Advertisement

Prenataal verworven kwetsbaarheid

Chapter
  • 13k Downloads

Genoom en epigenoom

Door toenemend inzicht en integratie van onderzoeksresultaten wijzen de ontwikkelingsneurowetenschappen steeds duidelijker op de kwetsbaarheid van een organisme in de prenatale levensperiode. Zij bieden ook cruciale informatie om problemen in de regulatie van cognities, emoties en gedrag in een zeer vroeg stadium, dit wil zeggen in de zwangerschap of nog vroeger, preventief aan te pakken. In dit hoofdstuk beschrijven we wat prenataal verworven kwetsbaarheid inhoudt. Na een korte weergave van de fasen in de typische prenatale ontwikkeling, die bepaald worden door het genoom, beschrijven we het belang van het epigenoom, dat kan worden opgevat als een tweede set van instructies die de originele werking van genen kan overschrijven. We gaan in op risicofactoren (zoals drugs, polluenten…) en schetsen hoe ze de prenatale (hersen)ontwikkeling negatief beïnvloeden. De mogelijk ontwikkeling en prognose van individuen die prenataal een kwetsbaarheid opliepen wordt geschetst voor nakomelingen van vrouwen die drugverslaafd zijn en voor nakomeling van vrouwen die hoogangstig zijn tijdens de zwangerschap. Ten slotte worden diverse pathogenetische mechanismen samengebracht in een model van ontwikkeling dat veerkracht of kwetsbaarheid als voorlopig eindpunt van het ontwikkelingspad ziet.

Literatuur

  1. Andersen, S.L. (2003). Trajectories of brain development; point of vulnerability or window of opportunity? Neuroscience and Biobehavioral Reviews, 27, 3–18.PubMedCrossRefGoogle Scholar
  2. Auroux, M. (1997). Behavioral teratogenesis: An extension to the teratogenesis of functions. Biology of the Neonate, 71, 137–147.PubMedCrossRefGoogle Scholar
  3. Barker, D. J. P, (1998). In utero programming of chronic disease. Clinical Science, 95, 115–128.PubMedCrossRefGoogle Scholar
  4. Barth, T.K. & Imhof, A. (2010). Fast signals and slow marks: the dynamics of histone modifications. Trends in Biochemical Sciences, 35(11), 618–626.PubMedCrossRefGoogle Scholar
  5. Ben-Ari Y (2008). Neuro-archaeology: Pre-symptomatic architecture and signature of neurological Disorders. Trends in Neuroscience, 31(12), 626–636.CrossRefGoogle Scholar
  6. Benes, F. M., Vincent, S. L., & Todtenkopf, M. (2001). The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biological Psychiatry, 50, 395–406.PubMedCrossRefGoogle Scholar
  7. Braeken MAKA, Kemp AH, Outhred T, Otte RA, Monsieur GJYJ, et al.  (2013).  Pregnant Mothers with Resolved Anxiety Disorders and Their Offspring Have Reduced Heart Rate Variability: Implications for the Health of Children. PLoSONE 8(12): e83186. doi:10.1371/journal.pone.0083186Google Scholar
  8. Bourgeois, J. P. (1997). Synaptogenesis, heterochrony and epigenesis in the mammalian cortex. Acta Paediatrica, Suppl. 422, 27–33.CrossRefGoogle Scholar
  9. Clarke, P.G.H. (2003). Models of neuronal death in vertebrate development: from trophic interactions to network roles. In A. van Ooyen (Ed). Modeling neural development (pp. 167–182). Cambridge, Massachusetts: The MIT Press.Google Scholar
  10. Coyle, I., Wayner. M. J., & Singer, A. G. (1976). Behavioral teratogenesis: A critical evaluation. Pharmacology, Biochemistry and Behavior, 4, 191–200.PubMedCrossRefGoogle Scholar
  11. D’Hooge, R. (2006). De zenuwcel. Zakboek neurofysiologie. Leuven: Acco.Google Scholar
  12. Davies, R.W., & Morris, B.J. (2004). Molecular biology of the neuron (2nd ed.). Oxford: University Press.CrossRefGoogle Scholar
  13. Donkelaar, H.J. ten, & Lohman, A.H.M. (red.) (2001). Klinische anatomie en embryologie, deel I en II. Maarssen: Elsevier Gezondheidszorg.Google Scholar
  14. Duncan, D.E. (2006). Het gif in ons lichaam. National Geographic, oktober 2006, 120–147.Google Scholar
  15. Esteller, M. (2008). Epigenetics of cancer. The New England Journal of Medicine, 358(11), 1148–1159.PubMedCrossRefGoogle Scholar
  16. Fox S.E., Levitt P. & Nelson, C.A. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81, 28–40.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fried, P.A. (2002) Conceptual issues in behavioral teratology and their application in determing long-term sequelae of prenatal marihuana exposure. Journal of Child Psychology and Psychiatry, 43, 81–102.PubMedCrossRefGoogle Scholar
  18. Garel, C. (2004). MRI of the fetal brain. Normal development and cerebral pathologies. Berlin: Springer Verlag.CrossRefGoogle Scholar
  19. Gitau. R., Cameron, A., Fisk, N. M., & Glover, V. (1998). Fetal exposure to maternal cortisol. Lancet, 352, 707–709.CrossRefGoogle Scholar
  20. Gluckman, P.D., & Hanson, M.A. (2004). Living with the past: evolution, development and patterns of disease. Science, 305, 1733–1736.PubMedCrossRefGoogle Scholar
  21. Gottlieb, G. (1997). Synthesizing nature-nurture. Prenatal roots of instinctive behavior. Mahwah, NJ: Erlbaum.Google Scholar
  22. Grossman, A., Churchill, J.D., McKinney, B.C., Kodish, I.M., Otte, S.L. & Greenough, W.T. (2003). Experience effects on brain development: possible contributions to psychopathology. Journal of Child Psychology and Psychiatry, 44, 33–63.PubMedCrossRefGoogle Scholar
  23. Henrichs, J. & Van den Bergh, B.R.H. (2014, in press). Perinatal developmental origins of self-regulation. In G.H.E. Gendolla, M. Tops, & S. Koole (eds.), Biobehavioral Foundations of Self-regulation. New York: Springer VerlagGoogle Scholar
  24. Houdenhove, B. van (2005). In wankel evenwicht. Over stress, levensstijl en welvaartsziekten. Tielt: Lannoo.Google Scholar
  25. Huizink, A. C., Mulder, E. J. H., & Buitelaar, J. K. (2004). Prenatal risk for psychopathology: Specific effects or induction of general susceptibility? Psychological Bulletin, 130, 115–142.PubMedCrossRefGoogle Scholar
  26. Huizink, A.C., & Mulder, E.J.H. (2006). Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neuroscience and Biobehavioral Reviews, 30, 24–41.PubMedCrossRefGoogle Scholar
  27. Jacobson, S. W., & Jacobson, J. L. (2000). Teratogenic insult and neurobehavioural function in infancy and childhood. In C.A. Nelson (ed.), The effects of early adversity on neurobehavioral development. The Minnesota symposia on child psychology, 31 (pp. 61–112). Mahwah, NJ: Erlbaum.Google Scholar
  28. Jockush, H. & Schmitt-John, T. (2004). Using mouse genetics to study neuronal development and function. In R.W Davies, B.J. Morris, (eds.). Molecular biology of the neuron (2nd ed., pp. 15-28). Oxford: University Press.Google Scholar
  29. Kushnerenko, E.V., Van den Bergh, B.R.H., Winkler, I (2013). Separating acoustic deviance from novelty during the first year of life: A review of event related potential evidence. Frontiers in Psychology/Developmental Psychology, 4:595.Google Scholar
  30. Kundu, S, & Peterson, C.L. (2009). Role of chromatin states in transcriptional memory. Biochimica et Biophyscica Acta, 445–455.Google Scholar
  31. Mayes, L. C. (2002). A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicology and Teratology, 24, 385–395.PubMedCrossRefGoogle Scholar
  32. McGowan, PL., Sasaki, A., D’Alessio A.C., Dymov, S., Labonté, B., Szyf, M., Turecki, G. & Meany M.J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342–348.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Meaney, M.J. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81, 41–79.PubMedCrossRefGoogle Scholar
  34. Mennes, M., Stiers, P., Lagae, L., & Van den Bergh, B. (2006). Long-term cognitive sequelae of antenatal maternal anxiety: involvement of the orbitofrontal cortex. Neuroscience and Biobehavioral Reviews, 30, 1078–1086.PubMedCrossRefGoogle Scholar
  35. Mennes, M, Van den Bergh B.R.H., Lagae, L., & Stiers, P. (2009). Developmental brain abnormalities in 17 year old boys are related to antenatal maternal anxiety. Clinical Neurophysiology, 120(6), 1116–1122.PubMedCrossRefGoogle Scholar
  36. Miller, G. (2005). Genes that guide brain development linked to dyslexia. Science, 310, 759.PubMedCrossRefGoogle Scholar
  37. O’Connor, T.G., Ben-Shlomo, Y., Heron, J., Golding, H., Adams, D., & Glover, V. (2005). Prenatal anxiety predicts individual differences in cortisol in pre-adolescent children. Biological Psychiatry, 58, 211–17.PubMedCrossRefGoogle Scholar
  38. O’Rahily, R & Müller, F (2001). Human embryology and teratology. New York: Wiley-Liss.Google Scholar
  39. Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S. & Devlin, A. M., (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97–106.Google Scholar
  40. O’Donnell, K, O’Connor, T G, & Glover, V (2009), Prenatal stress and neurodevelopment of the child: focus on the HPA axis and role of the placenta. Developmental Neuroscience, 31(4). 285–92.PubMedCrossRefGoogle Scholar
  41. Olds, D.L. (2002). Prenatal and infancy home visiting by nurses: from randomized trials to community replication. Prevention Science, 3, 1153–1172.CrossRefGoogle Scholar
  42. Olds, D.L., Kitzman, H., Hanks, C., Cole, R., Anson, E., Sidora-Arcoleo, K., Luckey, D.W., Henderson, C.R., Holmberg, J., Tutt, R.A., Stevenson, A.J., & Bondy, J. (2007). Effects of nurse home visiting on maternal and child functioning: Age-9 follow-up of a randomized trial. Pediatrics, 120, e832–845.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Ooyen, A. Van (2003). Modeling neural development. Cambridge, Massachusetts: The MIT Press.Google Scholar
  44. Patra, K., Wilson-Costello, D., Gerry Taylor, H., Mercuri-Minch, N., & Hack, M. (2006). Grades-II intraventricular hemorrhage in extremely low birth weigth infants: effects on neurodevelopment. Journal of Pediatrics, 149, 169–173.PubMedCrossRefGoogle Scholar
  45. Portella, G., Bastini, F., Orozzo, M. (2013). Understanding the connection between epigenetic DNA methylation and nucleosome positioning from computer simulations. PLOS, e-pub. November.Google Scholar
  46. Raikkonen, K., Seckl, J.R., Pesonen, A.-K., Simons, A.M.T., & Van den Bergh, B.R.H. (2011). Stress, glucocorticoids and liquorice in human pregnancy: Programmers of the offspring brain. Stress14(6), 590–603.PubMedGoogle Scholar
  47. Ribas-Fito, N., Sala, M., Kogevinas, M., Sunyer, J (2001). Polychlorinated biphenyls (PCBs) and neurological development in children: a systematic review. Journal of Epidemiology and Community Health, 55, 537–546.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Rice, D. & Barone, S. (2000). Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environmental Health Perspectives, 108, 511–533.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Roseboom, T & Krol, van de (2010). Baby’s van de Hongerwinter. Amsterdam, Uitgeverij Augustus ISBN 9789045704197.Google Scholar
  50. Roseboom, T., de Rooij, S., & Painter, R. (2006). The Dutch famine and its long-term consequences for adult health. Early Human Development, 82, 485–491.PubMedCrossRefGoogle Scholar
  51. Rutten, B.P.F. & Mill, J. (2009). Epigenetic mediation of environmental influences in major psychotic disorders. Schizophrenia Bulletin, 35, 1045–1056.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Sampson, P.D., Streissguth, A.P., Bookstein, F.L., & Barr, H.M. (2000). On categorizations in analyses of alcohol teratogenesis. Environmental Health Perspectives, 108, 421–428.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Smets, K. (2005). Zwangerschap en drugs. Beleid bij de pasgeborene. Tijdschrift voor Geneeskunde, 61, 1219–1225.CrossRefGoogle Scholar
  54. Son, G.H., Chung, S., Geum, D., Kang, S.S., Choi, W.S., Kim, K & Choi, S. (2007). Hyperactivity and alteration of the midbrain dopaminergic system in maternally stressed male mice offspring. Biochemical and Biophysical Research Communications 352, 823–829.PubMedCrossRefGoogle Scholar
  55. Stanwood, G.D., & Levitt, P. (2004). Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development. Current Opinion in Pharmacology, 4(1), 65–71.PubMedCrossRefGoogle Scholar
  56. Szyf, M., Weaver, I., & Meany, M. (2007). Maternal care, the epigenome and phenotypic differences in behavior. Reproductive Toxicology, 24, 9–19.PubMedCrossRefGoogle Scholar
  57. Teixeira, J. M. A., Fiske, N. M., & Glover, V. (1999). Association between maternal anxiety in pregnancy and increased uterine artery resistance index: Cohort based study. British Medical Journal, 318, 153–157.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Van den Bergh, B.R.H. (2007). De prenatale oorsprong van ‘welvaartsziekten’ en gedragsproblemen. In B. van Houdenhove (red.) Stress, het lijf, en het brein. Ziekten op de grens tussen psyche en soma (pp. 95-122). Leuven: Lannoo Campus.Google Scholar
  59. Van den Bergh, B.R.H. (2011a). Developmental programming of early brain and behaviour development and mental health: A conceptual framework. Developmental Medicine and Child Neurology, 53(4), 19–23.Google Scholar
  60. Van den Bergh, B.R.H. (2011b). Prenatal programming of cognitive functioning, stress responsiveness and depression in humans: From birth to age 20. In A. Plageman (ed.), Perinatal programming. The state of the art (pp. 199–205). Berlin: De Gruyter.Google Scholar
  61. Van den Bergh, B.R.H., & Marcoen, A. (2004). High maternal anxiety during pregnancy is related to ADHD symptoms, externalizing problems and self reported anxiety in 8/9-year-olds. Child Development, 75, 1085–1097.PubMedCrossRefGoogle Scholar
  62. Van den Bergh, B.R.H., Mennes, M., Oosterlaan, J., Stevens, V., Stiers, P., Marcoen A., & Lagae, L. (2005a). High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neuroscience and Biobehavioral Reviews 29, 259–69.CrossRefGoogle Scholar
  63. Van den Bergh, B.R.H., Mennes, M., Stevens, V., Meere, J. van der, Börger, N., Stiers, P., Marcoen, A., & Lagae, L. (2006). ADHD deficit as measured in adolescent boys with a continuous performance task is related to antenatal maternal anxiety. Pediatric Research, 59, 78–82.PubMedCrossRefGoogle Scholar
  64. Van den Bergh, B.R.H., Mulder E.J.H., Mennes, M., & Glover, V. (2005b). Antenatal maternal anxiety and stress and the neurobehavioral development of fetus and child: links and possible mechanisms. A review. Neuroscience and Biobehavioral Reviews, 29, 237–58.CrossRefGoogle Scholar
  65. Van den Bergh, B.R.H., Otte, R., Braeken, M., van den Heuvel, M., Winkler, I. (2013, May). Does Prenatal Exposure to Maternal Anxiety Influence Information Processing in Two-Month-Old Infants? An Auditory ERP Study. Biological Psychiatry, 73(9), 132S–133S.Google Scholar
  66. Visser, G.H.A. (2006). Developmental Origins of Health and Disease (DOHaD). Editorial. Early Human Development, 82, iii–iv.Google Scholar
  67. Wadhwa, P.D. (2005). Psychoneuroendocrine processes in human pregnancy influence fetal development and health. Psychoneuroendocrinology, 30, 724–743.PubMedCrossRefGoogle Scholar
  68. Wang, Z., Schones, D.E. & Zhao, K (2009). Characterization of human epigenomes. Current opinion in Genetics & Development, 19(2), 127–134.CrossRefGoogle Scholar
  69. Welberg, L. A., & Seckl, J. R. (2001). Prenatal stress, glucocorticoids and the programming of the brain. Journal of Neuroendocrinology, 13, 113–128.PubMedCrossRefGoogle Scholar
  70. Wolpert, L., Beddington, R., Jessell, T., Lawrence, P., Meyerowitz, E., & Smith, J. (2005). Principles of Development (2nd Ed). Oxford: University Press.Google Scholar

Copyright information

© Bohn Stafleu van Loghum 2014

Authors and Affiliations

  1. 1.Departement ontwikkelingspsychologieTilburg UniversityTilburgThe Netherlands

Personalised recommendations