Advertisement

15 Nieuwe ontwikkelingen in oraal biochemisch onderzoek

Chapter
  • 798 Downloads

Samenvatting

Moleculairbiologische technieken zoals de recombinant-DNA-techniek en genklonering worden steeds vaker routinematig gebruikt, voor onder andere productie van humane eiwitten zoals insuline en groeihormoon, en voor de ontwikkeling van veilige vaccins. Synthese van glycoproteïnen met deze methode is echter nog altijd een groot probleem. Voor de synthese van kleine (niet-geglycosyleerde) eiwitten en peptiden is organisch-chemische synthese een goed alternatief. In principe kan met deze techniek elk gewenst eiwitdomein in relatief grote hoeveelheden worden gesynthetiseerd. Organisch-chemisch synthese van peptiden is een belangrijk hulpmiddel bij onderzoek naar de structuur-functierelatie van eiwitten. Daarnaast biedt deze techniek de mogelijkheid tot grootschalige synthese van peptiden voor biomedische toepassingen.

De nieuwe ontwikkelingen op het gebied van de celbiologie (onder andere weefselregeneratie, stamcelonderzoek, gentransfer en micro-arraytechniek) zijn veelbelovend. Hierdoor kunnen toepassingen op onder andere het terrein van weefselherstel en de vroege diagnostiek van maligniteiten op korte termijn worden verwacht.

Literatuur

  1. Amado F.M.L., R.M.P. Vitorino, P.M.D.N. Domingues, M.J.C. Lobo en J.A.R. Duarte. Analysis of the human saliva proteome. Expert Rev. Proteomics 2, (2005)521–539.PubMedCrossRefGoogle Scholar
  2. Auerswald E.A., G. Genenger, I. Assfalg-Machleidt, J. Kos en W. Bode. Synthesis of a (desSer 1 - Ile29 - Leu 89) chicken cystatin gene, expression in E. coli as fusion protein and its isolation. FEBS Letters, 243, (1989)186–192.PubMedCrossRefGoogle Scholar
  3. Barrett A.J. Cystatin, the egg white inhibitor of cysteine proteinases. Methods Enzymology 80, (1981)771–778.Google Scholar
  4. Baum B.J. en B.C. O’Connell. In vivo gene transfer to salivary glands. Crit. Rev. Oral Biol. Med. 10, (1999)276–283.PubMedCrossRefGoogle Scholar
  5. Baum B.J., R.B. Wellner en C. Zheng. Gene transfer to salivary glands. Int. Rev. Cytology 213, (2002)93–146.CrossRefGoogle Scholar
  6. Bikker F.J., A.J.M. Ligtenberg, K. Nazmi, E.C.I. Veerman, W. van ’t Hof, J.G.M. Bolscher, e.a. Identification of the bacteria-binding peptide domain on salivary agglutinin (gp-340/DMBT1), a member of the scavenger receptor cysteine-rich superfamily. J. Biol. Chem. 277, (2002) 32109–32115.PubMedCrossRefGoogle Scholar
  7. Blankenvoorde M.F.J., Y.M.C, Henskens, G.A. van der Weijden, P.A.M. van den Keijbus, E.C.I. Veerman en A. van Nieuw Amerongen. Cystatin A in gingival crevicular fluid of periodontal patients. J. Periodont. Res. 32, (1997)583–588.PubMedCrossRefGoogle Scholar
  8. Blankenvoorde M.F.J., W. van ’t Hof, E. Walgreen-Weterings, T.J.M. van Steenbergen, E.C.I. Veerman, H.S. Brand, e.a. Cystatins and cystatin-derived peptides have antibacterial activity against the pathogen Porphyromonas gingivalis. Biol. Chem. 379, (1998)1371–1375.PubMedGoogle Scholar
  9. Bobek L.A., A. Aguirre en M.J. Levine. Human salivary cystatin S. Cloning, sequence analysis, hybridization in situ and immunocytochemistry. Biochem. J. 278, (1991)627–635.PubMedCentralPubMedGoogle Scholar
  10. Bobek L.A., X. Wang en M.J. Levine. Efficient production of biologically active human salivary cystatins in Escherichia coli. Gene 123, (1993a)203–210.PubMedCrossRefGoogle Scholar
  11. Bobek L.A., H. Tsai, A.R. Biesbroek en M.J. Levine. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J. Biol. Chem. 268, (1993b)20563–20569.PubMedGoogle Scholar
  12. Bolstad A.I. en R. Jonsson. Gene therapeutics in SjÖgren’s syndrome. Expert Opin. Biol. Ther. 5, (2005)763–772.PubMedCrossRefGoogle Scholar
  13. Cohen R.E., A. Aguirre, M.E. Neiders, M.J. Levine, P.C. Jones, M.S. Reddy, e.a. Immunochemistry of high molecular-weight human salivary mucin. Archs Oral Biol. 35, (1990)127–136.CrossRefGoogle Scholar
  14. Cohen R.E., A. Aguirre, M.E. Neiders, M.J. Levine, P.C. Jones, M.S. Reddy, e.a. Immunochemistry and immunogenicity of low molecular weight human salivary mucin. Archs Oral Biol. 36, (1991)347–356.CrossRefGoogle Scholar
  15. Colella R., Y. Sakaguchi, H. Nagase en J.W.C. Bird. Chicken egg white cystatin - Molecular cloning, nucleotide sequence, and tissue distribution. J. Biol. Chem. 264, (1989)17164–17169.PubMedGoogle Scholar
  16. Coppes R.P., R. Licht, P.K. Wierenga, H.H. Kampinga en G. de Haan. Recovery of radiation-induced deterioration of salivary gland morphology after transplantation with bone marrow derived stem cells, Int. J. Radiat. Oncol. Biol. Phys. 55, (2003) 491.Google Scholar
  17. Fackelman K.A. Bloodsuckers reconsidered. Science News 139, (1991)172–173.CrossRefGoogle Scholar
  18. Fong D., T. Kartasova, F. Sloane en M.M. Chan. Bacterial expression of human cysteine proteinase inhibitor Stefin A. FEBS Letters, 257, (1989)55–58.PubMedCrossRefGoogle Scholar
  19. Gardell S.J., D.R. Ramjit, I.I. Stabilito, T. Fujita, J.J. Lynch, G.C. Cuca, e.a. Effective thrombolysis without marked plasminemia after bolus intravenous administration of vampire bat salivary plasminogen activator in rabbits. Circulation 84, (1991)244–253.PubMedCrossRefGoogle Scholar
  20. Ghafouri B., C. Tagesson en M. Lindahl. Mapping of proteins in human saliva using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteomics 3, (2003)1003–1015.PubMedCrossRefGoogle Scholar
  21. Groenink J., E. Walgreen-Weterings, W. van ’t Hof, E.C.I. Veerman en A. van Nieuw Amerongen. Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS Microbiol. Lett. 179, (1999)217–222.PubMedCrossRefGoogle Scholar
  22. Grubb A., M. Abrahamson, I. Olafsson, J. Trojnar, R. Kasprzykowska, F. Kasprzykowski, e.a. Synthesis of cysteine proteinase inhibitors structurally based on the proteinase interacting N-terminal region of human cystatin-C. Biol. Chem. Hoppe-Seyler 371, (1990)137–144.PubMedCrossRefGoogle Scholar
  23. Guo T., P.A. Rudnick, W. Wang, C.S. Lee, D.L. Devoe en B.M. Balgley. Characterization of the human salivary proteome by capillary isoelectric focusing/ nanoreversed-phase liquid chromatography coupled with ESI-tandem MS. J. Proteome Res. 5, (2006)1469–1478.PubMedCrossRefGoogle Scholar
  24. Hall A., M. Abrahamson, A. Grubb, J. Trojnar, P. Kania, R. Kasprzykowska, e.a. Cystatin C based peptidyl diazomethanes as cysteine proteinase inhibitors: influence of the peptidyl chain length. J. Enzyme Inhib. 6, (1992)113–123.PubMedCrossRefGoogle Scholar
  25. Helmerhorst E.J. Design and characterization of antimicrobial peptides base don salivary histatins. Dissertatie, 1999. Vrije Universiteit, Amsterdam.Google Scholar
  26. Helmerhorst E.J., W. van ’t Hof, E.C.I. Veerman, I. Simoons-Smit en A. van Nieuw Amerongen. Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem. J. 326, (1997)39–45.PubMedCentralPubMedGoogle Scholar
  27. Helmerhorst E.J., I.M. Reijnders, W. van ’t Hof, I. Simoons-Smit, E.C.I. Veerman en A. van Nieuw Amerongen. Amphotericin B- and fluconazoleresistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob. Agents Chemother. 43, (1999a)702–704.PubMedCentralPubMedGoogle Scholar
  28. Helmerhorst E.J., P. Breeuwer, W. van ’t Hof, E. Walgreen-Weterings, L.C. Oomen, E.C.I. Veerman, e.a. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J. Biol. Chem. 274, (1999b)7286–7291.PubMedCrossRefGoogle Scholar
  29. Helmerhorst E.J., M.P. Murphy, R.F. Troxler en F.G. Oppenheim. Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochim. Biophys. Acta 1556, (2002)73–80.PubMedCrossRefGoogle Scholar
  30. Henskens Y.M.C., U. van der Velden, E.C.I. Veerman en A. van Nieuw Amerongen. Protein, albumin and cystatin concentrations in saliva of healthy subjects and of patients with gingivitis or periodontitis. J. Periodont. Res. 28, (1993)43–48.PubMedCrossRefGoogle Scholar
  31. Hertog A.L. den, J. van Marle, E.C.I. Veerman, M. Valentijn-Benz, K. Nazmi, H. Kalay, C.H. Grün, e.a. The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol. Chem. 387, (2006)1495–1502.Google Scholar
  32. Hirtz C., F. Chevalier, D. Centeno, V. Rofidal, J.-C. Egea, M. Rossignol, e.a. MS characterization of multiple forms of alpha-amylase in human saliva. Proteomics 5, (2005)4597–4607.PubMedCrossRefGoogle Scholar
  33. HofW. van ’t, E.C.I. Veerman, E.J. Helmerhorst en A. van Nieuw Amerongen. Antimicrobial peptides: properties and applicability. Biol. Chem. 382, (2001)597–619.CrossRefGoogle Scholar
  34. Hof W. van ’t, M.F.J. Blankenvoorde, E.C.I. Veerman en A. van Nieuw Amerongen. The salivary lipocalin Von Ebner’s gland protein is a cysteine proteinase inhibitor. J. Biol. Chem. 272, (1997)1837–1841.CrossRefGoogle Scholar
  35. Hu S., J.A. Loo en D.T. Wong. Human saliva proteome analysis. Ann. N. Y. Acad. Sci. 1098, (2007)323–329.PubMedCrossRefGoogle Scholar
  36. Jürgens M. en M. Schrader. Peptidomic approaches in proteomic research. Curr. Opin. Mol. Therap. 4, (2002)236–241.Google Scholar
  37. Kraan M.I.A. van der, K. Nazmi,W. van ’t Hof, A. van Nieuw Amerongen, E.C.I. Veerman en J.G.M. Bolscher. Distinct bactericidal activities of bovine lactoferrin peptides LF-ampin 268-284 and LF-ampin 265-284: Asp-Leu-Ile sequence makes the difference. Biochem. Cell Biol. 84, (2006)358–362.PubMedCrossRefGoogle Scholar
  38. Levine M.J., M.S. Reddy, L.A. Tabak, R.E. Loomis, E.J. Bergey, P.C. Jones, e.a. Structural aspects of salivary glycoproteins. J. Dent. Res. 66, (1987)436–441.PubMedCrossRefGoogle Scholar
  39. Levine M.J., A. Aguirre, M.N. Hatton en L.A. Tabak. Artificial salivas: present and future. J. Dent. Res. 66, (1987)693–698.PubMedCrossRefGoogle Scholar
  40. Li Y., X. Zhou, M.A.R. St. John en W.T. Wong. RNA profiling of cell-free saliva using microarray technology. J. Dent. Res. 83, (2004)199–203.Google Scholar
  41. Ligtenberg A.J.M., E. Walgreen-Weterings, E.C.I. Veerman, J.J. de Soet, J. de Graaff en A. van Nieuw Amerongen. Influence of saliva on the aggregation and adherence of Streptococcus gordonii HG 222. Infect. Immun. 60, (1992)3878–3884.PubMedCentralPubMedGoogle Scholar
  42. Loomis R.E., A. Prakobphol, M.J. Levine, M.S. Reddy en P.C. Jones. Biochemical and biophysical comparison of two mucins from human submandibular- sublingual saliva. Archs Biochem. Biophys. 258, (1987)452–464.CrossRefGoogle Scholar
  43. Mackay B.J., J.J. Pollock, V.J. Iacono en B.J. Baum. Isolation of milligram quantities of a group of histidine-rich polypeptides from human parotid saliva. Infect. Immun. 44, (1984)688–694.PubMedCentralPubMedGoogle Scholar
  44. Mandel I.D. A contemporary view of salivary research. Crit. Rev. Oral Biol. Med. 4, (1993)599–604.PubMedGoogle Scholar
  45. Messana I., R. Inzitari, C. Fanali, T. Cabras en M. Castagnola. Facts and artifacts in proteomics of body fluids. What proteomics of salvia is telling us? J. Seperation Sci. 31, (2008)1948–1963.CrossRefGoogle Scholar
  46. Nikawa T., T. Towatari, Y. Ike en N. Katunuma. Studies on the reactive site of the cystatin superfamily using recombinant cystatin A mutants - Evidence that the QVVAG region is not essential for cysteine proteinase inhibitory activities. FEBS Letters 255, (1989)309–314.PubMedCrossRefGoogle Scholar
  47. Nishikata M., T. Kanehira, H. Oh, H. Tani, M. Tazaki en Y. Kuboki. Salivary histatin as an inhibitor of a protease produced by the oral bacterium Bacteroides gingivalis. Biochem. Biophys. Res. Comm. 174, (1991)625–630.PubMedCrossRefGoogle Scholar
  48. O’Connell B.C., C. Zheng, D. Jacobson-Kram en B.J. Baum. Distribution and toxicity resulting from adenoviral vector administration to a single salivary gland in adult rats. J. Oral Pathol. Med. 32, (2003)414–421.PubMedCrossRefGoogle Scholar
  49. Oppenheim F.G., T. Xu, F.M. McMillian, S.M. Levitz, R.D. Diamond, G.D. Offner, e.a. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem. 263, (1988)7472–7477.PubMedGoogle Scholar
  50. Papagianni M. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function and applications. Biotechn. Adv. 21, (2003)465–499.CrossRefGoogle Scholar
  51. Prakobphol A., M.J. Levine, L.A. Tabak en M.S. Reddy. Purification of a low-molecular-weight, mucin-type glycoprotein from human submandibular- sublingual saliva. Carbohydr. Res. 108, (1982)111–122.PubMedCrossRefGoogle Scholar
  52. Reijden W.A. van der, M.J. Buijs, J.J.M. Damen, E.C.I. Veerman, J.M. ten Cate en A. van Nieuw Amerongen. Influence of polymers for use in artificial saliva substitutes on de- and remineralization of enamel in vitro. Caries Res. 31, (1997)216–223.PubMedCrossRefGoogle Scholar
  53. Ruissen A.L.A., J. Groenink, E.J. Helmerhorst, E. Walgreen-Weterings, W. van ’t Hof, E.C.I. Veerman en A. van Nieuw Amerongen. Effects of histatin 5 and derived peptides on Candida albicans. Biochem. J. 356, (2001) 361–368.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Ruissen A.L.A., J. Groenink, C.H. Lommerse, W. van ’t Hof, E.C.I. Veerman en A. van Nieuw Amerongen. Effects of carbohydrate polymers applicable in saliva substitutes on the anti-Candida activity of a histatin-derived peptide. Archs Oral Biol. 47, (2002)749–756.CrossRefGoogle Scholar
  55. Santarpia R.P., M.I. Cho en J.J. Pollock. Parameters affecting the inhibition of Candida albicans GDH 2023 and GRI 2773 blastospore viability by purified synthetic salivary histidine-rich polypeptides. Oral Microb. Immunol. 5, (1990)226–232.CrossRefGoogle Scholar
  56. Schipper R.G., E. Silletti en M.H. Vingerhoeds. Saliva as research material: Biochemical, physicochemical and practical aspects. Archs Oral Biol. 52, (2007)1114–1135.CrossRefGoogle Scholar
  57. Spek J.C. van der, G.D. Offner, R.F. Troxler en F.G. Oppenheim. Molecular cloning of human submandibular histatins. Archs Oral Biol. 35, (1990)137–143.CrossRefGoogle Scholar
  58. Strietzel F.P., R. Martin-Granizo, S. Fedele, L. Lo Russo, M. Mignogna, P.A. Reichart, e.a. Electrostimulating device in the management of xerostomia. Oral Dis. 13, (2007)206–213.PubMedCrossRefGoogle Scholar
  59. Tabak L.A. en W.H. Bowen. Roles of saliva (pellicle), diet, and nutrition on plaque formation. J. Dent. Res., 68, (1989)1560–1566.Google Scholar
  60. Veerman E.C.I., M. Valentijn-Benz en A. van Nieuw Amerongen. Isolation of high molecular weight mucins from human whole saliva by ultracentrifugation. J. Biol. Buccale 17, (1989)307–312.PubMedGoogle Scholar
  61. Veerman E.C.I., M. Valentijn-Benz, P.A.M. van den Keijbus, W.M. Rathman, J.K. Sheehan en A. van Nieuw Amerongen. Immunochemical analysis of human salivary mucins using monoclonal antibodies. Archs Oral Biol. 36, (1991)923–932.CrossRefGoogle Scholar
  62. Veerman E.C.I., P.A.M. van den Keijbus, M. Valentijn-Benz en A. van Nieuw Amerongen. Isolation of different high molecular weight mucin species from human whole saliva. Biochem. J. 283, (1992)807–811.PubMedCentralPubMedGoogle Scholar
  63. Voutetakis, I. Bossis, M.R. Kok, W. Zhang, J. Wang, A.P. Cotrim, e.a. Salivary A. glands as a potential gene transfer target for gene therapeutics of some monogenetic endocrine disorders. J. Endocrinol. 185, (2005)363–372.PubMedCrossRefGoogle Scholar
  64. Waxman L., D.E. Smith, K.E. Arcuri en G.P. Vlasuk. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248, (1990)593–596.PubMedCrossRefGoogle Scholar
  65. Yamano S., L.-Y. Huang, C. Ding, J.A. Chiorini, C.M. Goldsmith, R.B. Wellner, e.a. Recombinant adenoassociated virus serotype 2 vectors mediate stable interleukin 10 secretion from salivary glands into the bloodstream. Human Gen. Ther. 13, (2002)287–298.CrossRefGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum, onderdeel van Springer Uitgeverij 2008

Authors and Affiliations

  1. 1.Sectie Orale BiochemieAcademisch Centrum Tandheelkunde Amsterdam (ACTA), Vrije Universiteit en Universiteit van AmsterdamAmsterdam

Personalised recommendations