Advertisement

20 Tandcariës: voeding en speeksel

Chapter
  • 842 Downloads

Sasmenvatting

Speeksel speelt een cruciale rol in de mondgezondheid. Om de gebitselementen gezond te houden moet er zowel kwantitatief als kwalitatief voldoende speeksel in de mondholte zijn. De speekselsecretiesnelheid is van belang voor het wegspoelen van resten van voedingsmiddelen. Bovendien is de bicarbonaatconcentratie hoger van speeksel dat met een hoge snelheid wordt gesecreteerd, en daarmee ook het zuurneutraliserende vermogen. Om cariës te voorkomen is het daarnaast belangrijk dat voldoende afweersystemen in de mondholte aanwezig zijn om de grote diversiteit aan orale micro-organismen goed in evenwicht te houden. Om cariogene micro-organismen te onderdrukken is een goede mondhygiëne verder van groot belang en een beperking van het aantal zoetmomenten per dag. Door een goede combinatie van mondhygiëne, voedingsgedrag en speeksel is de kans op het ontstaan van tandcariës sterk te reduceren, of zelfs te voorkomen. Daarnaast zijn antimicrobiële peptiden (AMP’s, zoals histatinen) in ontwikkeling, die selectief cariogene micro-organismen kunnen doden (Szynol e.a., 2004 en 2006) of aggregeren (zoals agglutinine en afgeleide peptiden, zie paragraaf 6.10) (Kelly en Lehner, 2007). Ook antimicrobiële (fosfo)peptiden uit melk, bijvoorbeeld caseïcinen uit caseïne, waaronder kappacine, zijn in staat om cariogene bacteriën in een biofilm te doden (Dashper e.a., 2007; Kanekanian e.a., 2008). Een N-eindstandig peptide, afgeleid van statherine (paragraaf 10.3.4) bindt sterk aan tandglazuur, reduceert demineralisatie en kan worden ingezet voor de bestrijding van zowel tandcariës als tanderosie (Kosoric e.a., 2007).

Literatuur

  1. Bardow A., J.M. ten Cate, B. Nauntofte en B. Nyvad. Effect of unstimulated saliva flow rate on experimental root caries. Caries Res. 37, (2003)232–236.PubMedCrossRefGoogle Scholar
  2. Bardow A., E. Hofer, B. Nyvad, J.M. ten Cate, S. Kirkeby, D. Moe, e.a. Effect of saliva composition on experimental root caries. Caries Res. 39, (2005)71–77.PubMedCrossRefGoogle Scholar
  3. Caglar E., S.C. Kavaloglu, O.O. Kuscu, N. Sandalli, P.L. Holgerson en S. Twetman. Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli. Clin. Oral Invest. 11, (2007)425–429.CrossRefGoogle Scholar
  4. Culp D.J., R.G. Quivey, W.H. Bowen, M.A. Fallon, S.K. Pearson en R. Faustoferri. A mouse caries model and evaluation of Aqp5-/- knockout mice. Caries Res. 39, (2005)448–454.PubMedCrossRefGoogle Scholar
  5. Dashper S.G., S.W. Liu en E.C. Reynolds. Antimicrobial peptides and their potential as oral therapeutic agents. Int. J. Peptide Res. Therapeutics 13, (2007)505–516.CrossRefGoogle Scholar
  6. Dawes C. en K. Kubieniec. The effects of prolonged gum chewing on salivary flow rate and composition. Archs Oral Biol. 49, (2004)665–669.CrossRefGoogle Scholar
  7. Edgar W.M. The role of saliva in the control of pH changes in human dental plaque. Caries Res. 10, (1976)241–254.PubMedCrossRefGoogle Scholar
  8. Edmondson S. Food composition and food cariogenicity factors affecting the cariogenic potential of foods. Caries Res. 24,(1990)60–71, Supplement.Google Scholar
  9. Fracaro M.S., V.M. Linnett, K.B. Hallett en N.W. Savage. Submandibular gland aplasia and progressive dental caries: A case report. Austr. Dent. J. 47, (2002)347–350.CrossRefGoogle Scholar
  10. Gaubenstock L.M. Dental caries and the secretory activity of human labial minor salivary glands. Archs Oral Biol. 40, (1995)525–528.CrossRefGoogle Scholar
  11. Geddes D.A.M. Acids produced by human dental plaque metabolism in situ. Caries Res. 9, (1975)98–109.PubMedCrossRefGoogle Scholar
  12. Hannig C., M. Hannig en T. Attin. Enzymes in the acquired enamel pellicle. Eur. J. Oral Sci. 113, (2005)2–13.PubMedCrossRefGoogle Scholar
  13. Igarashi K. Inhibitory effect of topical administration of a biphosphonate (risedronate) on root resorption. J. Dent. Res. 67, (1988) 531–535.PubMedCrossRefGoogle Scholar
  14. Iijima Y., F. Cai, P. Shen, G. Walker, C. Reynolds en E.C. Reynolds. Acis resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. Caries Res. 38, (2004)551–556.PubMedCrossRefGoogle Scholar
  15. Imfeld T. Chewing gum - Facts and fiction: a review of gum-chewing and oral health. Crit. Rev. Oral Biol. Med. 10, (1999)405–419.PubMedCrossRefGoogle Scholar
  16. Jansma J., J.A.K.M. Buskes, A. Vissink, D.M. Mehta en E.J. ’s-Gravenmade. The effect of X-ray irradiation on the demineralization of bovine dental enamel: A constant composition study. Caries Res 22, (1988):199–203.CrossRefGoogle Scholar
  17. Järvinen V.K., I.I. Rytömaa en O.P. Heinonen, Risk factors in dental erosion. J. Dent. Res. 70, (1991) 942–947.PubMedCrossRefGoogle Scholar
  18. Kanekanian A.D., R.J.H. Williams, V.L. Brownsell en A.T. Andrews. Caseinphosphopeptides and dental protection: Concentration and pH studies. Food Chem. 107, (2008)1015–1021.CrossRefGoogle Scholar
  19. Kartal A., J. Hietala, I. Laakso, P. Kaihovaara, V. Salaspuro, M. Sakkinen, e.a. Formulation and invivo evaluation of L-cysteine chewing gums for binding carcinogenic acetaldehyde in the saliva during smoking. J. Pharmacy Pharmacol. 59, (2007)1353–1358.CrossRefGoogle Scholar
  20. Kelly C.G. en T. Lehner. Peptide inhibitors of Streptococcus mutans in the control of dental caries. Int. J. Peptide Res. Ther. 13, (2007)517–523.CrossRefGoogle Scholar
  21. Kivela J., S. Parkkila, A.K. Parkkila en H. Rajaniemi. A low concentration of carbonic anhydrase isoenzyme VI in whole saliva is associated with caries prevalence. Caries Res. 33, (1999)178–184.PubMedCrossRefGoogle Scholar
  22. Kleinberg I. A new saliva-based anticaries composition. Dent. Today 18, (1999), february p. 1–6.Google Scholar
  23. Kosoric J., R.A.D. Williams, M.P. Hector en P. Anderson. A synthetic peptide based on a natural salivary protein reduces demineralisation in model systems for dental caries and erosion. Int. J. Peptide Res. Therapeutics 13, (2007)497–503.CrossRefGoogle Scholar
  24. Lagerlöf F. Effects of flow rate and pH on calcium phosphate saturation in human parotid saliva. Caries Res. 17, (1983)403–411.PubMedCrossRefGoogle Scholar
  25. Lagerlöf F. en C. Dawes, Effect of sucrose as a gustatory stimulus on the flow rates of parotid and whole saliva. Caries Res. 19, (1985)206–211.PubMedCrossRefGoogle Scholar
  26. Lagerlöf F., A.Oliveby en J. Ekstrand. Physiological factors influencing salivary clearing of sugar and fluoride. J. Dent. Res. 66, (1987)430–435.PubMedCrossRefGoogle Scholar
  27. Mandel I.D. Relation of saliva and plaque to caries. J. Dent. Res. 53, (1974)246–266.PubMedCrossRefGoogle Scholar
  28. Moynihan P.J. Dietary advice in dental practice. Br. Dent. J. 193, (2002)563–568.PubMedCrossRefGoogle Scholar
  29. Nieuw Amerongen A van, A.W. van de Beld en E.C.I. Veerman. Speeksel en gebitselementen. Uitgeverij Coutinho, Bussum, 1999. Hoofdstuk 8.Google Scholar
  30. Polland K.E., F. Higgins en R. Orchardson. Salivary flow rate and pH during prolonged gum chewing in humans. J. Oral Rehabil. 30, (2003)861–865.PubMedCrossRefGoogle Scholar
  31. E. Roussa. H+ and HCO3 - transporters in human salivary ducts. An immunohistochemical study. Histochem. J. 33, (2001)337–344.PubMedCrossRefGoogle Scholar
  32. Schuurs A.H.B. Gebitspathologie. Afwijkingen van de harde tandweefsels. Bohn Stafleu Van Loghum, Houten, 1999.Google Scholar
  33. Schwartz A.P. Soft drinks taste good, but the calories count. J. Pediatrics 142, (2003)599–601.CrossRefGoogle Scholar
  34. Shu M., E. Morou-Bermudez, E. Suarez-Perez, C. Rivera-miranda, C.M. Browngardt, Y.-Y.M. Chen, e.a. The relationship between dental caries status and dental plaque urease activity. Oral Microbiol. Immunol. 22, (2007)61–66.PubMedCrossRefGoogle Scholar
  35. Speirs R.L. Secretion of saliva by human lip mucous glands and parotid glands in response to gustatory stimuli and chewing. Archs Oral Biol. 29, (1984)945–948.CrossRefGoogle Scholar
  36. Sreebny L.M. Salivary flow and dental caries. In: B. Guggenheim (ed.). Cariology Today. Karger, Basel, 1984(56–59).Google Scholar
  37. Szynol A., J.J. de Soet, E. Sieben-van Tuyl J.W. Bos en L.G. Frenken. Bactericidal effects of a fusion protein of llama heavy-chain antibodies coupled to glucose oxidase on oral bacteria. Antimicrob. Agents Chemother. 48, (2004)3390–3395.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Szynol A., J.J.W. de Haard, E.C.I. Veerman, J.J. de Soet en A. van Nieuw Amerongen. Design of a peptibody consisting of the antimicrobial peptide dhvar5 and a llama variable heavy-chain antibody fragment. Chem. Biol. Drug Design 67, (2006)425–431.CrossRefGoogle Scholar
  39. Tatevossian A. Buffering capacity in human dental plaque fluid. Caries Res. 11, (1977) 216–222.PubMedCrossRefGoogle Scholar
  40. Tenovuo J. Salivary parameters of relevance for assessing caries activity in individuals and populations. Commun. Dent. Oral Epidemiol. 25, (1997)82–86.CrossRefGoogle Scholar
  41. Tenovuo J., T. Hurme, A.Ahola, C. Svedsberg, I. Eostela, M. Lenander-Lumikari, e.a. Release of cariostatic agents from a new buffering fluorideand xylitol-containing lozenge to human whole saliva in vivo. J. Oral Rehabil. 24, (1997)325–331.PubMedCrossRefGoogle Scholar
  42. VanWuyckhuyse B.C., H.E.R. Perinpanayagam, D. Bevacqua, R.F. Raubertas, R.J. Billings, W.H. Bowen, e.a. Association of free arginine and lysine concentrations in human parotid saliva with caries experience. J. Dent. Res. 74, (1995)686–690.CrossRefGoogle Scholar
  43. Vitorino R., M.J.C. Lobo, J. Amos Duarte, E.J. FerrerCorreia, P.M. Domingues en F.M.L. Amado. The role of salivary peptides in dental caries. Biomed. Chrom. 19, (2005)214–222.CrossRefGoogle Scholar
  44. Vitorino R., S. de Morais Guedes, R. Ferreira, M.J.C. Lobo, J. Duarte, A.J. Ferrer-Correia, e.a. Twodimensional electrophoresis study of in vitro pellicle formation and dental caries susceptibility. Eur. J. Oral Sci. 114, (2006)147–153.PubMedCrossRefGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum, onderdeel van Springer Uitgeverij 2008

Authors and Affiliations

  1. 1.Sectie Orale BiochemieAcademisch Centrum Tandheelkunde Amsterdam (ACTA), Vrije Universiteit en Universiteit van AmsterdamAmsterdam

Personalised recommendations