Advertisement

3 Vorming en secretie van speeksel

Chapter
  • 856 Downloads

Samenvatting

  • Mondvloeistof (totaalspeeksel) bestaat voornamelijk uit een mengsel van klierspeeksels, waarvan SM-speeksel 30-70% en PAR-speeksel 0-60% uitmaakt, afhankelijk van het stimulatieniveau; PAL-speeksel levert onder stimulatie eveneens een substantiële bijdrage (5%); de overige kleine speekselkliertjes dragen samen voor ongeveer 7% bij aan mondvloeistof (zie verder hoofdstuk 4).

  • De secretoire cellen van de speekselklieren zijn grotendeels gevuld met secretiegranules; zij vormen een overcapaciteit, zodat bij gezonde personen de speekselsecretie gedurende de hele dag kan worden gestimuleerd.

  • De secretie van de PAR kan zowel door middel van kauwen als door smaakprikkels sterk worden gestimuleerd; de SM wordt minder door kauwen gestimuleerd, maar wel door middel van smaakprikkels, zoals zuur, zoet en menthol.

  • De muceuze secretie gaat in rusttoestand in een laag tempo continu door; de sereuze secretie moet echter altijd worden gestimuleerd.

  • De intracellulaire vertaling van de verschillende neuronale stimuli verloopt verschillend. Bèta-adrenerge stimulatie induceert de vorming van cAMP; alfa-adrenerge en cholinerge stimulatie induceren de vorming van diacylglycerol (DAG) en 1,4,5-inositoltrifosfaat (IP3) als second messengers, waardoor de intracellulaire [Ca2+] toeneemt.

  • Het primaire speeksel gelijkt in ionensamenstelling op bloedplasma; door resorptie in het afvoerkanaal worden Na+- en HCO3--ionen geresorbeerd en K+-ionen gesecreteerd, resulterend in een hypotone mondvloeistof.

  • Stimulatie van de speekselsecretie bevordert de mondgezondheid door mechanische reiniging (spoeleffect, pH-verhoging en toename van de concentratie aan beschermende eiwitten.

Literatuur

  1. Almståhl A. en M. Wikström. Electrolytes in stimulated whole saliva in individuals with hyposalivation of different origins. Archs. Oral Biol. 48, (2003)337–344.CrossRefGoogle Scholar
  2. Ambudkar I.S. Regulation of calcium in salivary gland secretion. Crit. Rev. Oral Biol. Med. 11, (2000)4–25.PubMedCrossRefGoogle Scholar
  3. Aps J.K.M. en L.C. Martens. Review: The physiology of saliva and transfer of drugs into saliva. Forensic Sci. Int. 150, (2005)119–131.PubMedCrossRefGoogle Scholar
  4. Avery J.K. Essentials of oral histology and embryology. Mosby Year Book, St. Louis, 1992.Google Scholar
  5. Burgoyne R.D. en A. Morgan. Secretory granule exocytosis. Physiol. Rev. 83, (2003)581–632.PubMedCrossRefGoogle Scholar
  6. Bymaster F.P., P.A. Carter, M. Yamada, J. Gomeza, J. Wess, S.E. Hamilton, e.a. Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. Eur. J. Neurosci. 17, (2003)1403–1410.PubMedCrossRefGoogle Scholar
  7. Carpenter G.H., G.B. Proctor, L.C. Anderson, X.S. Zhang en J.R. Garrett. Immunoglobulin A secretion into saliva during dual sympathetic and parasympathetic nerve stimulation of rat submandibular glands. Exp. Physiol. 85, (2000)281–286.PubMedCrossRefGoogle Scholar
  8. Castle A.M., A.Y. Huang en J.D. Castle. The minor regulated pathway, a rapid component of salivary secretion, may provide docking/fusion sites for granule exocytosis at the apical surface. J. Cell Sci. 115, (2002)2963–2973.PubMedGoogle Scholar
  9. Culp D.J., R.G. Guivey, W.H. Bowen, M.A. Fallon, S.K. Pearson en R. Faustoferri. A mouse caries model and evaluation of Aqp5-/-knockout mice. Caries Res. 39, (2005)448–454.PubMedCrossRefGoogle Scholar
  10. Dawes C. Factors influencing protein secretion in human saliva. In: Frontiers of oral physiology (ed. D.B. Ferguson), vol. 3,(1981) 125–137.CrossRefGoogle Scholar
  11. Dennett M.R., A.R. Hand, M. Flagella, G.E. Shull en J.E. Melvin. Severe impairment of salivation in Na + /K+/2Cl cotransporter (NKCC-1)-deficient mice. J. Biol. Chem. 275, (2000)26720–26726.PubMedGoogle Scholar
  12. Ferguson D.B. (ed.). The aging mouth. Frontiers of pral physiology, vol. 6, Karger, Basel, 1987.Google Scholar
  13. Garcia-Sainz J.A., J. Vazquez-Prado en R. Villalobos-Molina. α1-Adrenoceptors: subtypes, and roles in health and disease. Archs Med. Res. 30, (1999)449–458.CrossRefGoogle Scholar
  14. Garrett J.R., J.D. Harrison en P.J. Stoward. Histochemistry of secretory processes. Chapman and Hall, London, 1977.Google Scholar
  15. Genaro A.M., G. Stranieri en E. Borda. Involvement of the endogenous nitric oxide signalling system in bradykinin receptor activation in rat submandibular salivary gland. Archs Oral Biol. 45, (2000)723–729.CrossRefGoogle Scholar
  16. Huang A.Y., A.M. Castle, B.T. Hinton en J.D. Castle. Resting (basal) secretion of proteins is provided by the minor regulated and constitutive-like pathways and not granule exocytosis in parotid acinar cells. J. Biol. Chem. 276, (2001) 22296–22306.PubMedCrossRefGoogle Scholar
  17. Ishikawa Y., H. Iida en H. Ishida. The muscarinic acetylcholine receptor-stimulated increase in aquaporine-5 levels in the apical plasma membrane in rat parotid acinar cells is coupled with activation of nitric oxide/cGMP signal transduction. Mol. Pharmacol. 61, (2002)1423–1434.PubMedCrossRefGoogle Scholar
  18. Ishikawa Y., N. Inoue, Y. Zhenfang en Y. Nakae. Molecular mechanisms and drug development in aquaporin water channel diseases: The translocation of aquaporin-5 from lipid rafts to the apical plasma membranes of parotid glands of normal rats and the impairment of it in diabetic or aged rats. J. Pharmacol. Sci. 96, (2004)271–275.PubMedCrossRefGoogle Scholar
  19. Ishikawa Y., G. Cho, Z. Yuan, N. Inoue en Y. Nakae. Aquaporin-5 water channel in lipid rafts of rat parotid glands. Biochim. Biophys. Acta 1758, (2006)1053–1060.PubMedCrossRefGoogle Scholar
  20. Kurabuchi S. Morphologic changes in the granular convoluted tubular cells of the mouse submandibular gland following hypophysectomy and hormonal replacement. Odontology 90, (2002)27–34.PubMedCrossRefGoogle Scholar
  21. Luo W., L.R. Latchney en D.J. Culp. G protein coupling to M1 and M3 muscarinic receptors in sublingual glands. Am. J. Physiol. Cell Physiol. 280, (2001)C884–C896.PubMedGoogle Scholar
  22. McManaman J.L., M.E. Reyland en E.C. Thrower. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J. Mammary Gland Biol. Neoplasia 11, (2006)249–268.PubMedCrossRefGoogle Scholar
  23. Matsuo R., J.R. Garrett, G.B. Proctor en G.H. Carpenter. Reflex secretion of proteins into submandibular saliva in conscious rats, before and after preganglionic sympathectomy. J. Physiol. 527, (2000)175–184.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Melvin J.E., J. Arreola, K. Nehrke en T. Begenisich. Ca2+-activated Cl currents in salivary and lacrimal glands. Curr. Topics Membr. 53, (2002)209–230.CrossRefGoogle Scholar
  25. Mori M. Histochemistry of the salivary glands. CRC Press, Boca Raton, 1991.Google Scholar
  26. Nieuw Amerongen A. van. Speeksel: eigenschappen en functies. Analyse 8, (2005)238–243.Google Scholar
  27. Park K., R.L. Evans, G.E. Watson, K. Nehrke, L. Richardson, S.M. Bell, e.a. Defective fluid secretion and NaCl absorption in the parotid glands of Na+/ H+ exchanger-deficient mice. J. Biol. Chem. 276, (2001)27042–27050.PubMedCrossRefGoogle Scholar
  28. Pinkstaf C.A. The cytology of salivary glands. Int. Rev. Cytol. 63,(1980) 141–261.CrossRefGoogle Scholar
  29. Poisner A.M. en J.M. Trifaro. The secretory granule. Elsevier Biomedical Press, Amsterdam, 1982.Google Scholar
  30. Putney J.W. en S.J. Bird. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocrine Rev. 14, (1993)610–631.CrossRefGoogle Scholar
  31. Riva A. en P.M. Motta (eds). Ultrastructure of the extraparietal glands of the digestive tract. Kluwer Academic Publishers, Boston, 1990.Google Scholar
  32. Riva A., R. Puxeddu, L. Uras, F. Loy, S. Serreli en F. Testa-Riva. A high resolution scanning electron microscopic study of human minor salivary glands. Eur. J. Morphol. 38, (2001)219–226.CrossRefGoogle Scholar
  33. Rourke K. en A.V. Edwards. Submandibular secretory and vascular responses to stimulation of the parasympathetic innervation in anesthetized cats. J. Appl. Physiol. 89, (2000)1964–1970.PubMedGoogle Scholar
  34. Roussa E. H+ and HCO3 transporters in human salivary ducts. An immunohistochemical study. Histochem. J. 33, (2001)337–344.PubMedCrossRefGoogle Scholar
  35. Ryberg A.T., G. Warfvinge, L. Axelsson, O. Soukup, B. Götrick en G. Tobin. Expression of muscarinic receptor subtypes in salivary glands of rats, sheep and man. Archs Oral Biol. 53, (2008)66–74.CrossRefGoogle Scholar
  36. Sakai T., H. Michikawa, S. Furuyama en H. Sugiya. Methacholine-induced cGMP production is regulated by nitric oxide generation in rabbit submandibular gland cells. Comp. Biochem. Physiol. B 132, (2002)801–809.CrossRefGoogle Scholar
  37. Sreebny L.M. The salivary system. CRC Press, Boca Raton, 1987.Google Scholar
  38. Sugiya H., Y. Mitsui, H. Michikawa, J. Fujita-Yoshigaki, M. Hara-Yokoyama, S. Hashimoto, e.a. Ca2+- regulated nitric oxide generation in rabbit parotid acinar cells. Cell Calcium 30, (2001)107–116.PubMedCrossRefGoogle Scholar
  39. Thomopoulos G.N., J.R. Garrett en G.B. Proctor. Ultrastructural histochemical studies of secretory processes in rat submandibular tubules during intermittent sympathetic nerve stimulation. Eur. J. Morphol. 38, (2000)69–79.PubMedCrossRefGoogle Scholar
  40. Wang C.-C., H. Shi, K. Guo, C.P. Ng, J. Li, B.Q. Gan, e.a. VAMP8/Endobrevin as a general vesicular SNARE for regulated exocytosis of the exocrine system. Mol. Biol. Cell 18, (2007)1056–1063.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Yamashina S., H. Tamaki en O. Katsumata. Fine structure of the exocrine cells of rat sublingual gland revealed by rapid freezing and freezing substitution method. Eur. J. Morphol. 38, (2000)213–218.PubMedGoogle Scholar
  42. Yoshie S., A. Imai, T. Nashida en H. Shimomura. Expression, characterization, and localization of Rab26, a low molecular weight GTP-binding protein in the rat parotid gland. Histochem. Cell Biol. 113, (2000)259–263.PubMedCrossRefGoogle Scholar
  43. Young J.A. en E.W. van Lennep. The morphology of salivary glands. Academic Press, London, 1978.Google Scholar
  44. Young J.A., D.I. Cook en E.W. van Lennep. Secretion by the major salivary glands. In: L.R. Johnson. Physiology of the gastrointestinal tract. Raven Press, New York, 1987.Google Scholar

Copyright information

© Bohn Stafleu van Loghum, onderdeel van Springer Uitgeverij 2008

Authors and Affiliations

  1. 1.Sectie Orale BiochemieAcademisch Centrum Tandheelkunde Amsterdam (ACTA), Vrije Universiteit en Universiteit van AmsterdamAmsterdam

Personalised recommendations