Advertisement

6 Antimicrobiële eiwitten in speeksel

Chapter
  • 831 Downloads

Samenvatting

In speeksel zijn diverse eiwitsystemen aanwezig die infecties in of via de mondholte bestrijden door de kolonisatie van micro-organismen te remmen. Het mechanisme van antimicrobiële activiteit kent grote verschillen. Zo komen antibacteriële speekseleiwitten voor die alleen een bacterieaggregerende functie hebben, bijvoorbeeld mucinen, agglutinine en prolinerijk glycoproteïne (PRG). Andere eiwitten remmen microbiële enzymsystemen, bijvoorbeeld cystatinen, TIMPs en SLPI. Weer andere eiwitten bezitten enzymatische activiteit, zoals lactoperoxidase, lysozym, chitinase en EP-GP. Ten slotte zijn er ook microbicide eiwitten die een micro-organisme lyseren door het celmembraan poreus te maken, zoals lactoferricine en chromogranine A. Dit impliceert dat bij een tekort aan speeksel, door een speekselklieraandoening, door verwijdering van de speekselklieren (zie hoofdstuk 16), door een systemische ziekte (zie hoofdstuk 17) of door medicijngebruik (zie hoofdstuk 19), de kans op orale infecties toeneemt. Elk van de speekselklieren blijkt een specifieke set van afweersystemen te bevatten (tabel 6.7). Met andere woorden: goed functionerende speekselklieren – in combinatie met een goede mondhygiëne – zijn zeer belangrijk om de kans op het ontwikkelen van mondinfecties tot een minimum te beperken.

Literatuur

  1. Abe K., A. Nozaki, K. Tamura, M. Ikeda, K. Naka, H. Dansako, H. e.a. Tandem repeats of lactoferrinderived anti-hepatitis C virus peptide enhance antiviral activity in cultured human hepatocytes. Microbiol. Immunol. 51, (2007)117–125.Google Scholar
  2. Almståhl A., M. Wikström en J. Groenink. Lactoferrin, amylase and mucin MUC5B and their relation to the oral microflora in hyposalivation of different origins. Oral Microbiol. Immunol. 16, (2001)345–352.PubMedGoogle Scholar
  3. Alvarez-Fernandez M., Y.-H. Liang, M. Abrahamson en X.-D. Su. Crystal structure of human cystatin D, a cysteine peptidase inhibitor with restricted inhibition profile. J. Biol. Chem. 280, (2005)18221–18228.PubMedGoogle Scholar
  4. Andersen J.H., H. Jenssen, K. Sandvik en T.J. Gutteberg. Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. J. Med. Virol. 74, (2004)262–271.PubMedGoogle Scholar
  5. Appelmelk B.J., Y.-Q. An, M. Geerts, B.G. Thijs, H.A. de Boer, D. MacLaren, e.a. Lactoferrin is a lipid Abinding protein. Infect. Immun. 62, (1994)2628–2632.PubMedCentralPubMedGoogle Scholar
  6. Autiero M., C. Bouchier, S. Basmaciogullari, P. Zaborski, S. El Marhomy, M. Martin, e.a. Isolation from a human seminal vesicle library of the cDNA for gp17, a CD4 binding factor. Immunogenetics 46, (1997)345–348.PubMedGoogle Scholar
  7. Bard E., S. Laibe, D. Bettinger, D. Riethmuller, S. Biichle, S. Seilles, e.a. New sensitive method for the measurement of lysozyme and lactoferrin for the assessment of innate mucosal immunity. Part I: Time-resolved immunofluorometric assay in serum and mucosal secretions. Clin. Chem. Lab. Med. 41, (2003)127–133.PubMedGoogle Scholar
  8. Bedi G.S. Amino acid sequence of an inducible cysteine proteinase inhibitor (cystatin) from submandibular glands of isoproterenol-treated rats. Archs Biochem. Biophys. 273, (1989)245–253.Google Scholar
  9. Bellamy W., M. Takase, K. Yamauchi, H. Wakabayashi, K. Kawase en M. Tomita. Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta 1121, (1992)130–136.PubMedGoogle Scholar
  10. Bikker F.J., A.J.M. Ligtenberg, J.E. van der Wal, P.A.M. van den Keijbus, U. Holmskov, E.C.I. Veerman e.a. Immunohistochemical detection of salivary agglutinin/gp-340 in human parotid, submandibular, and labial salivary glands. J. Dent. Res. 81, (2002a)134–139.PubMedGoogle Scholar
  11. Bikker F.J., A.J.M. Ligtenberg, K. Nazmi, E.C.I. Veerman, W. van ’t Hof, J.G.M. Bolscher, e.a. Identification of the bacteria-binding peptide domain on salivary agglutinin (gp-340/DMBT1), a member of the scavenger receptor cysteine-rich superfamily. J. Biol. Chem. 277, (2002b)32109–32115.PubMedGoogle Scholar
  12. Blankenvoorde M.F.J., Y.M.C. Henskens, W. van ’t Hof, E.C.I. Veerman en A. van Nieuw Amerongen. Inhibition of the growth and cysteine proteinase activity of Porphyromonas gingivalis by human salivary cystatin S and chicken cystatin. Biol. Chem. 377, (1996)847–850.PubMedGoogle Scholar
  13. Blankenvoorde M.F.J., Y.M.C. Henskens, G.A. van der Weijden, P.A.M. van den Keijbus, E.C.I. Veerman en A. van Nieuw Amerongen. Cystatin A in gingival crevicular fluid of periodontal patients. J. Periodont. Res. 32, (1997)583–588.PubMedGoogle Scholar
  14. Bolscher J.G.M., M.I.A. van der Kraan, K. Nazmi, H. Kalay, C.H. Grun, J. Groenink, e.a. A one-enzyme strategy to release an antimicrobial peptide from the LFampin-domain of bovine lactoferrin. Peptides 27, (2006)1–9.PubMedGoogle Scholar
  15. Brand H.S., U.H. Lerner, A. Grubb, W. Beertsen, A. van Nieuw Amerongen en V. Everts. Family 2 cystatins inhibit osteoclast-mediated bone resorption in calvarial bone explants. Bone 35, (2004)689–696.PubMedGoogle Scholar
  16. Caccavo D., N.M. Pellegrino, M. Altamura, A. Rigon, L. Amati, A. Amoroso e.a. Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J. Endotoxin Res. 8, (2002)403–417.PubMedGoogle Scholar
  17. Caputo E., G. Manco, L. Mandrich en J. Guardiola. A novel aspartyl proteinase from apocrine epithelia and breast tumors. J. Biol. Chem. 275, (2000)7935–7941.PubMedGoogle Scholar
  18. Caputo E., A. Camarca, R. Moharram, P. Tornatore, B. Thatcher, J. Guardiola e.a. Structural study of GCDFP-15/gp17 in disease versus physiological conditions using a proteomic approach. Biochem. 42, (2003)6169–6178.Google Scholar
  19. Chewonarin T., T. Kuwahara, H. Arimochi, K. Kataoka, H. Nakayama, D.-Y. Yu, e.a. Expression of human lactoferrin in Bacteroides uniformis and its effect on azoxymethane-induced aberrant and crypt focus formation in the rat colon. Anaerobe 7, (2001)247–253.Google Scholar
  20. Cornish J. Lactoferrin promotes bone growth. Bio-Metals 17, (2004)331–335.Google Scholar
  21. Cornish J., A.B. Grey, D. Naot, K.P. Palmano, N.W. Haggarty, K.E. Callon e.a. Lactoferrin and bone: an overview of recent progress. Austr. J. Dairy Technol. 60, (2005)53–57.Google Scholar
  22. Cornish J., K. Palmano, K.E. Callon, M. Watson, J.M. Lin, P. Valenti, e.a. Lactoferrin and bone; structureactivity relationships. Biochem. Cell Biol. 84, (2006)297–302.PubMedGoogle Scholar
  23. Dial E.J., J.J. Romero, D.R. Headon en L.M. Lichtenberger. Recombinant human lactoferrin is effective in the treatment of Helicobacter felis-infected mice. J. Pharm. Pharmacol. 52, (2000)1541–1546.PubMedGoogle Scholar
  24. Diarra M.S., D. Petitclerc en P. Lacasse. Effect of lactoferrin in combination with penicillin on the morphology and the physiology of Staphylococcus aureus isolated from bovine mastitis. J. Dairy Sci. 85, (2002)1141–1149.PubMedGoogle Scholar
  25. Dickinson D.P. Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. Crit. Rev. Oral Biol. Med. 13, (2002)238–275.PubMedGoogle Scholar
  26. Dickinson D.P. Salivary (SD-type) cystatins: over one billion years in the making – but to what purpose? Crit. Rev. Oral Biol. Med. 13, (2002)485–508.PubMedGoogle Scholar
  27. Dickinson D.P., M. Thiesse en M.J. Hicks. Expression of type 2 cystatin genes CST1-CST5 in adult human tissues and the developing submandibular gland. DNA Cell Biol. 21, (2002)47–65.PubMedGoogle Scholar
  28. Dijkshoorn L., C.P.J.M. Brouwer, S.J.P. Bogaards, A. Nemec, P.J. van den Broek en P.H. Nibbering. The synthetic N-terminal peptide of human lactoferrin, hLF(1-11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 48, (2004)4919–4921.PubMedCentralPubMedGoogle Scholar
  29. Dogru M., Y. Matsumoto, Y. Yamamoto, E. Goto, M. Saiki, J. Shimazaki, e.a. Lactoferrin in Sjögreńs syndrome. Ophthalmology 114, (2007)2366–2367.PubMedGoogle Scholar
  30. Eijk M. van, C.J.F. van Noorden en C. de Groot. Proteinases and their inhibitors in the immune system. Int. Rev. Cytol. 222, (2003)197–236.PubMedGoogle Scholar
  31. Engelmayer J. en A. Varadhachary. Properties and application of recombinant human lactoferrin to enhance healing of diabetic wounds. Wounds 15, (2003)294–301.Google Scholar
  32. Farquhar C., C. VanCott, D.A. Mbori-Ngacha, L. Horani, R.K. Bosire, J.K. Kreiss, e.a. Salivary secretory leukocyte protease inhibitor is associated with reduced transmission of HIV type 1 through breast milk. J. Infect. Dis. 186, (2002)1173–1176.PubMedCentralPubMedGoogle Scholar
  33. Ferreiro M.C., P.D. Dios en C. Scully. Transmission of hepatitis C virus by saliva? Oral Dis. 11, (2005)230–235.PubMedGoogle Scholar
  34. Fine D.H. en D. Furgang. Lactoferrin iron levels affect attachment of Actinobacillus actinomycetemcomitans to buccal epithelial cells. J. Periodontol. 73, (2002)616–623.PubMedGoogle Scholar
  35. Fine D.H., D. Furgang en F. Beydouin. Lactoferrin iron levels are reduced in saliva of patients with localized aggressive periodontitis. J. Periodontol. 73, (2002)624–630.PubMedGoogle Scholar
  36. Floris R., I. Recio, B. Berkhout en S. Visser. Antibacterial and antiviral effects of milk proteins and derivatives thereof. Curr. Pharmaceut. Design 9, (2003)1257–1275.Google Scholar
  37. Gifford J.L., H.N. Hunter en H.J. Vogel. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci. 62, (2005)2588–2598.PubMedGoogle Scholar
  38. Gordon Y.J., L.C. Huang, E.G. Romanowski, K.A. Yates, R.J. Proske en A.M. McDermott. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr. Eye Res. 30, (2005)385–394.PubMedCentralPubMedGoogle Scholar
  39. Goto M., W. Fujimoto, J. Nio, T. Iwanaga en T. Kawasaki. Immunohistochemical demonstration of acidic chitinase in the mouse salivary gland and gastric mucosa. Archs Oral Biol. 48, (2003)701–707.Google Scholar
  40. Grange P.A., A.-G. Marcelin, V. Calvez, C. Chauvel, J.-P. Scande en N. Dupin. Salivary lactoferrin is recognized by the human herpesvirus-8. J. Invest. Dermatol. 124, (2005)1249–1258.PubMedGoogle Scholar
  41. Groenink J., E. Walgreen-Weterings, K. Nazmi, J.G.M. Bolscher, E.C.I. Veerman, A.J. van Winkelhoff e.a. Salivary lactoferrin and low-Mr mucin MG2 in Actinobacillus actinomycetemcomitans-associated periodontitis. J. Clin. Periodont. 26, (1999a)269–275.Google Scholar
  42. Groenink J., E. Walgreen-Weterings, W. van ’t Hof, E.C.I. Veerman en A. van Nieuw Amerongen. Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS Microbiol. Lett. 179, (1999b)217–222.PubMedGoogle Scholar
  43. Grubb A.O. Cystatin C – Properties and use as diagnostic marker. Adv. Clin. Chem. 35, (2001)63–99.Google Scholar
  44. Hammer Andersen J., S.A. Osbakk, L.H. Vorland, T. Traavik en T.J. Gutteberg. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res. 51, (2001)141–149.Google Scholar
  45. Hamosh M. Bioactive factors in human milk. Breastfeeding 48, (2001)69–86.Google Scholar
  46. Haney E.F., F. Lau en H.J. Vogel. Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin. Biochim. Biophys. Acta 1768, (2007)2355–2364.PubMedGoogle Scholar
  47. Hartshorn K.L., A. Ligtenberg, M.R. White, M. van Eijk, M. Hartshorn, L. Pemberton, e.a. Salivary agglutinin and lung scavenger receptor cysteinerich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant protein D that vary according to donor source and sialylation. Biochem. J. 393, (2006)545–553.PubMedCentralPubMedGoogle Scholar
  48. Haukland H.H., H. Ulvatne, K. Sandvik en L.H. Vorland. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Letters 508, (2001)389–393.PubMedGoogle Scholar
  49. Haversen L.A., L. Baltzer, G. Dolphin, L.A. Hanson en I. Mattsby-Baltzer. Anti-inflammatory activities of human lactoferrin in acute dextran sulphateinduced colitis in mice. Scand. J. Immunol. 57, (2003)2–10.PubMedGoogle Scholar
  50. Hayakawa H., K. Yamashita, K. Ohwaki, M. Sawa, T. Noguchi, K. Iwata, e.a. Collagenase activity and tissue inhibitor of metalloproteinases-1 (TIMP-1) content in human whole saliva from clinically healthy and periodontally diseased subjects. J. Periodont. Res. 29, (1994)305–308.PubMedGoogle Scholar
  51. Hendrixson D.R., J. Qiu, S.C. Shewry, D.L. Fink, S. Petty, E.N. Baker, e.a. Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol. Microbiol. 47, (2003)607–617.PubMedGoogle Scholar
  52. Henskens Y.M.C., U. van der Velden, E.C.I. Veerman en A. van Nieuw Amerongen. Protein, albumin and cystatin concentrations in saliva of healthy subjects and of patients with gingivitis or periodontitis. J. Periodont. Res. 28, (1993) 43–48.PubMedGoogle Scholar
  53. Henskens Y.M.C., E.C.I. Veerman, M.S. Mantel, U. van der Velden en A. van Nieuw Amerongen. Cystatin S and C in human whole saliva and in glandular salivas in periodontal health and disease. J. Dent. Res. 73, (1994)1606–1614.PubMedGoogle Scholar
  54. Henskens Y.M.C., P.A.M. van den Keijbus, E.C.I. Veerman, G.A. van der Weijden, M.F. Timmerman, C.M. Snoek, e.a. Protein composition of whole and parotid saliva in healthy and periodontitis subjects. J. Periodont. Res. 31, (1996)57–65.PubMedGoogle Scholar
  55. Henskens Y.M.C., F.A. van der Weijden, P.A.M. van den Keijbus, E.C.I. Veerman, M.F. Timmerman, U. van der Velden, e.a. Effect of periodontal treatment on the protein composition of whole and parotid saliva. J. Periodont. 67, (1996)205–212.PubMedGoogle Scholar
  56. Henskens Y.M.C., E.C.I. Veerman en A. van Nieuw Amerongen. Cystatins in health and disease. Biol. Chem. 377, (1996)71–86.Google Scholar
  57. Herbert S., A. Bera, C. Nerz, D. Kraus, A. Peschel, C. Goerke, e.a. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in Staphylococci. PLOS Pathogens 3, (2007)981–994.Google Scholar
  58. Hof W. van ’t, M.F.J. Blankenvoorde, E.C.I. Veerman en A. van Nieuw Amerongen. The salivary lipocalin Von Ebner’s gland protein is a cysteine proteinase inhibitor. J. Biol. Chem. 272, (1997)1837–1841.Google Scholar
  59. Hoogendoorn H. en W. Scholtes. De invloed van het lactoperoxidase-systeem in het speeksel bij het ontstaan van cariës en chronisch recidiverende aften. Ned. Tijdschr. Tandheelk. 86, (1979)36–39.Google Scholar
  60. Ibrahim H.R., D. Inazaki, A. Abdou, T. Aoki en M. Kim. Processing of lysozyme at distinct loops by pepsin: A novel action for generating multiple peptide motifs in the newborn stomach. Biochim. Biophys. Acta 1726, (2005)102–114.PubMedGoogle Scholar
  61. Ihalin R., V. Loimaranta en J. Tenovuo. Origin, structure, and biological activities of peroxidases in human saliva. Archs Biochem. Biophys. 445, (2006)261–268.Google Scholar
  62. Imai M.A., T. Moriya, F.L. Imai, M. Shiiba, H. Bukawa, H. Yokoe, e.a. Down-regulation of DMBT1 gene expression in human oral squamous cell carcinoma. Int. J. Mol. Med. 15, (2005)585–589.PubMedGoogle Scholar
  63. Jensen H. Anti herpes simplex virus activity of lactoferrin/ lactoferricin - an example of antiviral activity of antimicrobial protein/peptide. Cell. Mol. Life Sci. 62, (2005)3002–3013.Google Scholar
  64. Jensen H., P. Hamill en R.E.W. Hancock. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, (2006)491–511.Google Scholar
  65. Kaito M., M.Iwasa, N. Fujita, Y. Kobayashi, Y. Kojima, J. Ikoma, e.a. Effect of lactoferrin in patients with chronic hepatitis C. Combination therapy with interferon and ribavirin. J. Gastroenterol. Hepatol. 22, (2007)1894–1897.PubMedGoogle Scholar
  66. Kang W.Q. en K.B.M. Reid. DMBT1, a regulator of mucosal homeostasis through the linking of mucosal defense and regeneration. FEBS Letters 540, (2003)21–25.PubMedGoogle Scholar
  67. Kanyshkova T.G., S.E. Babina, D.V. Semenov, N. Isaeva, A.V. Vlassov, K.N. Neustroev, e.a. Multiple enzymic activities of human milk lactoferrin. Eur. J. Biochem. 270, (2003)3353–3361.PubMedGoogle Scholar
  68. Kato T., T. Imatani, K. Minaguchi, E. Saitoh en K. Okuda. Salivary cystatins induce interleukin-6 expression via cell surface molecules in human gingival fibroblasts. Mol. Immunol. 39, (2002)423–430.PubMedGoogle Scholar
  69. Katunuma N., A. Ohashi, E. Sano, E. Murata, H. Shiota, K. Yamamoto, e.a. New cysteine protease inhibitors in physiological secretory fluids and their medical significance. Adv. Enzyme Regul. 43, (2003)393–410.PubMedGoogle Scholar
  70. Katsukawa H. en Y. Ninomiya. Capsaicin induces cystatin S-like substances in submandibular saliva of the rat. J. Dent. Res. 78, (1999)1609–1616.PubMedGoogle Scholar
  71. Keijser S., M.J. Jager, H.C.M. Dogterom-Ballering, D.T. Schoonderwoerd, R.J.W. de Keizer, C.J.M. Krose, e.a. Lactoferrin Glu561Asp polymorphism is associated with susceptibility to herpes simplex keratitis. Exptl Eye Res. 86, (2008)105–109.Google Scholar
  72. Kim S.J., D.Y. Yu, K.W. Pak, S. Jeong, S.W. Kim en K.K. Lee. Structure of the human lactoferrin gene and its chromosomal localization. Molecules Cells 8, (1998)663–668.PubMedGoogle Scholar
  73. Kleinberg I., S.O. Ellison en I.D. Mandel. Saliva and dental caries. Information Retrieval Inc., New York, 1979.Google Scholar
  74. Kleinegger C.L., D.C. Stoeckel en Z.B. Kurago. A comparison of salivary calprotectin levels in subjects with and without oral candidiasis. Oral Surg. Oral Med. Oral Pathol. 92, (2001)62–67.Google Scholar
  75. Komine K., T. Kuroishi, A. Ozawa, Y. Komine, T. Minami, H. Shimauchi, e.a. Cleaved inflammatory lactoferrin peptides in parotid saliva of periodontitis patients. Mol. Immunol. 44, (2007)1498–1508.PubMedGoogle Scholar
  76. Kos J. en T. T. Lah. Cysteine proteinases and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer (Review). Oncol. Rep. 5, (1998)1349–1361.PubMedGoogle Scholar
  77. Kraan M.I.A. van der, J. Groenink, K. Nazmi, W. van ’t Hof, E.C.I. Veerman, J.G.M. Bolscher, e.a. Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25, (2004)177–183.PubMedGoogle Scholar
  78. Kraan M.I.A. van der, K. Nazmi, A. Teeken, J. Groenink, W. van ’t Hof, E.C.I. Veerman, e.a. Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix facilitating N-terminal part. Biol. Chem. 386, (2005a)137–142.PubMedGoogle Scholar
  79. Kraan M.I.A. van der, J. van Marle, K. Nazmi, J. Groenink, W. van ’t Hof, E.C.I. Veerman, e.a. Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli. A confocal and freeze-fracture electron microscopy study. Peptides 26, (2005b)1537–1542.PubMedGoogle Scholar
  80. Kraan M.I.A. van der, C. van der Made, K. Nazmi, W. van ’t Hof, J. Groenink, E.C.I. Veerman, e.a. Effect of amino acid substitutions on the candidacidal activity of LFampin 265–284. Peptides 26, (2005c)2093–2097.PubMedGoogle Scholar
  81. KraanM.I.A. van der, K. Nazmi,W. van ’t Hof, A. van Nieuw Amerongen, E.C.I. Veerman en J.G.M. Bolscher. Distinct bactericidal activities of bovine lactoferrin peptides LF-ampin 268-284 and LF-ampin 265-284: Asp-Leu-Ile sequence makes the difference. Bioch. Cell Biol. 84, (2006)358–362.Google Scholar
  82. Kuipers M.E., H.G. de Vries, M.C. Eikelboom, D.K. Meijer en P.J. Swart. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 43, (1999)2635–2641.PubMedCentralPubMedGoogle Scholar
  83. Kuipers M.E., L. Beljaars, N. van Beek, H.G. de Vries, J. Heegsma, J.J.M. van den Berg, e.a. Conditions influencing the in vitro antifungal activity of lactoferrin combined with antimycotics against clinical isolates of Candida. APMIS 110, (2002)290–298.PubMedGoogle Scholar
  84. Kussendrager K.D. en A.C.M. van Hooijdonk. Lactoperoxidase: physico-chemical properties. Br. J. Nutr. 84, (2000)S19–S25.PubMedGoogle Scholar
  85. Laibe S., E. Bard, S. Biichle, J. Vielle, L. Millon, C. Drobacheff, e.a. New sensitive method for the measurement of lysozyme and lactoferrin to explore innate mucosal immunity. Part II: Timeresolved immunofluorometric assay used in HIV patients with oral candidiasis. Clin. Chem. Lab. Med. 41, (2003)134–138.PubMedGoogle Scholar
  86. Lee B., G.H.W. Bowden en Y. Myal. Identification of mouse submaxillary gland protein in mouse saliva and its binding to mouse oral bacteria. Archs Oral Biol. 47, (2002)327–332.Google Scholar
  87. Leitch E.C. en M.D.P. Willcox. Synergy antistaphylococcal properties of lactoferrin and lysozyme. J. Med. Microbiol. 47, (1998)837–842.PubMedGoogle Scholar
  88. Lerner U.H., L. Johansson, M. Ransjö, J.B. Rosenquist, F.P. Reinholt en A. Grubb. Cystatin C, an inhibitor of bone resorption produced by osteoblasts. Acta Physiol. Scand. 161, (1997)81–92.PubMedGoogle Scholar
  89. Ligtenberg A.J.M., E.C.I. Veerman en A. van Nieuw Amerongen. A role for Lewis a antigens on salivary agglutinin in binding to Streptococcus mutans. Ant. Leeuwenh. 77, (2000)21–30.Google Scholar
  90. Ligtenberg A.J.M., E.C.I. Veerman, A. van Nieuw Amerongen en J. Mollenhauer. Salivary agglutinin/ gp340/DMBT1: a single molecule with a variable composition and with different functions in infection, inflammation, and cancer. Review. Biol. Chem. 388, (2007)1275–1289.PubMedGoogle Scholar
  91. Ligtenberg T.J.M., F.J. Bikker, J. Groenink, I. Tornoe, R. Leth-Larsen, E.C.I. Veerman, e.a. Human salivary agglutinin binds to lung surfactant protein-D and is identical with scavenger receptor protein gp-340. Biochem. J. 359, (2001)243–248.PubMedCentralPubMedGoogle Scholar
  92. Lugardon K., R. Raffner, Y. Goumon, A. Corti, A. Delmas, P. Bulet, e.a. Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J. Biol. Chem. 275, (2000)10745–10753.PubMedGoogle Scholar
  93. Lupetti A., P.H. Nibbering, M.M. Welling en E.K.J. Pauwels. Radiopharmaceuticals: new antimicrobial agents. Trends Biotechnol. 21, (2003)70–73.PubMedGoogle Scholar
  94. Lupetti A., C.P.J.M. Brouwer, S.J.P. Bogaards, M.M. Welling, E. de Heer, M. Campa, e.a. Human lactoferrin/ derived peptidés antifungal activities against disseminated Candida albicans infection. J. Infectious Dis. 196, (2007)1416–1424Google Scholar
  95. Lupi A., I. Messana, G. Denotti, M.E. Schinina, G. Gambarini, M.B. Fadda, e.a. Identification of the human salivary cystatin complex by the coupling of high-performance liquid chromatography and ion-trap mass spectrometry. Proteomics 3, (2003)461–467.PubMedGoogle Scholar
  96. McNeely T.B., M. Dealy, D.J. Dripps, J.M. Orenstein, S.P. Eisenberg en S.M. Wahl. Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J. Clin. Invest. 96, (1995)456–464.PubMedCentralPubMedGoogle Scholar
  97. Mistry N., P. Drobni, J. Nasland, V.G. Sunkari, H. Jensen en M. Evander. The anti-papillomavirus activity of human and bovine lactoferricin. Antiviral Res. 75, (2007)258–265.PubMedGoogle Scholar
  98. Mitoma M., T. Oho, Y. Shimazaki en T. Koga. Inhibitory effect of bovine milk lactoferrin on the interaction between a streptococcal surface protein antigen and human salivary agglutinin. J. Biol. Chem. 276, (2001)18060–18065.PubMedGoogle Scholar
  99. Montagne P., M.L. Cuillière, C. Molé, M.C. Béné en G. Faure. Changes in lactoferrin and lysozyme levels in human milk during the first twelve weeks of lactation. Adv. Exptl Med. Biol. In: D. Newburg (ed.). Bioactive components of human milk. Plenum Press, New-York, 2001. (241–248).Google Scholar
  100. Mori M. Histochemistry of the salivary glands. CRC Press, Boca Raton, Florida, 1991.Google Scholar
  101. Nagai A., M. Terashima, T. Harada, K. Shimode, H. Takeuchi, Y. Murakawa, e.a. Cathepsin B and H activities and cystatin C concentrations in cerebrospinal fluid from patients with leptomeningeal metastasis. Clin. Chim. Acta 329, (2003)53–60.PubMedGoogle Scholar
  102. Nagel H., R. Laskawi, A. Wahlers en B. Hemmerlein. Expression of matrix metalloproteinases MMP-2, MMP-9 and their tissue inhibitors TIMP-1, -2, and -3 in benign and malignant tumours of the salivary gland. Histopathol. 44, (2004)222–231.Google Scholar
  103. Nakane H., O. Asami, Y. Yamada, T. Harada, N. Matsui, T. Kanno e.a. Salivary chromogranin A as an index of psychosomatic stress response. Biomed. Res. 19, (1998)401–406.Google Scholar
  104. Neria-Rios M., J. Padilla-Zuniga, E. Garcia-Hernandez, S.R. Tello-Solis en R.A. Zubillaga. Binding energetics of the inhibitor cystatin to the cysteine proteinase actinidin. Protein Pept. Lett. 10, (2003)139–145.PubMedGoogle Scholar
  105. Nibbering P.H., E. Ravensbergen, M.M. Welling, L.A. van Berkel, P.H.C. van Berkel, E.K.J. Pauwels e.a. Human lactoferrin and peptides derived from its N-terminus are highly effective against infections with antibiotic-resistant bacteria. Infect. Immun. 69, (2001)1469–1476.PubMedCentralPubMedGoogle Scholar
  106. Nieuw Amerongen A. van. Speeksel en Mondgezondheid. In: Handboek voor Parodontologie. 2002. Hoofdstuk C1.1. (3–18).Google Scholar
  107. Nieuw Amerongen A. van en E.C.I. Veerman. Saliva – the defender of the oral cavity. Oral Dis. 8, (2002)12–22.Google Scholar
  108. Nishioka T., K. Maki, M. Kimura en U. Takahama. Determination of salivary peroxidase activity in human mixed whole saliva. Archs Oral Biol. 48, (2003)397–400.Google Scholar
  109. Nozaki A., M. Ikeda, A. Naganuma, T. Nakamura, M. Inudoh, K. Tanaka, e.a. Identification of a lactoferrin-derived peptide possessing binding activity to hepatitis C virus E2 envelope protein. J. Biol. Chem. 278, (2003)10162–10173.PubMedGoogle Scholar
  110. Nuijens J.H., P.H.C. van Berkel en F.L. Schanbacher. Structure and biological actions of lactoferrin. J. Mammary Gland Biol. Neoplas. 1, (1996)285–295.Google Scholar
  111. Ohlsson S., R. Falk, J.J. Yang, K. Ohlsson, M. Segelmark en J. Wieslander. Increased expression of the secretory leukocyte proteinase inhibitor in Wegener’s granulomatosis. Clin. Exp. Immunol. 131, (2003)190–196.PubMedCentralPubMedGoogle Scholar
  112. Oho T., M. Mitoma en T. Koga. Functional domain of bovine milk lactoferrin which inhibits the adherence of Streptococcus mutans cells to a salivary film. Infect. Immun. 70, (2002)5279–5282.PubMedCentralPubMedGoogle Scholar
  113. Olafsson I. en A. Grubb. Hereditary cystatin C amyloid angiopathy. Int.J. Exp. Clin. Invest. 7, (2000)70–79.Google Scholar
  114. Oliveira A.S., J. Xavier-Filho en M.P. Sales. Cysteine proteinases and cystatins. Braz. Archs Biol. Technol. 46, (2003)91–104.Google Scholar
  115. Pan Y., A. Lee, J. Wan, M.J. Coventry,W.P. Michalski, B. Shiell, e.a. Antiviral properties of milk proteins and peptides. Int. Dairy J. 16, (2006)1252–1261.Google Scholar
  116. Pan Y., B. Shiell, J. Wan, M.J. Coventry, H. Roginsky, A. Lee, e.a. The molecular characterization and antimicrobial activity of amidated bovine lactoferrin. Int. Dairy J. 17, (2007)606–616.Google Scholar
  117. Pellegrini A., S. Schumacher en R. Stephan. In-vitro activity of various antimicrobial peptides derived from the bactericidal domains of lysozyme and βlactoglobulin with respect to Listeria monocytogenes, Escherichia coli 0157, Salmonella spp. and Staphylococcus aureus. Arch. Lebensmittelhygiene 54, (2003)34–36.Google Scholar
  118. Pellegrini A., U. Thomas, N. Bramaz, S. Klauser, P. Hunziker en R. von Fellenberg. Identification and isolation of bactericidal domain in chicken egg white lysozyme. J. Appl. Microbiol. 82, (1997)372–378.PubMedGoogle Scholar
  119. Pellegrini A., U. Thomas, P. Wild, E. Schraner en R. von Fellenberg. Effect of lysozyme or modified lysozyme fragments on DNA and RNA synthesis and membrane permeability of Escherichia coli. Microbiol. Res. 155, (2000)69–77.PubMedGoogle Scholar
  120. Pollock J.J., R.P. Santarpia, H.M. Heller, L. Xu, K. Lal, J. Fuhrer, e.a. Determination of salivary anticandidal activities in healthy adults and patients with AIDS. J. AIDS 5, (1992) 610–618.Google Scholar
  121. Popovic T., N. Cimerman, I. Dolenc, A. Ritonja en J. Brzin. Cathepsin L is capable of truncating cystatin C of 11 N-terminal amino acids. FEBS Letters 455, (1999)92–96.PubMedGoogle Scholar
  122. Prakobphol A., F. Xu, V.M. Hoang, T. Larsson, J. Bergström, I. Johansson, e.a. Salivary agglutinin, which binds to Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340. J. Biol. Chem. 275, (2000)39860–39866.PubMedGoogle Scholar
  123. Pruitt K.M. en J.O. Tenovuo. The lactoperoxidase system. Marcel Dekker Inc., Basel, 1985.Google Scholar
  124. Rocha L.A., P.A. Vargas, L.F.F. Silva, J.E. Leon, A.B. Santos, P.S. Hiemstra, e.a. Expression of secretory leukocyte proteinase inhibitor in the submandibular glands of AIDS patients. Oral Dis. 14, (2008)82–88.PubMedGoogle Scholar
  125. Ronayne de Ferrer P.A., A. Baroni, M.E. Sambucetti, N.E. Lopez en J.M. Ceriani Cernadas. Lactoferrin levels in term and preterm milk. J. Am. Coll. Nutr. 19, (2000)370–373.Google Scholar
  126. Roy M.K., Y. Kuwabara, K. Hara, Y. Watanabe en Y. Tamai. Peptides from the N-terminal end of bovine lactoferrin induce apoptosis in human leukemic (HL-60) cells. J. Dairy Sci. 85, (2002)2065–2074.PubMedGoogle Scholar
  127. Samuelsen Ø., H.H. Haukland, H. Ulvatne en L.H. Vorland. Anti-complement effects of lactoferrinderived peptides. FEMS Immunol. Med. Microbiol. 41, (2004)141–148.PubMedGoogle Scholar
  128. Saruta J., K. Tsukinoki, K. Sasaguri, H. Ishii, M. Yasuda, Y.R. Osamura, e.a. Expression and localization of chromogranin A gene and protein in human submandibular gland. Cells Tissue Organs 180, (2005)237–244.Google Scholar
  129. Sato F., T. Kanno, S. Nagasawa, N. Yanaihara, N. Ishida, T. Hasegawa, e.a. Immunohistochemical localization of chromogranin A in the acinar cells of equine salivary glands contrasts with rodent glands. Cell Tissue Organs 172, (2002)29–36.Google Scholar
  130. Schenkels L.C.P.M., J. Schaller, E. Walgreen-Weterings, I.L. Schadee-Eestermans, E.C.I. Veerman en A. van Nieuw Amerongen. Identity of human Extra Parotid Glycoprotein (EP-GP) with Secretory Actin Binding Protein (SABP) and its biological properties. Biol. Chem. 375, (1994)609–615.Google Scholar
  131. Schenkels L.C.P.M., E.C.I. Veerman en A. van Nieuw Amerongen. Biochemical composition of human saliva in relation to other mucosal fluids. Crit. Rev. Oral Biol. Med. 6, (1995)161–175.PubMedGoogle Scholar
  132. Schenkels L.C.P.M., E.C.I. Veerman en A. van Nieuw Amerongen. EP-GP and the lipocalin VEGh, two different human salivary 20-kDa proteins. J. Dent. Res. 74, (1995)1543–1550.PubMedGoogle Scholar
  133. Schenkels L.C.P.M., E. Walgreen-Weterings, L.C.J.M. Oomen, J.G.M. Bolscher, E.C.I. Veerman en A. van Nieuw Amerongen. In vivo binding of the salivary glycoprotein EP-GP (identical to GCDFP-15) to oral and non-oral bacteria. Detection and identification of EP-GP binding species. Biol. Chem. 378, (1997)83–88.PubMedGoogle Scholar
  134. Schultz B.L., D. Oxley, N.H. Packer en N.G. Karlsson. Identification of two highly sialylated human tear-fluid DMBT1 isoforms: the major high-molecular mass glycoproteins in human tears. Biochem. J. 366, (2002)511–520.Google Scholar
  135. Shine N.R., S.C. Wang, K. Konopka, E.A. Burks, N. Düzgünes en C.P. Whitman. Secretory leukocyte protease inhibitor: inhibition of human immunodeficiency virus-1 infection of monocytic THP-1 cells by a new cloned protein. Bioorg. Chem. 30, (2002)249–263.PubMedGoogle Scholar
  136. Shugars D.C., C.A. Watkins en H.J. Cowen. Salivary concentration of secretory leukocyte protease inhibitor, an antimicrobial protein, is decreased with advanced age. Gerontology 47, (2001)246–253.PubMedGoogle Scholar
  137. Siciliano R., B. Rega, M. Marchetti, L. Seganti, G. Antonini en P. Valenti. Bovine lactoferrin peptidic fragments involved in inhibition of Herpes Simplex Virus type I infection. Biochem. Biophys. Res. Commun. 264, (1999)19–23.PubMedGoogle Scholar
  138. Singh P.K., B.F. Tack, P.B. McCray en M.J. Welsh. Synergistic and additives killing by antimicrobial factors found in human airway surface liquid. Am. J. Physiol. 279, (2000)L799–L805.Google Scholar
  139. Singh P.K., M.R. Parsek, E.P. Greenberg en M.J. Welsh. A component of innate immunity prevents bacterial biofilm development. Nature 417, (2002)552–555.PubMedGoogle Scholar
  140. Skaleric U., J. Babnik, V. Curin, T. Lah en V. Turk. Immunochemical quantification of cysteine proteine inhibitor cystatin C in inflamed human gingiva. Archs Oral Biol. 34, (1989) 301–305.Google Scholar
  141. Steijn G.J. van, A. van Nieuw Amerongen, E.C.I. Veerman en S. Kasanmoentalib en B. Overdijk. Chitinase in whole and glandular human salivas and in whole saliva of patients with periodontal inflammation. Eur. J. Oral Sci. 107, (1999)328–337.PubMedGoogle Scholar
  142. Steijn G.J. van, A. van Nieuw Amerongen, E.C.I. Veerman, S. Kasanmoentalib en B. Overdijk. Effect of periodontal treatment on the activity of chitinase in whole saliva of periodontitis patients. J. Periodont. Res. 37, (2002)245–249.PubMedGoogle Scholar
  143. Stoddard E., G. Cannon, H. Ni, K. Kariko, J. Capodici, D. Malamud, e.a. Gp-340 expressed on human genital epithelia binds HIV-1 envelope protein and facilitates viral transmission. J. Immunol. 179, (2007)3126–3132.PubMedGoogle Scholar
  144. Strom M.B., Q Rekdal en J.S. Svendsen. Antibacterial activity of 15-residue lactoferricin derivatives. J. Peptide Res. 56, (2000)265–274.Google Scholar
  145. Strom M.B., B.E. Haug, O. Rekdal, M.L. Skar, W. Stensen en J.S. Svendsen. Important structural features of 15-residue lactoferricin derivatives and methods for improvement of antimicrobial activity. Biochem. Cell Biol. 80, (2002)65–74.PubMedGoogle Scholar
  146. Sugawara S., A. Uehara, R. Tamai en H. Takada. Innate immune response in oral mucosa. J. Endotoxin Res. 8, (2002)465–468.PubMedGoogle Scholar
  147. Superti F., R. Siciliano, B. Rega, F. Giansanti, P. Valenti en G. Antonini. Involvement of bovine lactoferrin metal saturation, sialic acid and protein fragments in the inhibition of rotavirus infection. Biochim. Biophys. Acta 1528, (2001)107–115.PubMedGoogle Scholar
  148. Sweet S.P., A.N. Denbury en S.J. Challacombe. Salivary calprotectin levels raised in patients with oral candidiasis or Sjögren’s syndrome but decreased by HIV infection. Oral Microbiol. Immunol. 16, (2001)119–123.PubMedGoogle Scholar
  149. Tabak L.A. In defense of the oral cavity: the protective role of the salivary secretions. Pediatr. Dent. 28, (2006)110–117.PubMedGoogle Scholar
  150. Takakura N., H. Wakabayashi, H. Ishibashi, S. Teraguchi, Y. Yamura, H. Yamaguchi, e.a. Oral lactoferrin treatment of experimental oral candidiasis in mice. Antimicrob. Agents Chemother. 47, (2003)2619–2623.PubMedCentralPubMedGoogle Scholar
  151. Takayama Y., K. Mizumachi en T. Takezawa. The bovine lactoferrin region responsible for promoting the collagen gel contractile activity of human fibroblasts. Biochem. Biophys. Res. Commun. 299, (2002)813–817.PubMedGoogle Scholar
  152. Tanida T., T. Okamoto, A. Okamoto, H. Wang, T. Hamada, E. Ueta, e.a. Decreased excretion of antimicrobial proteins and peptides in saliva of patients with oral candidiasis. J. Oral Pathol. Med. 32, (2003)586–594.PubMedGoogle Scholar
  153. Tenovuo J.O. en K.M. Pruitt. Relationship of the human salivary peroxydase system to oral health. J. Oral Pathol. 13, (1984)573–584.PubMedGoogle Scholar
  154. Tenovuo J.O. Human Saliva: clinical chemistry and microbiology. Vol. 1 and 2. CRC Press, Boca Raton, Florida, 1989.Google Scholar
  155. Tomita M., H. Wakabayashi, K. Yamauchi, S. Teraguchi en H. Hayasawa. Bovine lactoferrin and lactoferricin derived from milk: production and applications. Biochem. Cell Biol. 80, (2002)109–112.PubMedGoogle Scholar
  156. Uehara A., S. Sugawara, K. Watanabe, S. Echigo, M. Sato, T. Yamaguchi, e.a. Constitutive expression of a bacterial pattern recognition receptor, CD14, in human salivary glands and secretion as a soluble form in saliva. Clin. Diagn. Lab. Immunol. 10, (2003)286–292.PubMedCentralPubMedGoogle Scholar
  157. Ueta E., T. Tanida en T. Osaki. A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. J. Peptide Res. 57, (2001)240–249.Google Scholar
  158. Veen H.A. van, M.E.J. Geerts, P.H.C. van Berkel en J.H. Nuijens. Analytical cation-exchange chromatography to assess the identity, purity, and N-terminal integrity of human lactoferrin. Analyt. Biochem. 309, (2002)60–66.PubMedGoogle Scholar
  159. Veen H.A. van, M.E.J. Geerts, P.H.C. van Berkel en J.H. Nuijens. The role of N-linked glycosylation in the protection of human and bovine lactoferrin against tryptic proteolysis. Eur. J. Biochem. 271, (2004)678–684.PubMedGoogle Scholar
  160. Viacava P., A.G. Naccarato en G. Bevilacqua. Spectrum of GCDFP-15 expression in human fetal and adult normal tissues. Virch. Arch. 432, (1998)255–260.Google Scholar
  161. Viejo-Diaz M., M.T. Andres, J. Perez-Gil, M. Sanchez en J.F. Fierro. Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane. Biochemistry-Moscow 68, (2003)217–227.PubMedGoogle Scholar
  162. Vogel H.J., D.J. Schibli, W. Jing, E.M. Lohmeier-Vogel, R.F. Epand en R.M. Epand. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem. Cell Biol. 80, (2002)49–63.PubMedGoogle Scholar
  163. Vorland L.H. Lactoferrin: a multifunctional glycoprotein. APMIS 107, (1999)971–981.PubMedGoogle Scholar
  164. Vray B., S. Hartmann en J. Hoebeke. Immunomodulatory properties of cystatins. Cell. Mol. Life Sci. 59, (2002)1503–1512.PubMedGoogle Scholar
  165. Wakabayashi H., S. Teraguchi en Y. Tamura. Increased Staphylococcus-killing activity of an antimicrobial peptide, lactoferricin B, with monocycline and monoacylglycerol. Biosci. Biotechnol. Biochem. 66, (2002)2161–2167.PubMedGoogle Scholar
  166. Wakabayashi H., M. Takase en M. Tomita. Lactoferricin derived from milk protein lactoferrin. Curr. Pharmaceut. Design 9, (2003)1277–1287.Google Scholar
  167. Weinberg E.D. The therapeutic potential of lactoferrin. Expert Opin. Investig. Drugs 12, (2003)841–851.PubMedGoogle Scholar
  168. West N.P., D.B. Pyne, G. Renshaw en A.W. Cripps. Antimicrobial peptides and proteins, exercise and innate mucosal immunity. FEMS Immunol. Med. Microbiol. 48, (2006)293–304.PubMedGoogle Scholar
  169. Wojnar P., W. van ’t Hof, P. Merschak, M. Lechner en B. Redl. The N-terminal part of recombinant human tear lipocalin/von Ebner’s gland protein confers cysteine proteinase inhibition depending on the presence of the entire cystatin-like sequence motifs. Biol. Chem. 382, (2001)1515–1520.PubMedGoogle Scholar
  170. Wu Z.W., D. Van Ryk, C. Davis, W.R. Abrams, I. Chaiken, J. Magnani, e.a. Salivary agglutinin inhibits HIV type 1 infectivity through interaction with viral glycoprotein 120. AIDS Res. Human Retrovir. 19, (2003)201–209.Google Scholar
  171. Wu Z.W., S. Lee, W. Abrams, D. Weissman en D. Malamud. The N-terminal SRCR-SID domain of gp-340 interacts with HIV type 1 gp120 sequences and inhibits viral infection. AIDS Res. Human Retrovir. 22, (2006)508–515.Google Scholar
  172. Yu R.-H. en A.B. Schryvers. Bacterial lactoferrin receptors: insights from characterization the Moraxella bovis receptors. Biochem. Cell Biol. 80, (2002)81–90.PubMedGoogle Scholar
  173. Yusifov T., A.R. Abduragimov, O.K. Gasymov en B.J. Glasgow. Endonuclease activity in lipocalins. Biochem. J. 347, (2000)815–819.PubMedCentralPubMedGoogle Scholar
  174. Zuccotti G.V., A. Vigano, M. Borelli, M. Saresella, V. Giacomet en M. Clerici. Modulation of innate and adaptive immunity by lactoferrin in human immunodeficiency virus (HIV-1)-infected, antiretroviral therapy-naïve children. Int. J. Antimicrobial Agents 29, (2007)353–355.Google Scholar

Copyright information

© Bohn Stafleu van Loghum, onderdeel van Springer Uitgeverij 2008

Authors and Affiliations

  1. 1.Sectie Orale BiochemieAcademisch Centrum Tandheelkunde Amsterdam (ACTA), Vrije Universiteit en Universiteit van AmsterdamAmsterdam

Personalised recommendations