric embryo complementation. Reproduction 133(1): 219–230.PubMedCrossRefGoogle Scholar
  169. Yang, X., Chen, Y., Chen, J., and Foote, R. H. (1990a) Potential of hypertonic medium treatment for embryo micromanipulation: I. Survival of rabbit embryos in vitro and in vivo following sucrose treatment. Mol. Reprod. Dev. 27: 110–117.Google Scholar
  170. Yang, X., Zhang, L., Kovacs, A., Tobback, C., and Foote, R. H. (1990b) Potential of hypertonic medium treatment for embryo micromanipulation: II. Assessment of nuclear transplantation methodology, isolation, subzona insertion, and electrofusion of blastomeres to intact or functionally enucleated oocytes in rabbits. Mol. Reprod. Dev. 27: 118–129.Google Scholar
  171. Yang, X. (1991) Featured article: Embryo cloning by nuclear transfer in cattle and rabbits. Embryo Transfer Newslett. 9: 10–22.Google Scholar
  172. Yang, X., Jiang, S., Kovacs, A., and Foote, R. H. (1992) Nuclear totipotency of cultured rabbit moru-lae to support full-term development following nuclear transfer. Biol. Reprod. 47: 636–643.PubMedCrossRefGoogle Scholar
  173. Yang, X. Z. and Foote, R. H. (1987) Production of identical twin rabbits by micromanipulation of embryos. Biol. Reprod. 37: 1007–1014.PubMedCrossRefGoogle Scholar
  174. Yang, X. Z. and Foote, R. H. (1990) Survival of bisected rabbit morulae transferred to synchronous and asynchronous recipients. Mol. Reprod. Dev. 26: 6–11.PubMedCrossRefGoogle Scholar
  175. Yin, X. J., Tani, T., Kato, Y., and Tsunoda, Y. (2000) Development of rabbit parthenogenetic oocytes and nuclear-transferred oocytes receiving cultured cumulus cells. Theriogenology 54: 1469–1476.PubMedCrossRefGoogle Scholar
  176. Yin, X. J., Kato, Y., and Tsunoda, Y. (2002a) Effect of enucleation procedures and maturation conditions on the development of nuclear-transferred rabbit oocytes receiving male fibroblast cells. Reproduction 124(1): 41–47.CrossRefGoogle Scholar
  177. Yin, X. J., Kato, Y., and Tsunoda, Y. (2002b) Effect of delayed enucleation on the developmental potential of nuclear-transferred oocytes receiving adult and fetal fibroblast cells. Zygote 10(3): 217–222.CrossRefGoogle Scholar
  178. Zakhartchenko, V., Alberio, R., Stojkovic, M., Prelle, K., Schernthaner, W., Stojkovic, P., Wenigerkind, H., Wanke, R., Duchler, M., Steinborn, R., Mueller, M., Brem, G., and Wolf, E. (1999) Adult cloning in cattle: Potential of nuclei from a permanent cell line and from primary cultures. Mol. Reprod. Dev. 54: 264–272.PubMedCrossRefGoogle Scholar
  179. Zhou, Q., Li, Z. Y., Liu, Z. H., Sun, X. S., He, G. X., and Tan, J. H. (1997) Nuclear transplantation by microinjection in rabbits. Theriogenology 47: 239 (abst).CrossRefGoogle Scholar
  180. Ziomek, C. A., Chatot, C. L., and Manes, C. (1990) Polarization of blastomeres in the cleaving rabbit embryo. J. Exp. Zool. 256: 84–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Andras Dinnyes
    • 1
    • 2
  • Zsuzsanna Polgar
    • 1
    • 3
  • Qinggang Meng
    • 1
    • 4
  1. 1.Genetic Reprogramming GroupAgricultural Biotechnology CenterGodolloHungary
  2. 2.Molecular Animal Biotechnology LaboratorySzent Istvan UniversityGodolloHungary
  3. 3.Faculty of Natural SciencesConstantine the Philosopher UniversitySlovakia
  4. 4.Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUSA

Personalised recommendations