Skip to main content

Samenvatting

De mechanismen die ten grondslag liggen aan de effectiviteit van DBS zijn uitvoerig onderzocht en er is een aantal belangrijke mechanismen aangetoond. Het meeste onderzoek is verricht op het gebied van de ziekte van Parkinson, in proefdiermodellen en bij patiƫnten. Samenvattend kan gesteld worden dat de mechanismen betrekking hebben op lokale en netwerkeffecten. De lokale effecten op de cellen in de directe nabijheid van de stimulatie-elektrode zijn inhibitoir, terwijl de effecten op cellen op afstand en op axonen in de directe omgeving stimulerend kunnen zijn. Recentere inzichten verklaren het effect van DBS door te interfereren met pathologische gesynchroniseerde oscillaties die in de cortico-basale kernen-thalamocorticale netwerken aanwezig zijn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatuur

  1. Hamani C, Temel Y. Deep brain stimulation for psychiatric disease: contributions and validity of animal models. Sci Transl Med. 2012;4(142):142rv8. PubMed PMID: 22786683.

    Google ScholarĀ 

  2. Janssen ML, Zwartjes DG, Tan SK, Vlamings R, Jahanshahi A, Heida T, et al. Mild dopaminergic lesions are accompanied by robust changes in subthalamic nucleus activity. Neurosci Lett. 2012;508(2):101ā€“5. PubMed PMID: 22206842.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL. Intraoperative microrecordings of the subthalamic nucleus in Parkinsonā€™s disease. Mov Disord. 2002;17(Suppl 3):S145ā€“9. PubMed PMID: 11948769.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Galvan A, Wichmann T. Pathophysiology of Parkinsonism. Clin Neurophysiol. 2008;119(7):1459ā€“74.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Eusebio A, Brown P. Synchronisation in the beta frequency-band ā€“ The bad boy of parkinsonism or an innocent bystander? Exp Neurol. 2009;217(1):1ā€“3.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Haberler C, Alesch F, Mazal PR, Pilz P, Jellinger K, Pinter MM, et al. No tissue damage by chronic deep brain stimulation in Parkinsonā€™s disease. Ann Neurol. 2000;48(3):372ā€“6. PubMed PMID: 10976644.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Wallace BA, Ashkan K, Heise CE, Foote KD, Torres N, Mitrofanis J, et al. Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain. 2007;130(Pt 8):2129ā€“45. PubMed PMID: 17584773.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  8. Beurrier C, Bioulac B, Audin J, Hammond C. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol. 2001;85(4):1351ā€“6. PubMed PMID: 11287459.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Magarinos-Ascone C, Pazo JH, Macadar O, Buno W. High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinsonā€™s disease. Neurosci. 2002;115(4):1109ā€“17. PubMed PMID: 12453483.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol. 2000;84(1):570ā€“4. PubMed PMID: 10899228.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Lafreniere-Roula M, Kim E, Hutchison WD, Lozano AM, Hodaie M, Dostrovsky JO. High-frequency microstimulation in human globus pallidus and substantia nigra. Exp Brain Res. 2010;205(2):251ā€“61. PubMed PMID: 20640411.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  12. Pahapill PA, Levy R, Dostrovsky JO, Davis KD, Rezai AR, Tasker RR, et al. Tremor arrest with thalamic microinjections of muscimol in patients with essential tremor. Ann Neurol. 1999;46(2):249ā€“52. PubMed PMID: 10443891.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Levy R, Lang AE, Dostrovsky JO, Pahapill P, Romas J, Saint-Cyr J, et al. Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain. 2001;124(Pt 10):2105ā€“18. PubMed PMID: 11571226.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO. Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res. 2004;156(3):274ā€“81. PubMed PMID: 14745464.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  15. Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neurosci. 2000;99(2):289ā€“95. PubMed PMID: 10938434.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Boraud T, Bezard E, Bioulac B, Gross C. High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neurosci Lett. 1996;215(1):17ā€“20. PubMed PMID: 8880743.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Lozano AM, Dostrovsky J, Chen R, Ashby P. Deep brain stimulation for Parkinsonā€™s disease: disrupting the disruption. Lancet Neurol. 2002;1(4):225ā€“31. PubMed PMID: 12849455.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  18. Hammond C, Ammari R, Bioulac B, Garcia L. Latest view on the mechanism of action of deep brain stimulation. Mov disord. 2008;23(15):2111ā€“21. PubMed PMID: 18785230.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  19. Perlmutter JS, Mink JW, Bastian AJ, Zackowski K, Hershey T, Miyawaki E, et al. Blood flow responses to deep brain stimulation of thalamus. Neurol. 2002;58(9):1388ā€“94. PubMed PMID: 12011286.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Boecker H, Wills AJ, Ceballos-Baumann A, Samuel M, Thomas DG, Marsden CD, et al. Stereotactic thalamotomy in tremor-dominant Parkinsonā€™s disease: an H2(15)O PET motor activation study. Ann Neurol. 1997;41(1):108ā€“11. PubMed PMID: 9005873.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Do MT, Bean BP. Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron. 2003;39(1):109ā€“20. PubMed PMID: 12848936.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci. 2003;23(5):1916ā€“23. PubMed PMID: 12629196. Epub 2003/03/12.

    Google ScholarĀ 

  23. Gorgulho AA, Shields DC, Malkasian D, Behnke E, Desalles AA. Stereotactic coordinates associated with facial musculature contraction during high-frequency stimulation of the subthalamic nucleus. J Neurosurg. 2009;110(6):1317ā€“21. PubMed PMID: 19284244.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  24. Bruet N, Windels F, Bertrand A, Feuerstein C, Poupard A, Savasta M. High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuropathol Exp Neurol. 2001;60(1):15ā€“24. PubMed PMID: 11202172.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Benazzouz A, Piallat B, Pollak P, Benabid AL. Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data. Neurosci Lett. 1995;189(2):77ā€“80. PubMed PMID: 7609923.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Windels F, Bruet N, Poupard A, Urbain N, Chouvet G, Feuerstein C, et al. Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci. 2000;12(11):4141ā€“6. PubMed PMID: 11069610.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinsonā€™s disease. Ann Neurol. 1997;42(3):283ā€“91. PubMed PMID: 9307248.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Fukuda M, Mentis M, Ghilardi MF, Dhawan V, Antonini A, Hammerstad J, et al. Functional correlates of pallidal stimulation for Parkinsonā€™s disease. Ann Neurol. 2001;49(2):155ā€“64. PubMed PMID: 11220735.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Davis KD, Taub E, Houle S, Lang AE, Dostrovsky JO, Tasker RR, et al. Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nat Med. 1997;3(6):671ā€“4. PubMed PMID: 9176495.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Wichmann T, DeLong MR. Pathophysiology of Parkinsonā€™s disease: the MPTP primate model of the human disorder. Ann NY Acad Sci. 2003;991:199ā€“213. PubMed PMID: 12846988.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Lazzaro V Di. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinsonā€™s disease. J Neurosci. 2001;21(3):1033ā€“8. PubMed PMID: 11157088.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. Williams D, Tijssen M, van Bruggen G, Bosch A, Insola A, Lazzaro V Di, et al. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain. 2002;125(Pt 7):1558ā€“69. PubMed PMID: 12077005.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  33. Brown P, Mazzone P, Oliviero A, Altibrandi MG, Pilato F, Tonali PA, et al. Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinsonā€™s disease. Exp Neurol. 2004;188(2):480ā€“90. PubMed PMID: 15246847.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  34. Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM. Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinsonā€™s disease. Exp Neurol. 2006;197(1):244ā€“51. PubMed PMID: 16289053.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  35. Gatev P, Darbin O, Wichmann T. Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord. 2006;21(10):1566ā€“77. PubMed PMID: 16830313.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  36. Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinsonā€™s disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357ā€“64. PubMed PMID: 17532060.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52(1):155ā€“68. PubMed PMID: 17015233.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. McIntyre CC, Savasta M. Kerkerian-Le Goff L, Vitek JL. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol. 2004;115(6):1239ā€“48. PubMed PMID: 15134690.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  39. Lacombe E, Carcenac C, Boulet S, Feuerstein C, Bertrand A, Poupard A, et al. High-frequency stimulation of the subthalamic nucleus prolongs the increase in striatal dopamine induced by acute l-3,4-dihydroxyphenylalanine in dopaminergic denervated rats. Eur J Neurosci. 2007;26(6):1670ā€“80. PubMed PMID: 17822436. Pubmed Central PMCID: 2798123.

    Google ScholarĀ 

  40. Lee KH, Chang SY, Roberts DW, Kim U. Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. J Neurosurg. 2004;101(3):511ā€“7. PubMed PMID: 15352610.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Meissner W, Harnack D, Reese R, Paul G, Reum T, Ansorge M, et al. High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem. 2003;85(3):601ā€“9. PubMed PMID: 12694386. Epub 2003/04/16.

    Google ScholarĀ 

  42. Hardenacke K, Kuhn J, Lenartz D, Maarouf M, Mai J, Bartsch C, et al. Stimulate or degenerate deep brain stimulation of the nucleus basalis Meynert in Alzheimerā€™s dementia. World Neurosurg. 2013;80(3ā€“4):S27.e35-43.

    Google ScholarĀ 

  43. Temel Y, Visser-Vandewalle V, Kaplan S, Kozan R, Daemen MA, Blokland A, et al. Protection of nigral cell death by bilateral subthalamic nucleus stimulation. Brain Res. 2006;1120(1):100ā€“5. PubMed PMID: 16999940.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg. 2008;108(1):132ā€“8. PubMed PMID: 18173322.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  45. Encinas JM, Hamani C, Lozano AM, Enikolopov G. Neurogenic hippocampal targets of deep brain stimulation. J Comp Neurol. 2011;519(1):6ā€“20.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Stone SSD, Teixeira CM, DeVito LM, Zaslavsky K, Josselyn SA, Lozano AM, et al. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci. 2011;31(38):13469ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg. 2008;108(1):132ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  48. Freund HJ, Kuhn J, Lenartz D, Mai JK, Schnell T, Klosterkoetter J, et al. Cognitive functions in a patient with Parkinson-dementia syndrome undergoing deep brain stimulation. Arch Neurol. 2009;66(6):781ā€“5. PubMed PMID: 19506141. Epub 2009/06/10. eng.

    Google ScholarĀ 

  49. Tan SKH, Hartung H, Visser-Vandewalle V, Steinbusch HWM, Temel Y, Sharp T. A combined in vivo neurochemical and electrophysiological analysis of the effect of high-frequency stimulation of the subthalamic nucleus on 5-HT transmission. Exp Neurol. 2012;233(1):145ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Prescott IA, Dostrovsky JO, Moro E, Hodaie M, Lozano AM, Hutchison WD. Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinsonā€™s disease patients. Brain. 2009;132(Pt 2):309ā€“18. PubMed PMID: 19050033.

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

Ā© 2016 Bohn Stafleu van Loghum

About this chapter

Cite this chapter

Jahanshahi, A., van Overbeeke, K., Temel, Y. (2016). Mechanismen van diepe hersenstimulatie. In: Temel, Y., Leentjens, A., de Bie, R. (eds) Handboek diepe hersenstimulatie bij neurologische en psychiatrische aandoeningen. Bohn Stafleu van Loghum, Houten. https://doi.org/10.1007/978-90-368-0959-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-90-368-0959-7_3

  • Published:

  • Publisher Name: Bohn Stafleu van Loghum, Houten

  • Print ISBN: 978-90-368-0958-0

  • Online ISBN: 978-90-368-0959-7

  • eBook Packages: Dutch language eBook collection

Publish with us

Policies and ethics