Skip to main content

Functionele diagnostiek en evaluatie

  • 830 Accesses

Samenvatting

De laatste jaren is het evalueren van de persoon met oedeem verschoven van een evaluatie van vooral de stoornis in functie ‘zwelling’, naar het evalueren van ook andere functies (zoals o.a. pijn, uithouding, kracht, overgewicht en mentale gevolgen) en eveneens van de activiteiten en participatie van de persoon met oedeem. Daarnaast dient er in het behandelplan ook rekening gehouden te worden met diverse factoren die de functies en activiteiten en participatie beïnvloeden. In het boek wordt uitgebreid ingegaan op de methode van evalueren van deze verschillende functies, activiteiten en participatie en beïnvloedende factoren. Om de evaluatiemethoden direct bruikbaar te maken voor de praktijk, wordt ook telkens besproken hoe het testresultaat geïnterpreteerd dient te worden en wordt er gewerkt met talrijke afbeeldingen. Om de directe toepasbaarheid van dit hoofdstuk in de klinische praktijk verder te verbeteren, wordt op het einde van het hoofdstuk een oedeem-evaluatieset voor de praktijk voorgesteld.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatuur

  1. Mokkink LB, Terwee CB, Knol DL, et al. The COSMIN checklist for evaluating the methodological quality of studies on measurement properties: a clarification of its content. BMC Med Res Methodol. 2010;10:22. https://doi.org/10.1186/1471-2288-10-22 [published Online First: 2010/03/20].

  2. De Vrieze T, Gebruers N, Nevelsteen I, et al. Reliability of the MoistureMeterD compact device and the pitting test to evaluate local tissue water in subjects with breast cancer-related lymphedema. Lymphat Res Biol. 2019. https://doi.org/10.1089/lrb.2019.0013 [published Online First: 2019/07/23].

  3. Cornish BH, Thomas BJ, Ward LC, et al. A new technique for the quantification of peripheral edema with application in both unilateral and bilateral cases. Angiology. 2002;53(1):41−7 [published Online First: 2002/02/28].

    Google Scholar 

  4. De Vrieze T, Gebruers N, Tjalma WA, et al. What is the best method to determine excessive arm volume in patients with breast cancer-related lymphoedema in clinical practice? Reliability, time efficiency and clinical feasibility of five different methods. Clin Rehabil. 2019;33(7):1221–32. https://doi.org/10.1177/0269215519835907 [published Online First: 2019/03/19].

  5. Devoogdt N, Lemkens H, Geraerts I, et al. A new device to measure upper limb circumferences: reliability and validity. Int Angiol. 2010; (in publication).

    Google Scholar 

  6. Vanderstelt S, Pallotta OJ, McEwen M, et al. Indurometer vs. Tonometer: is the indurometer currently able to replace and improve upon the tonometer? Lymphat Res Biol. 2015;13(2):131–6. https://doi.org/10.1089/lrb.2014.0016 [published Online First: 2015/06/20].

  7. Hidding JT, Viehoff PB, Beurskens CH, et al. Measurement properties of instruments for measuring of lymphedema: systematic review. Phys Ther. 2016;96(12):1965–81. https://doi.org/10.2522/ptj.20150412 [published Online First: 2016/06/25].

  8. De Carvalho RM, Miranda F, Jr. Communicating vessels volumeter to measure upper extremity lymphedema after breast cancer: reliability and criterion validity compared to the gold standard. Braz J Phys Ther. 2019;23(6):532–40. https://doi.org/10.1016/j.bjpt.2018.10.015 [published Online First: 2018/11/19].

  9. Purcell A, Nixon J, Fleming J, et al. Measuring head and neck lymphedema: The ‘ALOHA’ trial. Head Neck. 2016;38(1):79–84. https://doi.org/10.1002/hed.23853 [published Online First: 2014/09/13].

  10. Devoogdt N, Cavaggion C, Van der Gucht E, et al. Reliability, Validity, and feasibility of water displacement method, figure-of-eight method, and circumference measurements in determination of ankle and foot edema. Lymphat Res Biol. 2019;17(5):531–36. https://doi.org/10.1089/lrb.2018.0045 [published Online First: 2019/01/17].

  11. Batista BN, Baiocchi JMT, Campanholi LL, et al. Agreement between perometry and sequential arm circumference measurements in objective determination of arm volume. J Reconstr Microsurg. 2018;34(1):29–34. https://doi.org/10.1055/s-0037-1606267 [published Online First: 2017/08/26].

  12. Coroneos CJ, Wong FC, DeSnyder SM, et al. Correlation of L-Dex bioimpedance spectroscopy with limb volume and lymphatic function in lymphedema. Lymphat Res Biol. 2019;17(3):301–07. https://doi.org/10.1089/lrb.2018.0028 [published Online First: 2018/11/06].

  13. Karlsson K, Nilsson-Wikmar L, Brogardh C, et al. Palpation of increased skin and subcutaneous thickness, tissue dielectric constant, and water displacement method for diagnosis of early mild arm lymphedema. Lymphat Res Biol. 2019. https://doi.org/10.1089/lrb.2019.0042 [published Online First: 2019/10/10].

  14. De Groef A, De Vrieze T, Dams L, et al. Reliability and validity of a Dutch lymphedema questionnaire: the Norman questionnaire. Submitted to European Journal of Cancer Care; 2019.

    Google Scholar 

  15. Norman SA, Miller LT, Erikson HB, et al. Development and validation of a telephone questionnaire to characterize lymphedema in women treated for breast cancer. Phys Ther. 2001;81(6):1192–205 [published Online First: 2001/05/31].

    Google Scholar 

  16. Verbelen H, De Vrieze T, Van Soom T, et al. Development and clinimetric properties of the Dutch Breast Edema Questionnaire (BrEQ-Dutch version) to diagnose the presence of breast edema in breast cancer patients. Qual Life Res. 2019; Accepted.

    Google Scholar 

  17. Yost KJ, Cheville AL, Weaver AL, et al. Development and validation of a self-report lower-extremity lymphedema screening questionnaire in women. Phys Ther. 2013;93(5):694–703. https://doi.org/10.2522/ptj.20120088 [published Online First: 2013/01/05].

  18. Cornelissen AJM, Kool M, Keuter XHA, et al. Quality of life questionnaires in breast cancer-related lymphedema patients: review of the literature. Lymphat Res Biol. 2018;16(2):134–39. https://doi.org/10.1089/lrb.2017.0046 [published Online First: 2018/02/14].

  19. Damstra RJ, Halk AB. The Dutch lymphedema guidelines based on the International Classification of Functioning, Disability, and Health and the chronic care model. J Vasc Surg Venous Lymphat Disord. 2017;5(5):756–65. https://doi.org/10.1016/j.jvsv.2017.04.012 [published Online First: 2017/08/19].

  20. Catarinella FS, Nieman FH, Wittens CH. An overview of the most commonly used venous quality of life and clinical outcome measurements. J Vasc Surg Venous Lymphat Disord. 2015;3(3):333–40. https://doi.org/10.1016/j.jvsv.2014.09.003 [published Online First: 2016/03/20].

  21. Devoogdt N, Van Kampen M, Geraerts I, et al. Lymphoedema functioning, disability and health questionnaire (Lymph-ICF): reliability and validity. Phys Ther. 2011;91(6):944–57. https://doi.org/10.2522/ptj.20100087 [published Online First: 2011/04/16].

  22. De Vrieze T, Vos L, Gebruers N, et al. Revision of the lymphedema functioning, disability and health questionnaire for upper limb lymphedema (Lymph-ICF-UL): reliability and validity. Lymphat Res Biol. 2019;17(3):347–55. https://doi.org/10.1089/lrb.2018.0025 [published Online First: 2019/02/14].

  23. Launois R, Mègnigbêto AC, Pocquet K, et al. A specific quality of life scale in upper limb lymphedema: the ULL-27 questionnaire. Lymphology. 2002:181–87.

    Google Scholar 

  24. Viehoff PB, Van Genderen FR, Wittink H. Upper limb lymphedema 27 (ULL27): Dutch translation and validation of an illness-specific health-related quality of life questionnaire for patients with upper limb lymphedema. Lymphology. 2008;41(3):131–8 [published Online First: 2008/11/19].

    Google Scholar 

  25. Devoogdt N, De Groef A, Hendrickx A, et al. Lymphedema functioning, disability and health questionnaire for lower limb lymphedema (Lymph-ICF-LL): reliability and validity. Phys Ther. 2014. https://doi.org/10.2522/ptj.20130285 [published Online First: 2014/01/15].

  26. Lamping DL, Schroter S, Kurz X, et al. Evaluation of outcomes in chronic venous disorders of the leg: development of a scientifically rigorous, patient-reported measure of symptoms and quality of life. J Vasc Surg. 2003;37(2):410–9. https://doi.org/10.1067/mva.2003.152 [published Online First: 2003/02/04].

  27. Van der Velden SK, Biemans AA, Nijsten T, et al. Translation and validation of the Dutch VEINES-QOL/Sym in varicose vein patients. Phlebology. 2014;29(4):227–35. https://doi.org/10.1177/0268355513476279 [published Online First: 2013/04/06].

  28. Damstra RJ, Kaandorp CJ. [Dutch Institute for Health Care Improvement (CBO) Guideline ‘lymphedema’]. Ned Tijdschr Geneeskd. 2003;147(14):648–52 [published Online First: 2003/04/26].

    Google Scholar 

  29. Czerniec SA, Ward LC, Kilbreath SL. Assessment of breast cancer-related lymphedema: a comparison of moisture meter and spot bioimpedance measurement. Lymphat Res Biol. 2015;13(1):10–9. https://doi.org/10.1089/lrb.2014.0032.

    CrossRef  PubMed  Google Scholar 

  30. International Lymphoedema Framework I. Best practice for the management of lymphoedema: international consensus; 2006.

    Google Scholar 

  31. Sanderson J, Tuttle N, Box R, et al. The pitting test; an investigation of an unstandardized assessment of lymphedema. Lymphology. 2015;48(4):175–83 [published Online First: 2016/05/12].

    Google Scholar 

  32. Levenhagen K, Davies C, Perdomo M, et al. Diagnosis of upper quadrant lymphedema secondary to cancer: clinical practice guideline from the oncology section of the American Physical Therapy Association. Phys Ther. 2017;97(7):729–45. https://doi.org/10.1093/ptj/pzx050 [published Online First: 2017/08/26].

  33. Mayrovitz HN, Fasen M, Spagna P, et al. Role of handedness on forearm skin tissue dielectric constant (TDC) in relation to detection of early-stage breast cancer-related lymphedema. Clin Physiol Funct Imag. 2018;38(4):670–75. https://doi.org/10.1111/cpf.12466 [published Online First: 2017/08/11].

  34. Mayrovitz HN, Arzanova E, Somarriba S, et al. Reference values for assessing localized hand lymphedema using interhand tissue dielectric constant ratios. Lymphat Res Biol. 2018;16(5):442–45. https://doi.org/10.1089/lrb.2017.0065 [published Online First: 2018/06/05].

  35. Mayrovitz HN, Mikulka A, Woody D. Minimum detectable changes associated with tissue dielectric constant measurements as applicable to assessing lymphedema status. Lymphat Res Biol. 2018. https://doi.org/10.1089/lrb.2018.0052 [published Online First: 2018/12/12].

  36. Mazor M, Smoot BJ, Mastick J, et al. Assessment of local tissue water in the arms and trunk of breast cancer survivors with and without upper extremity lymphoedema. Clin Physiol Funct Imag. 2019;39(1):57–64. https://doi.org/10.1111/cpf.12541 [published Online First: 2018/09/13].

  37. Mayrovitz HN. Assessing lower extremity lymphedema using upper and lower extremity tissue dielectric constant ratios: method and normal reference values. Lymphat Res Biol. 2019;17(4):457–64. https://doi.org/10.1089/lrb.2018.0039 [published Online First: 2019/01/31].

  38. Mayrovitz HN, Weingrad DN, Lopez L. Patterns of temporal changes in tissue dielectric constant as indices of localized skin water changes in women treated for breast cancer: a pilot study. Lymphat Res Biol. 2015;13(1):20–32. https://doi.org/10.1089/lrb.2014.0024.

    CrossRef  PubMed  Google Scholar 

  39. Koehler LA, Mayrovitz HN. Spatial and temporal variability of upper extremity edema measures after breast cancer surgery. Lymphat Res Biol. 2018. https://doi.org/10.1089/lrb.2018.0022 [published Online First: 2018/11/15].

  40. Mayrovitz HN. Assessing free and bound water in skin at 300 MHz using tissue dielectric constant measurements with the MoistureMeterD. Lymphedema: presentation, diagnosis, and treatment: Springer; 2015. pag. 133–48.

    Google Scholar 

  41. Mayrovitz HN, Weingrad DN, Davey S. Tissue dielectric constant (TDC) measurements as a means of characterizing localized tissue water in arms of women with and without breast cancer treatment related lymphedema. Lymphology. 2014;47(3):142–50.

    CAS  PubMed  Google Scholar 

  42. Mulasi U, Kuchnia AJ, Cole AJ, et al. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract. Off Publ Am Soc Parenteral Enteral Nutr. 2015;30(2):180–93. https://doi.org/10.1177/0884533614568155 [published Online First: 2015/01/24].

  43. York SL, Ward LC, Czerniec S, et al. Single frequency versus bioimpedance spectroscopy for the assessment of lymphedema. Breast Cancer Res Tr. 2009;117(1):177–82. https://doi.org/10.1007/s10549-008-0090-6 [published Online First: 2008/06/20].

  44. Fu MR, Cleland CM, Guth AA, et al. L-dex ratio in detecting breast cancer-related lymphedema: reliability, sensitivity, and specificity. Lymphology. 2013;46(2):85–96 [published Online First: 2013/12/21].

    Google Scholar 

  45. Dylke ES, Schembri GP, Bailey DL, et al. Diagnosis of upper limb lymphedema: development of an evidence-based approach. Acta Oncol. 2016;55(12):1477–83. https://doi.org/10.1080/0284186x.2016.1191668 [published Online First: 2016/06/23].

  46. Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis–part I: review of principles and methods. Clin Nutr (Edinburgh, Scotland). 2004;23(5):1226–43. https://doi.org/10.1016/j.clnu.2004.06.004 [published Online First: 2004/09/24].

  47. Ng M, Munnoch A. Clinimetrics of volume measurement in upper limb LE. J Lymphoedema. 2010;5(2):6.

    Google Scholar 

  48. Belgrado JPBP, Bates J, Röh N, Rosiello R, Cangiano A, Moraine JJ. Lymphoedema: what can be measured and how… overview. Euro J Lymphol Relat Prob. 2010;21(61):7.

    Google Scholar 

  49. Spitz JA, Chao AH, Peterson DM, et al. Bioimpedance spectroscopy is not associated with a clinical diagnosis of breast cancer-related lymphedema. Lymphology. 2019;52(3):134–42 [published Online First: 2019/12/25].

    Google Scholar 

  50. Timmer CY, Bosman J, Geertzen JHB, et al. Variation in measurement results using bioimpedance spectroscopy to determine extracellular fluid of upper extremity. Lymphat Res Biol. 2020;18(2):110–15. https://doi.org/10.1089/lrb.2018.0020 [published Online First: 2019/08/21].

  51. Damstra RJ. Diagnostic and therapeutical aspects of lymphedema. Bonn: Rabe Verlag Medical Publishing; 2010.

    Google Scholar 

  52. Naouri M, Samimi M, Atlan M, et al. High-resolution cutaneous ultrasonography to differentiate lipoedema from lymphoedema. Br J Dermatol. 2010;163(2):296–301. https://doi.org/10.1111/j.1365-2133.2010.09810.x [published Online First: 04/16].

  53. Mellor RH, Bush NL, Stanton AW, et al. Dual-frequency ultrasound examination of skin and subcutis thickness in breast cancer-related lymphedema. Breast J. 2004;10(6):496–503. pii: TBJ21458/https://doi.org/10.1111/j.1075-122X.2004.21458.x [published Online First: 2004/12/01].

  54. Devoogdt N, Pans S, De Groef A, et al. Postoperative evolution of thickness and echogenicity of cutis and subcutis of patients with and without breast cancer-related lymphedema. Lymphat Res Biol. 2014;12(1):23–31. https://doi.org/10.1089/lrb.2013.0028 [published Online First: 2014/02/08].

  55. Tassenoy A, De Mey J, De Ridder F, et al. Postmastectomy lymphoedema: different patterns of fluid distribution visualised by ultrasound imaging compared with magnetic resonance imaging. Physiotherapy. 2011;97(3):234–43. https://doi.org/10.1016/j.physio.2010.08.003 [published Online First: 12/04].

  56. Rönkä RH, Pamilo MS, Von Smitten KAJ, et al. Breast lymphedema after breast conserving treatment. Acta Oncol (Stockholm, Sweden). 2004;43(6):551–7. https://doi.org/10.1080/02841860410014867.

    CrossRef  Google Scholar 

  57. Tassenoy A, De Mey J, Stadnik T, et al. Histological findings compared with magnetic resonance and ultrasonographic imaging in irreversible postmastectomy lymphedema: a case study. Lymphat Res Biol. 2009;7(3):145–51. https://doi.org/10.1089/lrb.2008.1025.

    CrossRef  PubMed  Google Scholar 

  58. Chen HC, O’Brien BM, Pribaz JJ, et al. The use of tonometry in the assessment of upper extremity lymphoedema. Br J Plast Surg. 1988;41(4):399–402. https://doi.org/10.1016/0007-1226(88)90081-1.

    CrossRef  CAS  PubMed  Google Scholar 

  59. Sun D, Yu Z, Chen J, et al. The value of using a SkinFibroMeter for diagnosis and assessment of secondary lymphedema and associated fibrosis of lower limb skin. Lymphat Res Biol. 2017;15(1):70–76. https://doi.org/10.1089/lrb.2016.0029 [published Online First: 2017/03/10].

  60. Gebruers N, Verbelen H, De Vrieze T, et al. Current and future perspectives on the evaluation, prevention and conservative management of breast cancer related lymphoedema: A best practice guideline. Euro J Obstet Gynecol Reprod Biol. 2017;216:245–53. https://doi.org/10.1016/j.ejogrb.2017.07.035 [published Online First: 2017/08/16].

  61. Gebruers N, Truijen S, Engelborghs S, et al. Volumetric evaluation of upper extremities in 250 healthy persons. Clin Physiol Funct Imag. 2007;27(1):17–22. https://doi.org/10.1111/j.1475-097X.2007.00708.x.

    CrossRef  CAS  Google Scholar 

  62. Damstra RJ, Glazenburg EJ, Hop WC. Validation of the inverse water volumetry method: A new gold standard for arm volume measurements. Breast Cancer Res Tr. 2006;99(3):267–73. https://doi.org/10.1007/s10549-006-9213-0 [published Online First: 2006/06/06].

  63. Evaluation of the reliability of four measuring methods of hand’s perimeter and volume: Buoyancy Forces Valgrado System, circumference measurement, figure-of-eight method and Manu3Metrix scanner. 8th International Lymphoedema Framework Conference; 2018; Rotterdam, The Netherlands.

    Google Scholar 

  64. De Vrieze T GN, De Groef A, Dams L, Van der Gucht E, Nevelsteen I, Devoodt N. Reliability and time efficiency of five different methods to determine arm volume in patients with breast cancer-related lymphoedema, 2019.

    Google Scholar 

  65. Devoogdt N, Lemkens H, Geraerts I, et al. A new device to measure upper limb circumferences: validity and reliability. Int Angiol J Int Union Angiol. 2010;29(5):401–7 [published Online First: 2010/10/07].

    Google Scholar 

  66. Borthwick Y, Paul L, Sneddon M, et al. Reliability and validity of the figure-of-eight method of measuring hand size in patients with breast cancer-related lymphoedema. Eur J Cancer Care (Engl). 2013;22(2):196–201. https://doi.org/10.1111/ecc.12024.

    CrossRef  CAS  Google Scholar 

  67. Devoogdt N, Cavaggion C, Van der Gucht E, et al. Reliability, validity, and feasibility of water displacement method, figure-of-eight method, and circumference measurements in determination of ankle and foot edema. Lymphat Res Biol. 2019;17(5):531–36. https://doi.org/10.1089/lrb.2018.0045 [published Online First: 01/16].

  68. Taylor R, Jayasinghe UW, Koelmeyer L, et al. Reliability and validity of arm volume measurements for assessment of lymphedema. Phys Ther. 2006;86(2):205–14 [published Online First: 2006/02/01].

    Google Scholar 

  69. Sharkey AR, King SW, Kuo RY, et al. Measuring limb volume: accuracy and reliability of tape measurement versus perometer measurement. Lymphat Res Biol. 2018;16(2):182–86. https://doi.org/10.1089/lrb.2017.0039 [published Online First: 2017/09/29].

  70. Pain IAftSo. https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698.

  71. Merskey H, Bogduk N. Classification of chronic pain. Descriptions of chronic pain syndromes and definitions of pain terms. 2nd editon. Seattle; 1994.

    Google Scholar 

  72. Smart KM, Blake C, Staines A, et al. Clinical indicators of ‘nociceptive’, ‘peripheral neuropathic’ and ‘central’ mechanisms of musculoskeletal pain. A Delphi survey of expert clinicians. Manual Ther. 2010;15(1):80–7. https://doi.org/10.1016/j.math.2009.07.005 [published Online First: 2009/08/15].

  73. Nijs J, Torres-Cueco R, Van Wilgen CP, et al. Applying modern pain neuroscience in clinical practice: criteria for the classification of central sensitization pain. Pain Physician. 2014;17(5):447–57 [published Online First: 2014/09/24].

    Google Scholar 

  74. Merskey H. NBatITFoT. Part III: pain terms, a current list with definitions and notes on usage. In: Merskey H. NBatITFoT, editor. Classification of chronic pain. 2nd edition. Seattle, USA: IASP Press; 1994. pag. 209–14.

    Google Scholar 

  75. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15. https://doi.org/10.1016/j.pain.2010.09.030 [published Online First: 2010/10/22].

  76. Meyer RA, Campbell IT, Raja SN. Peripheral neural mechanisms of nociception. In: Wall PD, Melzack R, redactie. Textbook of pain. 3rd ed. Edinburgh: Churchill Livingstone; 1995. p. 13–44.

    Google Scholar 

  77. Wijma AJ, Van Wilgen CP, Meeus M, et al. Clinical biopsychosocial physiotherapy assessment of patients with chronic pain: the first step in pain neuroscience education. Physiother Theory Practice. 2016;32(5):368–84. https://doi.org/10.1080/09593985.2016.1194651 [published Online First: 2016/06/29].

  78. Nijs J, Apeldoorn A, Hallegraeff H, et al. Low back pain: guidelines for the clinical classification of predominant neuropathic, nociceptive, or central sensitization pain. Pain Physician. 2015;18(3):E333–46. [published Online First: 2015/05/23].

    Google Scholar 

  79. Nijs J, Leysen L, Adriaenssens N, et al. Pain following cancer treatment: guidelines for the clinical classification of predominant neuropathic, nociceptive and central sensitization pain. Acta Oncol. 2016;55(6):659–63. https://doi.org/10.3109/0284186X.2016.1167958.

    CrossRef  PubMed  Google Scholar 

  80. De Groef A MB, Schillebeeckx F, Meeus M. Neuropathic pain – assessment in a rehabilitation setting. J Rehabil. 2019 (in press).

    Google Scholar 

  81. Melzack R. The McGill Pain Questionnaire: major properties and scoring methods. Pain. 1975;1(3):277–99 [published Online First: 1975/09/01].

    Google Scholar 

  82. Bouhassira D, Attal N, Alchaar H, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005;114(1–2):29–36. https://doi.org/10.1016/j.pain.2004.12.010 [published Online First: 2005/03/01].

  83. Freynhagen R, Tolle TR, Gockel U, et al. The painDETECT project – far more than a screening tool on neuropathic pain. Curr Med Res Opinion. 2016;32(6):1033–57. https://doi.org/10.1185/03007995.2016.1157460 [published Online First: 2016/02/26].

  84. Leysen L, Adriaenssens N, Nijs J, et al. Chronic pain in breast cancer survivors: Nociceptive, neuropathic or central sensitization pain? Pain Pract Off J World Institute Pain. 2018. https://doi.org/10.1111/papr.12732 [published Online First: 2018/10/01].

  85. Lluch E, Nijs J, Courtney CA, et al. Clinical descriptors for the recognition of central sensitization pain in patients with knee osteoarthritis. Disabil Rehabil. 2017:1–10. https://doi.org/10.1080/09638288.2017.1358770 [published Online First: 2017/08/05].

  86. Neblett R. The central sensitization inventory: a user’s manual. 2018;23(2):e12123. https://doi.org/10.1111/jabr.12123.

    CrossRef  Google Scholar 

  87. Cleeland CS, Ryan KM. Pain assessment: global use of the Brief Pain Inventory. Ann Acad Med Singapore. 1994;23(2):129–38. [published Online First: 1994/03/01].

    Google Scholar 

  88. Macdonald L, Bruce J, Scott NW, et al. Long-term follow-up of breast cancer survivors with post-mastectomy pain syndrome. Br J Cancer. 2005;92(2):225–30. https://doi.org/10.1038/sj.bjc.6602304 [published Online First: 2005/01/19].

  89. Wang K, Yee C, Tam S, et al. Prevalence of pain in patients with breast cancer post-treatment: A systematic review. Breast. 2018;42:113–27. https://doi.org/10.1016/j.breast.2018.08.105 [published Online First: 2018/09/23].

  90. Schmidt K, Vogt L, Thiel C, et al. Validity of the six-minute walk test in cancer patients. Int J Sports Med. 2013;34(7):631–6. https://doi.org/10.1055/s-0032-1323746 [published Online First: 2013/02/28].

  91. Wise RA, Brown CD. Minimal clinically important differences in the six-minute walk test and the incremental shuttle walking test. COPD. 2005;2(1):125–9. https://doi.org/10.1081/copd-200050527 [published Online First: 2006/12/02].

  92. Stuiver MM, Kampshoff CS, Persoon S, et al. Validation and refinement of prediction models to estimate exercise capacity in cancer survivors using the steep ramp test. Arch Phys Med Rehabil. 2017;98(11):2167–73. https://doi.org/10.1016/j.apmr.2017.02.013 [published Online First: 2017/03/23].

  93. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81 [published Online First: 1982/01/01].

    Google Scholar 

  94. Smets EM, Garssen B, Bonke B, et al. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995;39(3):315–25. https://doi.org/10.1016/0022-3999(94)00125-o [published Online First: 1995/04/01].

  95. Wang CY, Olson SL, Protas EJ. Test-retest strength reliability: hand-held dynamometry in community-dwelling elderly fallers. Arch Phys Med Rehabil. 2002;83(6):811–5. https://doi.org/10.1053/apmr.2002.32743 [published Online First: 2002/06/06].

  96. Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498–504. https://doi.org/10.1097/00005768-200009001-00009 [published Online First: 2000/09/19].

  97. (RIVM) RvVeM. 2019 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/overgewicht/cijfers-context/huidige-situatie#node-clustering-van-risicofactoren].

  98. Ageno W, Piantanida E, Dentali F, et al. Body mass index is associated with the development of the post-thrombotic syndrome. Thromb Haemost. 2003;89(2):305–9 [published Online First: 2003/02/08].

    Google Scholar 

  99. Greene AK, Grant FD, Slavin SA. Lower-extremity lymphedema and elevated body-mass index. N Engl J Med. 2012;366(22):2136–7. https://doi.org/10.1056/nejmc1201684 [published Online First: 2012/06/01].

  100. Ridner SH, Dietrich MS, Stewart BR, et al. Body mass index and breast cancer treatment-related lymphedema. Support Care Cancer. 2011;19(6):853–7. https://doi.org/10.1007/s00520-011-1089-9 [published Online First: 2011/01/18].

  101. Greene AK, Grant FD, Slavin SA, et al. Obesity-induced lymphedema: clinical and lymphoscintigraphic features. Plast Reconstr Surg. 2015;135(6):1715–9. https://doi.org/10.1097/prs.0000000000001271 [published Online First: 2015/02/28].

  102. Faerber G. Obesity and chronic inflammation in phlebological and lymphatic diseases. Phlebologie. 2018;47:55–65.

    CrossRef  Google Scholar 

  103. Teerachaisakul M, Ekataksin W, Durongwatana S, et al. Risk factors for cellulitis in patients with lymphedema: a case-controlled study. Lymphology. 2013;46(3):150–6. [published Online First: 2014/03/22].

    Google Scholar 

  104. Mehrara BJ, Greene AK. Lymphedema and obesity: is there a link? Plast Reconstr Surg. 2014;134(1):154e–60e. https://doi.org/10.1097/prs.0000000000000268 [published Online First: 2014/07/17].

  105. Shaw C, Mortimer P, Judd PA. A randomized controlled trial of weight reduction as a treatment for breast cancer-related lymphedema. Cancer. 2007;110(8):1868–74. https://doi.org/10.1002/cncr.22994 [published Online First: 2007/09/08].

  106. Lamantia J, Dimenna A. The complete Lymphedema management and nutrition guide. Toronto, Canada: Robert Rose Inc; 2019.

    Google Scholar 

  107. Taylor M. Early intervention in chronic disease in community health services initiative. In: Care AIfP, ed.; 2008.

    Google Scholar 

  108. Fu MR, Ridner SH, Hu SH, et al. Psychosocial impact of lymphedema: a systematic review of literature from 2004 to 2011. Psychooncology. 2013;22(7):1466–84. https://doi.org/10.1002/pon.3201.

    CrossRef  PubMed  Google Scholar 

  109. Schneiderman N, Ironson G, Siegel SD. Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol. 2005;1:607–28. https://doi.org/10.1146/annurev.clinpsy.1.102803.144141 [published Online First: 2007/08/25].

  110. Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130(4):601–30. https://doi.org/10.1037/0033-2909.130.4.601 [published Online First: 2004/07/15].

  111. Sherman KA, Miller SM, Roussi P, et al. Factors predicting adherence to risk management behaviors of women at increased risk for developing lymphedema. Support Care Cancer. 2015;23(1):61–9. https://doi.org/10.1007/s00520-014-2321-1 [published Online First: 2014/06/28].

  112. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873–904. https://doi.org/10.1152/physrev.00041.2006 [published Online First: 2007/07/07].

  113. Wu X, Wang J, Cofie R, et al. Prevalence of posttraumatic stress disorder among breast cancer patients: a meta-analysis. Iran J Public Health. 2016;45(12):1533–44. [published Online First: 2017/01/06].

    Google Scholar 

  114. Hemmingsson E, Johansson K, Reynisdottir S. Effects of childhood abuse on adult obesity: a systematic review and meta-analysis. Obes Rev. 2014;15(11):882–93. https://doi.org/10.1111/obr.12216 [published Online First: 2014/08/16].

  115. Kissane DW, Grabsch B, Love A, et al. Psychiatric disorder in women with early stage and advanced breast cancer: a comparative analysis. Aust N Z J Psychiatry. 2004;38(5):320–6. https://doi.org/10.1080/j.1440-1614.2004.01358.x [published Online First: 2004/05/18].

  116. Purkayastha D, Venkateswaran C, Nayar K, et al. Prevalence of depression in breast cancer patients and its association with their quality of life: a cross-sectional observational study. Indian J Palliat Care. 2017;23(3):268–73. https://doi.org/10.4103/ijpc.ijpc_6_17 [published Online First: 2017/08/23].

  117. Steer RA, Cavalieri TA, Leonard DM, et al. Use of the beck depression inventory for primary care to screen for major depression disorders. Gen Hosp Psychiatry. 1999;21(2):106–11. https://doi.org/10.1016/s0163-8343(98)00070-x [published Online First: 1999/05/06].

  118. Neugebauer V, Li W, Bird GC, et al. The amygdala and persistent pain. Neuroscientist. 2004;10(3):221–34. https://doi.org/10.1177/1073858403261077 [published Online First: 2004/05/25].

  119. Simons LE, Moulton EA, Linnman C, et al. The human amygdala and pain: evidence from neuroimaging. Hum Brain Mapp. 2014;35(2):527–38. https://doi.org/10.1002/hbm.22199 [published Online First: 2012/10/26].

  120. Fleming A, Vollebregt J. Pijn & het brein: de rol van de hersenen bij medisch ‘onverklaarde’ pijn; 2016.

    Google Scholar 

  121. Beurskens AJ, De Vet HC, Koke AJ, et al. A patient-specific approach for measuring functional status in low back pain. J Manipulative Physiol Ther. 1999;22(3):144–8. https://doi.org/10.1016/s0161-4754(99)70127-2 [published Online First: 1999/04/30].

  122. Bot SD, Terwee CB, Van der Windt DA, et al. Clinimetric evaluation of shoulder disability questionnaires: a systematic review of the literature. Ann Rheum Dis. 2004;63(4):335–41. https://doi.org/10.1136/ard.2003.007724 [published Online First: 2004/03/17].

  123. Pool G, Heuvel F, Ranchor AV, et al. Handboek psychologische interventies bij mensen met Somatische Aandoeningen; 2004.

    Google Scholar 

  124. Gencay Can A, Can SS, Eksioglu E, et al. Is kinesiophobia associated with lymphedema, upper extremity function, and psychological morbidity in breast cancer survivors? Turk J Phys Med Rehabil. 2019;65(2):139–46. https://doi.org/10.5606/tftrd.2019.2585 [published Online First: 2019/08/28].

  125. Roelofs J, Van Breukelen G, Sluiter J, et al. Norming of the Tampa Scale for Kinesiophobia across pain diagnoses and various countries. Pain. 2011;152(5):1090–5. https://doi.org/10.1016/j.pain.2011.01.028 [published Online First: 2011/03/30].

  126. Doke KN, Bowman L, Shnayder Y, et al. Quantitative clinical outcomes of therapy for head and neck lymphedema. Adv Radiat Oncol. 2018;3(3):366–71. https://doi.org/10.1016/j.adro.2018.04.007 [published Online First: 2018/09/12].

  127. Anand A, Balasubramanian D, Subramanian N, et al. Secondary lymphedema after head and neck cancer therapy: A review. Lymphology. 2018;51(3):109–18 [published Online First: 2018/11/14].

    Google Scholar 

  128. Deng J, Sinard RJ, Murphy B. Patient experience of head and neck lymphedema therapy: a qualitative study. Support Care Cancer. 2019;27(5):1811–23. https://doi.org/10.1007/s00520-018-4428-2 [published Online First: 2018/09/01].

  129. https://www.oncoline.nl/kanker-en-werk.

  130. https://shop.iknl.nl/shop/behandelprogramma-geriatrische-oncologische-revalidatie/124602.

  131. Zweers D, Van der Hoofd T, Teunissen S. Symptoommonitoring door patient met kanker in de palliatieve fase, zijn of haar naaste(n) en professionals. Nederlands-Vlaams Tijdschrift voor Palliatieve Zorg. 2010;10:3–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Bohn Stafleu van Loghum is een imprint van Springer Media B.V., onderdeel van Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devoogdt, N. et al. (2021). Functionele diagnostiek en evaluatie. In: Verdonk, H., Devoogdt, N., Damstra, R. (eds) Oedeem en oedeemtherapie. Bohn Stafleu van Loghum, Houten. https://doi.org/10.1007/978-90-368-2590-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-368-2590-0_4

  • Published:

  • Publisher Name: Bohn Stafleu van Loghum, Houten

  • Print ISBN: 978-90-368-2589-4

  • Online ISBN: 978-90-368-2590-0

  • eBook Packages: Dutch language eBook collection