Advertisement

28 Insectenspeeksel: bron voor medicijnen

Chapter
  • 793 Downloads

Samenvatting

Het speeksel van insecten is veel complexer dan vroeger werd gedacht. Er komen honderden biologisch actieve eiwitten en peptiden in voor. Insectenspeeksels kunnen daardoor worden opgevat als een vloeistof vol met farmaceutisch interessante eiwitten en peptiden. In het bijzonder is aandacht gegeven aan de stoffen die betrokken zijn bij het tegengaan van de bloedstolling, de pijngewaarwording en ontstekingen. Niet minder interessant is het om na te gaan hoe de insectenspeeksels de overleving van hun pathogenen bevorderen in de omgeving van de gastheer waarin diverse afweersystemen aanwezig zijn. Vandaar dat door de nieuwe biotechnologie de componenten van insectenspeeksels steeds meer voor farmaceutische doeleinden worden toegepast.

Literatuur

  1. Akaki M. en J.A. Dvorak. A chemotactic response facilitates mosquito salivary gland infection by malaria sporozoites. J. Exptl Biol. 208, (2005)3211–3218.CrossRefGoogle Scholar
  2. Andersen J.F., I.M.B. Francischetti, J.G. Valenzuela, P. Schuck en J.M.C. Ribeiro. Inhibition of hemostasis by a high affinity biogenic amine-binding protein from the saliva of a blood-feeding insect. J. Biol. Chem. 278, (2003)4611–4617.PubMedCrossRefGoogle Scholar
  3. Arca, F. Lombardo, J.G. Valenzuela, I.M.B. Francischetti, O. Marinotti, M. Coluzzi, e.a. An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J. Exptl Biol. 208, (2005)3971–3986.CrossRefGoogle Scholar
  4. Baskova I.P., L.L. Zavalova, A.V. Basanova, S.A. Moshkovskii en V.G. Zgoda. Protein profiling of the medicinal leech salivary gland secretion by proteomic analytical methods. Biochemistry (Moscow) 69, (2004)770–775.CrossRefGoogle Scholar
  5. Baskova I.P., E.S. Kostrjukova, M.A. Vlasova, O.V. Kharitonova, S.A. Levitskiy, L.L. Zavalova, e.a. Proteins and peptides of the salivary gland secretion of medicinal leeches Hirudo verbena, H. medicinalis, and H. orientalis. Biochemistry (Moscow) 73, (2008)315–320.CrossRefGoogle Scholar
  6. Billingsley P.F., J. Baird, J.A. Mitchell en C. Drakeley. Immune interactions between mosquitoes and their hosts. Parasite Immunol. 28, (2006)143–153.PubMedCrossRefGoogle Scholar
  7. Bishop J.V., J. Santiago Mejia, A.A. Perez de Leon, W.J. Tabachnick en R.G. Titus. Salivary gland extracts of Culicoides sonorensis inhibit murine lymphocyte proliferation and NO production by macrophages. Am. J. Trop. Med. Hyg. 75, (2006)532–536.Google Scholar
  8. Bowman A.S. en J.R. Sauer. Tick salivary glands: function, physiology and future. Parasitology 129, (2004)S67–S81.Google Scholar
  9. Caljon G., J. Vandenabbeele, BJ.M. Sternberg, M. Coosemans, P. De Baetselier en S. Magez. Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are useful tool for exposure assessment. Int. J. Parasitology 36, (2006a)1025–1035.CrossRefGoogle Scholar
  10. Caljon G., J. Vandenabbeele, B. Stijlemans, M. Coosemans, P. De Baetselier en S. Magez. Tsetse fly saliva accelerates the onset of Trypanosoma brucei infection in a mouse model associated with a reduced host inflammatory response. Infect. Immun. 74, (2006b)6324–6330.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Calvo E., J. Andersen, M. Francischetti, M. deL. Capurro, A.G. deBianchi, A.A. James, e.a. The transcriptome of adult female Anopheles darlingi salivary glands. Insect Mol. Biol. 13, (2004)73–88.Google Scholar
  12. Cavassini K.A., J.C. Aliberti, A.R.V. Dias, J.S. Silva en B.R. Ferreira. Tick saliva inhibits differentiation, maturation and function of murine bone-marrowderived dendritic cells. Immunology 114, (2005)235–245.CrossRefGoogle Scholar
  13. Choumet V., A. Carmi-Leroy, C. Laurent, P. Lenormand, J.-C. Rousselle, A. Namane, e.a. The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: A global proteomic study. Proteomics 7, (2007)3384–3394.PubMedCrossRefGoogle Scholar
  14. Dhar R. en N. Kumar. Role of mosquito salivary glands. Current Science 85, (2003)1308–1313.Google Scholar
  15. Faudry E., P.S. Rocha, T. Vernet, S.P. Lozzi en A.R.L. Teixeira. Kinetics of expression of the salivary apyrases in Triatoma infestans. Insect Biochem. Mol. Biol. 34, (2004)1051–1058.PubMedCrossRefGoogle Scholar
  16. Francischetti I.M.B., V. My Pham, B.J. Mans, J.F. Andersen, T.N. Mather, R.S. Lane, e.a. The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect Biochem. Mol. Biol. 35, (2005a)1142–1161.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Francischetti I.M.B., T.N. Mather en J.M.C. Ribeiro. Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis. Thromb. Haemost. 94, (2005b)167–174.PubMedCentralPubMedGoogle Scholar
  18. Francischetti I.M.B., B.J. Mans, Z. Meng, Nanda Guddera, T.D. Veenstra, V.M. Pham, e.a. An insight into sialome of the soft tick, Ornithodorus parkeri. Insect Biochem. Mol. Biol. 38, (2008)1–21.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Inagaki H., M. Akagi, H.T. Imai, R.W. Taylor en T. Kubo. Molecular cloning and biological characterization of novel antimicrobial peptides, pilosulin 3 and pilosulin 4, from a species of the Australian ant genus Myrmecia. Archs Biophys. Biochem. 428, (2004)170–178CrossRefGoogle Scholar
  20. Kalume D.E., M. Okulate, J. Zhong, R. Reddy, S. Suresh, N. Deshpande, e.a. A proteomic analysis of salivary glands of female Anopheles gambiae mosquito. Proteomics 5, (2005)3765–3777.PubMedCrossRefGoogle Scholar
  21. Karim S., V.G. Ramakrishnan, J.S. Tucker, R.C. Essenberg en J.R. Sauer. Amblyomma americanum salivary glands: double-stranded RNA-mediated gene silencing of synaptobrevin homologue and inhibition of PGE2 stimulated protein secretion. Insect Biochem. Mol. Biol. 34, (2004)407–413.PubMedCrossRefGoogle Scholar
  22. Kerridge A., H. Lappin-cott en J.R. Styevens. Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Med. Vet. Entom. 19, (2005)333–337.CrossRefGoogle Scholar
  23. Konno K., M. Hisada, H. Naoki, Y. Itagaki, R. Fontana, M. Rangel, e.a. Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatus. Peptides 27, (2006)2624–2631.PubMedCrossRefGoogle Scholar
  24. Kotsyfakis M., A. Sa-Nunes, I.M.B. Francischetti, T.N. Mather en J.F. Andersen. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem. 281, (2006)26298–26307.PubMedCrossRefGoogle Scholar
  25. Kovar L. Tick saliva in anti-tick immunity and pathogen transmission. Folia Microbiol. 49, (2004)327–336.CrossRefGoogle Scholar
  26. Kuhn-Nentwig L. Review: Antimicrobial and cytolytic peptides of venomous arthropods. CellMol. Life Sci. 60, (2003)2651–2668.CrossRefGoogle Scholar
  27. Kuhn-Nentwig L., Müller, J. Schaller, A. Walz, M. Dathe enW. Nentwig. Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J. Biol. Chem. 277, (2002)11208–11216.PubMedCrossRefGoogle Scholar
  28. Machackova M., M. Obornik en J. Kopecky. Effect of salivary gland extract from on the proliferation of Borrelia burgdorferi sensu stricto in vivo. Folia Parasitol. 53, (2006)153–158.PubMedCrossRefGoogle Scholar
  29. Madden R.D., J.R. Sauer en J.W. Dillwith. A proteomics approach to characterizing tick salivary secretions. Exptl Appl. Acarol. 28, (2002) 77–87.CrossRefGoogle Scholar
  30. Milleron R.S., J-P. Mutebi, S. Valle, A. Montoya, H. Yin, L. Soong, e.a. Antigenic diversity in maxadilan, a salivary protein from the sand fly vector of American visceral leishmaniasis. Am. J. Trop. Med. 70, (2004) 286–293.Google Scholar
  31. Nakajima C., S. Imamura, S. Konnai, S. Yamada, H. Nishikado, K. Ohashi, e.a. A novel gene encoding a thrombin inhibitory protein in a cDNA library from Haemaphysalis longicornis salivary gland. J. Vet. Med. Sci. 68, (2006)447–452.PubMedCrossRefGoogle Scholar
  32. Norsworthy N.B., J. Sun, D. Elnaiem, G. Lanzaro en L. Soong. Sand fly saliva enhances Leishmania amazonensis infection by modulating interleukin-10 production. Infect. Immun. 72, (2004) 1240–1247.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Pechova J., J. Kopecky en J. Salat. Effect of tick salivary gland extract on the cytokine production by mouse epidermal cells. Folia Parasitol. 51, (2004)367–372.PubMedCrossRefGoogle Scholar
  34. Pimenta A.M.C. en M.E. De Lima. Small peptides, big world: biotechnological potential in neglected bioactive peptides from arthropod venoms. J. Peptide Sci. 11, (2005)670–676.CrossRefGoogle Scholar
  35. Prevot P.-P., B. Adam, K.Z. Boudjeltia, M. Brossard, L. Lins, P. Cauchie, e.a. Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J. Biol. Chem. 281, (2006)26361–26369.PubMedCrossRefGoogle Scholar
  36. Rajska P., O. Pechanova, P. Takac, M. Kazimirova, L. Roller, L. Vidlicka, e.a. Vasodilatory acrivity in horsefly and deerfly salivary glands. Med. Vet. Entomol. 17, (2003)395–402.PubMedCrossRefGoogle Scholar
  37. Ribeiro J.M.C. en I.M.B. Francischetti. Role of arthropod saliva in blood feeding: Sialome and post-sialome perspectives. Annu. Rev. Entomol. 48, (2003)73–88.PubMedCrossRefGoogle Scholar
  38. Ribeiro J.M.C. en J.G. Valenzuela. The salivary purine nucleosidase of the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 33, (2003)13–22.PubMedCrossRefGoogle Scholar
  39. Ribeiro J.M.C., R. Charlab, V.M. Pham, M. Garfield en J.G. Valenzuela. An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus. Insect Biochem. Mol. Biol. 34, (2004a)543–563.PubMedCrossRefGoogle Scholar
  40. Ribeiro J.M.C., N.S. Zeidner, K. Ledin, M.C. Dolan en T.N. Mather. How much pilocarpine contaminates pilocarpine-induced tick saliva? Med. Vet. Entomol. 18, (2004)20–24.CrossRefGoogle Scholar
  41. Ribeiro J.M.C., F. Alarcon-Chaidez, I.M.B. Francischetti, B.J. Mans, T.N. Mather, J.G. Valenzuela, e.a. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 36, (2006)111–129.PubMedCrossRefGoogle Scholar
  42. Ricci-Silva M.E., e.a. Protein mapping of the salivary complex from a hematophagous leech. OMICS. J. Integr. Biology 9, (2005)194–208.CrossRefGoogle Scholar
  43. Rohousova I., P. Volf en M. Lipoldova. Modulation of murine cellular immune response and cytokine production by salivary gland lysate of three sand fly species. Parasite Immunol. 27, (2005)469–473.PubMedCrossRefGoogle Scholar
  44. Rolnikova T., M. Kazimirova en M. Buc. Modulation of human lymphocyte proliferation by salivary gland extracts of ixodid ticks (Acari: Ixodidae): effect of feeding stage and sex. Folia Parasitol. 50, (2003)305–312.PubMedCrossRefGoogle Scholar
  45. Schroeder H., V. Daix, L. Gillet, A. Vanderplasschen en J.-C. Renauld. The paralogous salivary anticomplement proteins IRAC I and IRAC II encoded by Ixodes ricinus ticks have broad and complementary inhibitory activities against the complement of different host species. Microbes Infect. 9, (2007)247–250.PubMedCrossRefGoogle Scholar
  46. Shirai Y., H. Funada, H. Takizawa, T. Seki, M. Morohashi en K. Kamimura. Landing preference of Aedes albopictus (Diptera: Culicidae) on human skin among ABO blood groups, secretors or nonsecretors and ABH antigens. J. Med. Entomol. 41, (2004)796–799.PubMedCrossRefGoogle Scholar
  47. Soares A.C., J. Carvalho-Tavares, N.D. Gontijo, V.C. Dos Santos, M.M. Teixeira en M.H. Pereira. Salivation pattern of Rhodnius prolixus (Reduviidae; Triatominae) in mouse skin. J. Insect Physiol. 52, (2006)468–472.CrossRefGoogle Scholar
  48. Steen N.A., S.C. Barker en P.F. Alewood. Proteins in the saliva of the Ixodida (ticks): Pharmacological features and biological significance. Toxicon 47, (2006) 1–20PubMedCrossRefGoogle Scholar
  49. Sun D., A. McNicol, A.J. James en Z. Peng. Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor. Platelets 17, (2006)178–184.PubMedCrossRefGoogle Scholar
  50. Titus R.G., J.V. Bishop en J.S. Mejia. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol. 28, (2006)131–141.PubMedGoogle Scholar
  51. Tu A.T., T. Motoyashiki en D.A. Azimov. Bioactive compounds in tick and mite venoms (saliva). Toxin Rev. 24, (2005)143–174.CrossRefGoogle Scholar
  52. Valenzuela J.G. Exploring tick saliva: from biochemistry to ’sialomes’ and functional genomics. Parasitology 129, (2004)S83–S94.PubMedCrossRefGoogle Scholar
  53. Van Den Abbeele J., G. Caljon, J.-F. Dierick, L. Moens, K. De Ridder en M. Coosemans. The Glossina morsitans tsetse fly saliva : General characteristics and identification of novel salivary proteins. Insect Biochem. Mol. Biol. 37, (2007)1075–1085.CrossRefGoogle Scholar
  54. Wikel S.K. Tick modulation of host immunity: an important factor in pathogen transmission. Int. J. Parasitol. 29, (1999)851–859.PubMedCrossRefGoogle Scholar
  55. Xu X., J. Li, Q. Lu, H. Yang, Y. Zhang en R. Lai. Two families of antimicrobial peptides from wasp (Vespa magnifica) venom. Toxicon 47, (2006a)249–253.PubMedCrossRefGoogle Scholar
  56. Xu X., H. Yang, H. Yu, J. Li en R. Lai. The mastoparanogen from wasp. Peptides 27, (2006b)3053–3057.PubMedCrossRefGoogle Scholar
  57. Yu D., Z. Sheng, X. Xu, J. Li, H. Yang, Z. Liu, e.a. A novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis. Peptides 27, (2006)31–35.PubMedCrossRefGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum, onderdeel van Springer Uitgeverij 2008

Authors and Affiliations

  1. 1.Sectie Orale BiochemieAcademisch Centrum Tandheelkunde Amsterdam (ACTA), Vrije Universiteit en Universiteit van AmsterdamAmsterdam

Personalised recommendations