Advertisement

Klinische ontwikkelingsneuropsychologie

Chapter
  • 13k Downloads

Hersenen-omgevinginteractie

De klinische toepassing van neuropsychologie bij kinderen en jeugdigen probeert verbanden te ontdekken tussen gedrag (in de breedste zin van het woord) en het disfunctioneren van de hersenen in ontwikkeling. Prenataal vindt de snelste groei van de hersenen plaats en in die periode kunnen allerlei verstoringen optreden, veroorzaakt door aanlegfactoren (bijvoorbeeld genetische syndromen) of omgevingsinvloeden (zoals alcohol en drugsgebruik door de moeder). Verstoringen van de postnatale ontwikkeling zijn minder zichtbaar in de morfologie van de hersenen, maar hebben hun effect op groei en differentiatie en daardoor ook invloed op de functionaliteit. De neuropsychologische diagnostiek-behandelcyclus is gebaseerd op diverse modellen van hersen-gedragrelaties en beschrijft tien stappen. In dit hoofdstuk worden daarnaast de risico- en beschermende factoren beschreven, waarbij steeds de interactie tussen omgeving en aanleg wordt belicht. De preventie richt zich op het vermijden van risico’s en het stimuleren van optimale opvoedingsomstandigheden. Door de snelle ontwikkelingen in technieken om de werking van de hersenen in beeld te brengen, wordt het mogelijk om in de toekomst meer inzicht te verwerven in de interactie tussen omgevingsfactoren en aanlegfactoren en de invloed daarvan op de ontwikkeling van gedrag.

Literatuur

  1. Adams-Chapman, I., & Stoll, B. J. (2006). Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Current opinion in infectious deseases, 19, 290–297.CrossRefGoogle Scholar
  2. Anderson, V., & Moore, C. (1995). Age at injury as predictor of outcome following pediatric head injury. Child Neuropsychology, 1, 187–202.CrossRefGoogle Scholar
  3. Anderson, V., Northam, E., Hendy, J., & Wrennall, J. (2001). Developmental neuropsychology: A clinical approach. Hove and New York: Psychology Press.Google Scholar
  4. Anderson, V., & Taylor, H. G. (1999). Meningitis. In K.O.Yeates, M.D., & H. G. Taylor (eds.), Pediatric Neuropsychology: Research, theory and practice (pp. 117–148). New York: Guilford Press.Google Scholar
  5. Barendse EM, Hendriks MP, Jansen JF, Backes WH, Hofman PA, Thoonen G, Kessels RP, Aldenkamp AP. (2013). Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. Journal of Neurodevelopmental Disorders, 5(1), 14.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Beauchamp MH, Anderson V. (2010). SOCIAL: an integrative framework for the development of social skills. Psychological Bulletin, 136(1), 39–64.PubMedCrossRefGoogle Scholar
  7. Belsky, J., & Pluess, M. (2013). Beyond risk, resilience, and dysregulation: Phenotypic plasticity and human development. Development and Psychopathology, 25,1243–61.PubMedCrossRefGoogle Scholar
  8. Berg, I., & Deelman, B. (2004). Geheugen. In B. Deelman, P. Eling, E. de Haan, & E. van Zomeren (eds.), Klinische neuropsychologie (6 e editie) (pp. 176–193). Amsterdam: Boom.Google Scholar
  9. Bolten, M., Nast, I., Skrundz, M., Stadler, C., Hellhammer, D.H. & Meinschmidt, G. (2013). Prenatal programming of emotion regulation: neonatal reactivity as a differential susceptibility factor moderating the outcome of prenatal cortisol levels. Journal of Psychosomatic Research, epub, aug.Google Scholar
  10. Burdon, M. J., Jacobson, S. W., & Jacobson, J. L. (2005). Relation of prenatal alcohol exposure to cognitive processing speed and efficiency in childhood. Alcoholism, clinical and experimental research, 29, 1473–1483.CrossRefGoogle Scholar
  11. Chandran A, Herbert H, Misurski D, Santosham M. (2011). Long-term sequelae of childhood bacterial meningitis: an underappreciated problem. Journal of Pediatric Infectious Diseases, 30(1), 3–6.CrossRefGoogle Scholar
  12. Crick, N.R. & Dodge, K.A. (1994). A review and reformulation of social information-processing mechanisms in children’s social adjustmen. Psychological Bulletin, 115(1), 74.CrossRefGoogle Scholar
  13. De Haan, M., Wyatt, J. S., Roth, S., Vargha-Khadem, F., Gadian, D., & Mishkin, M. (2006). Brain and cognitive-behavioural development after asphyxia at term birth. Developmental Science, 9, 350–358.PubMedCrossRefGoogle Scholar
  14. Geva, R., Eshel, R., Leitner, Y., Fattal-Valevski, A., & Harel, S. (2006). Memory functions of children born with asymmetric intrauterine growth restriction. Brain research, 1117, 186–194.PubMedCrossRefGoogle Scholar
  15. Goldsmidt, L., Richardson, G. A., Cornelius, M. D., & Day, N. L. (2004). Prenatal marijuana and alcohol exposure and academic achievement at age 10. Neurotoxic Teratology, 26, 521–532.CrossRefGoogle Scholar
  16. Guardino CM, Schetter CD. (2014) Coping during pregnancy: a systematic review and recommendations. Health Psychology Review, 8(1), 70–94.PubMedCrossRefGoogle Scholar
  17. Hooft, I. V., Andersson, K., Bergman, B., Sejersen, T., Von Wendt, L., & Bartfai, A. (2005). Beneficial effect from a cognitive training programme on children with acquired brain injuries demonstrated in a controlled study. Brain Injury, 19, 511–518.PubMedCrossRefGoogle Scholar
  18. Huizink, A. C., & Mulder, E. J. (2006). Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neuroscience Biobehavioral Reviews, 30, 24–41.PubMedCrossRefGoogle Scholar
  19. Huizink AC. (2013) Prenatal cannabis exposure and infant outcomes: Overview of studies. Prog Neuropsychopharmacol Biol Psychiatry. [Epub ahead of print]Google Scholar
  20. Kennard, M.A. (1940). Relation of age to motor impairment in man and in subhuman primates. Archives of Neurology and Psychiatry, 44, 377–397.CrossRefGoogle Scholar
  21. Lindstrom, K., Lagerroos, P., Gillberg, C., & Fernell, E. (2006). Teenage outcome after being born at term with moderate neonatal encephalopathy. Pediatric Neurology, 35, 268–274.PubMedCrossRefGoogle Scholar
  22. Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of the american academy of child and adolescent psychiatry, 44, 377–384.PubMedCrossRefGoogle Scholar
  23. Melby-Lervac, M. & Hume, C. (2013). Is working memory training effective? A meta-anlytic review. Developmental Psychology, 49(2), 270–291.CrossRefGoogle Scholar
  24. O’connor, T. G., Ben-Schlomo, Y., Heron, J., Golding, J., Adams, D., & Glover, V. (2005). Prenatal anxiety predicts individual differences in cortisol in pre-adolescent children. Biological Psychiatry, 58, 211–217.PubMedCrossRefGoogle Scholar
  25. Pelphrey KA, Yang DY, McPartland JC. (2014). Building a Social Neuroscience of Autism Spectrum Disorder. Current Topics Behavioral Neuroscience. [Epub ahead of print]Google Scholar
  26. Piaget, J. (1963). The origin of intelligence in children. New York: W. W. Norton.Google Scholar
  27. Plessow-Wolfson, S., & Epstein, F. (2005). The experience of story reading: deaf children and hearing mother’s interaction at story time. American Annals of the Deaf, 150, 369–378.PubMedCrossRefGoogle Scholar
  28. Puthanakit, T., Ananworanich, J., Vonthanak, S., Kosalaraksa, P., Hansudewechakul, R., van der Lugt, J. & Ruxrungtham, K.; (2013) PREDICT Study Group. Cognitive function and neurodevelopmental outcomes in HIV-infected Children older than 1 year of age randomized to early versus deferred antiretroviral therapy: the PREDICT neurodevelopmental study. Journal of Pediatric Infectious Diseases, 32(5), 501–8.CrossRefGoogle Scholar
  29. Rapport MD, Orban SA, Kofler MJ, Friedman LM. (2014) Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta-analytic review of cognitive, academic, and behavioral outcomes. Clinical Psychology Review, 33(8), 1237–52.CrossRefGoogle Scholar
  30. Rice, D., Barone, S. (2000). Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environmental health perspectives, 108, 511–533.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Scantlebury N, Cunningham T, Dockstader C, Laughlin S, Gaetz W, Rockel C, Dickson J, Mabbott D. (2014). Relations between white matter maturation and reaction time in childhood. Journal of the International Neuropsychological Society, 20(1), 99–112.PubMedCrossRefGoogle Scholar
  32. Swaab-Barneveld, H., de Sonneville, L., Cohen-Kettenis, P., Gielen, A., Buitelaar, J., & van Engeland, H. (2000). Visual sustained attention in a child psychiatric population. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 651–659.PubMedCrossRefGoogle Scholar
  33. Swaab, H., Bouma, A., Hendriksen, J., & Konig. C. (2011). Klinische Kinderneuropsychologie. Boom: Amsterdam.Google Scholar
  34. Titz, C., & Karbach, J. (2014). Working memory and executive functions: effects of training on academic achievement. Psychological Research. [Epub, Jan.]Google Scholar
  35. Van den Bergh, B. R., Mulder, E. J., Mennes, M., & Glover, V. (2005). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: links and possible mechanisms. A review. Neuroscience and Biobehavioral Reviews, 29, 237–258.PubMedCrossRefGoogle Scholar
  36. Van Heugten, C. M., Hendriksen, J., Rasquin, S., Dijcks, B., Jaeken, D., & Vles, J. H. (2006). Long- term neuropsychological performance in a cohort of children and adolescents after severe paediatric traumatic brain injury. Brain Injury, 20, 895–903.PubMedCrossRefGoogle Scholar
  37. Van Zomeren, E., & Eling, P. (2004). Aandacht en executieve functies. In B. Deelman, P. Eling, E. de Haan, & E. van Zomeren (eds.), Klinische neuropsychologie (6e editie) (pp. 214–238). Amsterdam: Boom.Google Scholar
  38. Warner, T. D., Behnke, M., Eyler, F. D., Padgett, K., Leonard, C., How, W., Carvan, C. W., Schmalfuss, I. M., & Blackband, S. J. (2006). Diffusion tensor imaging of frontal white matter and executive functioning in cocaine-exposed children. Pediatrics, 118, 2014–2024.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Weiler, M.D., Bernstein, J. H., Bellinger, D., & Waber, D. P. (2002). Information processing deficits in children with attention-deficit/hyperactivity disorder, inattentive type, and children with reading disability. Journal of Learning Disabilities, 35, 448–461.PubMedCrossRefGoogle Scholar
  40. Weiler, M.D., Harris, N. S., Marcus, D. J., Bellinger, D., Kosslyn, S. M., & Waber (2000). Speed of information processing in children referred for learning problems: performance on a visual filtering test. Journal of Learning Disabilities, 33, 538–550.Google Scholar
  41. Willen, E. J. (2006). Neurocognitive outcomes in pediatric HIV. Mental retardation and developmental disabilities research reviews, 12, 223–228.PubMedCrossRefGoogle Scholar
  42. Williams, J. H., & Ross, L. (2007). Consequences of prenatal toxin exposure for mental health in children and adolescents : A systematic review. European Child and Adolescent Psychiatry, 16, 243–253.PubMedCrossRefGoogle Scholar
  43. Ylvisaker, M. (1998). Traumatic brain injury rehabilitation: Children and adolescents. Boston: Butterworth Heineman.Google Scholar

Copyright information

© Bohn Stafleu van Loghum 2014

Authors and Affiliations

  1. 1.afdeling Neuropedagogiek en ontwikkelingsstoornissenUniversiteit LeidenLeidenThe Netherlands

Personalised recommendations